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1 Introduction
Originally, a Banach contractive mapping [] is a mapping T : X → X from a metric space
(X, d) into itself for which there exists λ ∈ [, ) such that

d(Tx, Ty) ≤ λd(x, y) for all x, y ∈ X.

In [], Rhoades did a complete study about different notions of contractive mapping that
were appearing after Banach’s pioneering notion, including, among others, the following
ones:

• Kannan [], ,

d(Tx, Ty) ≤ λ
(
d(x, Tx) + d(y, Ty)

)
, where λ ∈ [, /).

• Reich [], ,

d(Tx, Ty) ≤ ad(x, Tx) + bd(y, Ty) + cd(x, y), where a + b + c < .

• Bianchini [], ,

d(Tx, Ty) ≤ λmax
{

d(x, Tx), d(y, Ty)
}

, where λ ∈ [, ).

• Chatterjea [], ,

d(Tx, Ty) ≤ λ
(
d(x, Ty) + d(y, Tx)

)
, where λ ∈ [, /).
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• Sehgal [], ,

d(Tx, Ty) < max
{

d(x, Tx), d(y, Ty), d(x, y)
}

.

• Hardy and Rogers [], ,

d(Tx, Ty) ≤ ad(x, y) + ad(x, Tx) + ad(y, Ty) + ad(x, Ty) + ad(y, Tx),

where a + a + a + a + a < .

• Ćirić [], ,

d(Tx, Ty) ≤ λmax
{

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

,

where λ ∈ [, ).

Later, some auxiliary functions were appearing in the contractivity condition. To cite
some of them, the following ones are well-known contractivity conditions.

• Boyd and Wong [], ,

d(Tx, Ty) ≤ ϕ
(
d(x, y)

)
.

• Rhoades [], ,

d(Tx, Ty) ≤ d(x, y) – φ
(
d(x, y)

)
.

• Dutta and Choudhury [], ,

ψ
(
d(Tx, Ty)

) ≤ ψ
(
d(x, y)

)
– φ

(
d(x, y)

)
.

• Aydi et al. [], ,

ψ
(
d(Tx, Ty)

) ≤ ψ
(
M(x, y)

)
– φ

(
M(x, y)

)
+ LN(x, y),

where L ≥ ,

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)


}
and

N(x, y) = max
{

d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

.

• Berzig et al. [], ,

ψ
(
d(Tx, Ty)

) ≤ α(x, y)ψ
(
M(x, y)

)
– β(x, y)ϕ

(
M(x, y)

)
,

where M(x, y) is given by one of the following cases:

• M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)


}
(type I);
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• M(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty)
}

(type II);

• M(x, y) = max

{
d(x, y),

d(x, Tx) + d(y, Ty)


,
d(x, Ty) + d(y, Tx)



}
(type III);

• M(x, y) = max

{
d(x, y),

d(x, Tx) + d(y, Ty)


}
(type IV);

• M(x, y) = d(x, y) (type V).

After the appearance of Rhoades’ theorem (see []), many results have been introduced
involving contractivity conditions in which some families of functions play a key role, even
in partially ordered metric spaces (see, for instance, [, –]). As we can observe, each
time, more and more terms have been included in the right-hand side of the contractivity
inequality. As a consequence, new results are getting better.

In a very recent manuscript, Liu et al. [] introduced common fixed point theorems for
self-mappings A, B, T , S : X → X involving some very complex contractivity conditions, as
the following one.

Theorem  (Liu et al. [], Theorem .) Let A, B, S, and T be self-mappings in a metric
space (X, d) such that

{A, T} and {B, S} are weakly compatible;

T(X) ⊆ B(X) and S(X) ⊆ A(X);

one of A(X), B(X), S(X), and T(X) is complete;

d(Tx, Sy) ≤ ψ
(
M(x, y)

)
, ∀x, y ∈ X, ()

where ψ is in � and M is defined, for all x, y ∈ X, by

M(x, y) = max

{
d(Ax, By), d(Ax, Tx), d(By, Sy),

d(Ax, Sy) + d(Tx, By)


,

d(Ax, Sy)d(Tx, By)
 + d(Ax, By)

,
d(Ax, Tx)d(By, Sy)

 + d(Ax, By)
,

 + d(Ax, Sy) + d(Tx, By)
 + d(Ax, Tx) + d(By, Sy)

d(Ax, Tx)
}

. ()

Then A, B, S, and T have a unique common fixed point in X.

Other statements were proved in the mentioned paper including similar contractivity
conditions involving functions M, M : X → [,∞) as follows:

M(x, y) = max

{
d(Ax, By), d(Ax, Tx), d(By, Sy),

d(Ax, Sy) + d(Tx, By)


,

 + d(Ax, Tx)
 + d(Ax, By)

d(By, Sy),
 + d(By, Sy)
 + d(Ax, By)

d(Ax, Tx),

 + d(Ax, Sy) + d(Tx, By)
 + d(Ax, Tx) + d(By, Sy)

d(By, Sy)
}

and
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M(x, y) = max

{
d(Ax, By), d(Ax, Tx), d(By, Sy),

d(Ax, Sy) + d(Tx, By)


,

d(Ax, Sy)d(Tx, By)
 + d(Ax, By)

}
.

Obviously, in the future, new contractivity conditions will appear involving more and more
terms in the right-hand side of the contractivity inequality. It is not our purpose to com-
plicate such situation. On the contrary, the main aim of the present manuscript is to study
what kind of functions might we include in an efficient contractivity condition depending
on the terms we wish to consider (like d(Ax, By), d(Ax, Tx), d(By, Sy), etc.). To do that, we
present some families of very general functions that we can use in a contractivity condi-
tion so that Theorem  remains true. In other words, for instance, we illustrate what kind
of functions we could consider involving the terms d(Ax, Sy) and d(Tx, By). Thus, we show
how we can replace (d(Ax, Sy) + d(Tx, By))/ in () by another term φ(d(Ax, Sy), d(Tx, By))
considering a function φ, which generalizes the particular case φ(t, s) = (t + s)/. It is our
purpose that, in the future, when some authors wish to include new terms in the contrac-
tivity conditions, they first ponder on what the sufficient conditions are on the functions
involved in the arguments of the contractivity condition in order for their main statements
to remain true.

2 Preliminaries
We will follow notations given in []. Throughout this paper, N denotes the set of all
positive integers, N = N ∪ {}, and X stands for a nonempty set. Given n ∈ N, Xn will
denote the Cartesian space X × X × (n)· · · × X of n identical copies of X.

Definition  A fixed point of a self-mapping T : X → X is a point x ∈ X such that Tx = x.
A coincidence point of two or more operators T, T, . . . , Tn : X → X is a point x ∈ X such
that Tx = Tx = · · · = Tnx. A common fixed point of two or more operators T, T, . . . , Tn :
X → X is a point x ∈ X such that Tx = Tx = · · · = Tnx = x.

Definition  Given a nonempty set X, a pair {T , g} of self-mappings T , g : X → X are said
to be weakly compatible if Tgx = gTx for all x ∈ X such that Tx = gx.

Let �, �, and � the following families of control functions:

� =
{
φ : [,∞) → [,∞) : φ is continuous, nondecreasing and φ–({}) = {}},

� =
{
φ : [,∞) → [,∞) : φ is lower semi-continuous and φ–({}) = {}}, and

� =
{
φ : [,∞) → [,∞) : φ is upper semi-continuous, and

lim
n→∞ an =  for each sequence {an}n∈N ⊂ [,∞) with an+ ≤ φ(an),∀n ∈N

}
.

The functions in � are known as altering distance functions (see []).

Lemma  ([], Lemma .) If φ ∈ �, then φ() =  and φ(t) < t for all t > .

Henceforth, (X, d) stands for a metric space.
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Proposition  Let (X, d) be a metric space and let {xn} ⊆ X be a sequence such that
limn→∞ d(xn, xn+) = . If {xn} is not a Cauchy sequence, then {xn} is not a Cauchy se-
quence. In particular, there exist ε >  and two subsequences {xn(k)} and {xm(k)} of {xn}
such that

k < n(k) < m(k), d(xn(k), xm(k)–) ≤ ε < d(xn(k), xm(k)) for all k ∈N,

lim
n→∞ d(xn(k), xm(k)) = lim

n→∞ d(xn(k), xm(k)–) = lim
n→∞ d(xn(k), xm(k)+)

= lim
n→∞ d(xn(k)–, xm(k)–) = lim

n→∞ d(xn(k)–, xm(k)+) = ε.

Proof By contradiction, assume that {xn} is a Cauchy sequence. Let ε >  be arbitrary.
Since {d(xn, xn+)} → , there exists n ∈N such that

d(xn, xn+) ≤ ε


for all n ≥ n.

As {xn} is a Cauchy sequence, there exists n ∈N such that

d(xn, xm) ≤ ε


for all m, n ∈N such that m ≥ n ≥ n.

Let n = max{n, n} and let n, m ∈N be such that m > n > n. Let define

p =

{
n/, if n is even,
(n + )/, if n is odd;

q =

{
m/, if m is even,
(m + )/, if m is odd.

Then p = n if n is even and p = n +  if n is odd. Similarly, q = m if m is even and
q = m +  if m is odd. Since q ≥ p ≥ n,

d(xn, xm) ≤ d(xn, xp) + d(xp, xq) + d(xq, xm) ≤ ε


+

ε


+

ε


= ε.

This means that {xn} is a Cauchy sequence, which is false. As a consequence, {xn} cannot
be a Cauchy sequence. �

3 Common fixed point theorems in metric spaces
For convenience, we introduce the following families of functions. Let F be the family of
all functions φ : [,∞)n → [,∞), with n ≥ , such that, for all r, z, z, . . . , zn ∈ [,∞):

(F) φ is continuous on its first two arguments;
(F) φ(, r, z, z, . . . , zn) ≤ r

 ;
(F) φ(r, r, z, z, . . . , zn) ≤ r for all r > ;
(F) φ(r, , z, z, . . . , zn) ≤ r for all r > .

Examples of functions in F are the following ones:

φ(r, s) =
r + s


;

φ(r, s) = max

{
r,

s


}
;
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φ(r, s) = max

{
r,

r + s


}
;

φ(r, s, t) =


 + t
r + s


;

φ(r, s, t, u) =
e–u

 + t max

{
r,

r + s


}
.

Let F be the family of all functions φ : [,∞)n → [,∞), with n ≥ , such that, for all
r, s, z, z, . . . , zn ∈ [,∞):

(F) φ is continuous on its first three arguments;
(F) φ(, r, s, z, z, . . . , zn) ≤ max{ r

 , s};
(F) φ(r, r, r, z, z, . . . , zn) ≤ r for all r > ;
(F) φ(r, , , z, z, . . . , zn) ≤ r for all r > .

Examples of functions in F are the following ones:

φ(r, s, t) =
rs

L + t
where L > ;

φ(r, s, t) =
rs

L + t + et where L > ;

φ(r, t, s, z, z) = max{r, s, t}.

Let F be the family of all functions φ : [,∞)n → [,∞), with n ≥ , such that, for all
r, s, z, z, . . . , zn ∈ [,∞):

(F) φ is continuous on its first three arguments;
(F) φ(r, s, s, z, z, . . . , zn) ≤ max{r, s};
(F) φ(, , r, z, z, . . . , zn) ≤ r for all r > ;
(F) φ(, r, , z, z, . . . , zn) ≤ r for all r > .

For instance,

φ(r, s, t) =
rs

L + t
where L > ,

φ(r, t, s, z, z) = max{r, s, t}.

Let F be the family of all functions φ : [,∞)n → [,∞), with n ≥ , such that, for all
r, s, t, u, z, z, . . . , zn ∈ [,∞):

(F) φ is continuous on its first four arguments;
(F) φ(, r, s, t, z, z, . . . , zn) ≤ max{ r

 , s, t};
(F) φ(r, r, , , z, z, . . . , zn) ≤ r for all r > ;
(F) φ(r, , , r, z, z, . . . , zn) ≤ r for all r > .

For instance,

φ(r, s, t, u) =
L + r + s
L + t + u

t where L > ;

φ(r, s, t, u) = max

{
r + s


, t, u

}
;
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φ(r, s, t, u, z, z) =
arctan(z)

 + z


max

{
r + s


, t, u

}
.

The main theorem of the present manuscript is the following one. Notice that we assume
that φ has two arguments, φ and φ have three arguments and φ has four arguments
because other arguments are not important through the proof.

Theorem  Let A, B, S, T : X → X be self-mappings in a metric space (X, d) such that

(a) {A, T} and {B, S} are weakly compatible;

(b) T(X) ⊆ B(X) and S(X) ⊆ A(X);

(c) one of A(X), B(X), S(X), and T(X) is complete.

Also assume that there exist φ ∈ F, φ ∈ F, φ ∈ F, φ ∈ F, and ψ ∈ � such that

d(Tx, Sy) ≤ ψ
(
M(x, y)

)
for all x, y ∈ X, ()

where

M(x, y) = max
{

d(Ax, By), d(Ax, Tx), d(By, Sy),φ
(
d(Ax, Sy), d(Tx, By)

)
,

φ
(
d(Ax, Sy), d(Tx, By), d(Ax, By)

)
,φ

(
d(Ax, Tx), d(By, Sy), d(Ax, By)

)

φ
(
d(Ax, Sy), d(Tx, By), d(Ax, Tx), d(By, Sy)

)}
. ()

Then A, B, S, and T have a unique common fixed point in X.

Proof Let x ∈ X be an arbitrary point and let y = Tx. Since Tx ∈ T(X) ⊆ B(X), there
exists x ∈ X such that y = Tx = Bx. Let y = Sx. Since Sx ∈ S(X) ⊆ A(X), there exists
x ∈ X such that y = Sx = Ax. Let y = Tx. Repeating again and again this process, we
can find two sequences {xn} and {yn} in X such that

yn+ = Bxn+ = Txn and yn+ = Axn+ = Sxn+ for all n ∈N. ()

Let define dn = d(yn, yn+) for all n ∈ N. We claim that limn→∞ dn = . Indeed, by ()
and (), for all n ∈ N,

dn = d(yn, yn+) = d(yn+, yn) = d(Txn, Sxn–) ≤ ψ
(
M(xn, xn–)

)
. ()

Taking into account the properties that define functions in {Fi}
i=, we deduce that

d(Axn, Bxn–) = d(yn, yn–) = d(yn–, yn) = dn–;

d(Axn, Txn) = d(yn, yn+) = dn;

d(Bxn–, Sxn–) = d(yn–, yn) = dn–;

φ
(
d(Axn, Sxn–), d(Txn, Bxn–)

)

= φ
(
d(yn, yn), d(yn+, yn–)

)
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= φ
(
, d(yn–, yn+)

) (F)≤ d(yn–, yn+)


≤ d(yn–, yn) + d(yn, yn+)


≤ max
{

d(yn+, yn), d(yn, yn–)
}

= max{dn–, dn};
φ

(
d(Axn, Sxn–), d(Txn, Bxn–), d(Axn, Bxn–)

)

= φ
(
d(yn, yn), d(yn+, yn–), d(yn, yn–)

)

= φ
(
, d(yn+, yn–), d(yn, yn–)

) (F)≤ max{dn–, dn};
φ

(
d(Axn, Txn), d(Bxn–, Sxn–), d(Axn, Bxn–)

)

= φ
(
d(yn, yn+), d(yn–, yn), d(yn, yn–)

)

= φ(dn, dn–, dn–)
(F)≤ max{dn–, dn};

φ
(
d(Axn, Sxn–), d(Txn, Bxn–), d(Axn, Txn), d(Bxn–, Sxn–)

)

= φ
(
d(yn, yn), d(yn+, yn–), d(yn, yn+), d(yn–, yn)

)

= φ
(
, d(yn+, yn–), d(yn, yn+), d(yn–, yn)

)

(F)≤ max

{
d(yn+, yn–)


, d(yn, yn+), d(yn–, yn)

}

≤ max

{
d(yn–, yn) + d(yn, yn+)


, d(yn, yn+), d(yn–, yn)

}

= max{dn–, dn}.

Hence,

M(xn, xn–) = max
{

d(Axn, Bxn–), d(Axn, Txn), d(Bxn–, Sxn–),

φ
(
d(Axn, Sxn–), d(Txn, Bxn–)

)
,

φ
(
d(Axn, Sxn–), d(Txn, Bxn–), d(Axn, Bxn–)

)
,

φ
(
d(Axn, Txn), d(Bxn–, Sxn–), d(Axn, Bxn–)

)
,

φ
(
d(Axn, Sxn–), d(Txn, Bxn–), d(Axn, Txn), d(Bxn–, Sxn–)

)}

= max{dn–, dn}.

By (),

dn ≤ ψ
(
M(xn, xn–)

)
= ψ

(
max{dn–, dn}

)
.

If dn– < dn for some n, then dn >  and we get the contradiction dn ≤ ψ(max{dn–,
dn}) = ψ(dn) (recall Lemma ). As a consequence, we deduce that dn ≤ dn– for all
n ∈ N. Similarly, it can be proved that dn+ ≤ ψ({dn, dn+}), so dn+ ≤ dn for all n ∈ N.
Hence,

dn+ ≤ ψ(dn) and dn+ ≤ dn for all n ∈N.
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Since {dn} is a non-increasing sequence of non-negative real numbers, it is convergent.
Let L ≥  be its limit. Taking into account that ψ ∈ � and dn+ ≤ ψ(dn) for all n ∈ N, we
deduce that {dn} → , that is,

lim
n→∞ d(yn, yn+) = .

Next, let us show that {yn} is a Cauchy sequence in (X, d) reasoning by contradiction.
Assume that {yn} is not a Cauchy sequence. By Proposition , the sequence {yn} is not
a Cauchy sequence. In particular, there exist ε >  and two subsequences {yn(k)} and
{ym(k)} of {yn} such that

k < n(k) < m(k), d(yn(k), ym(k)–) ≤ ε < d(yn(k), ym(k)) for all k ∈N,

lim
n→∞ d(yn(k), ym(k)) = lim

n→∞ d(yn(k), ym(k)–) = lim
n→∞ d(yn(k), ym(k)+)

= lim
n→∞ d(yn(k)–, ym(k)–) = lim

n→∞ d(yn(k)–, ym(k)+) = ε. ()

By () and (), for all k ∈N,

d(ym(k)+, yn(k)) = d(Txm(k), Sxn(k)–) ≤ ψ
(
M(xm(k), xn(k)–)

)
. ()

Notice that

lim
k→∞

d(Axm(k), Bxn(k)–) = lim
k→∞

d(ym(k), yn(k)–) = ε;

lim
k→∞

d(Axm(k), Txm(k)) = lim
k→∞

d(ym(k), ym(k)+) = ;

lim
k→∞

d(Bxn(k)–, Sxn(k)–) = lim
k→∞

d(yn(k)–, yn(k)) = ;

lim
k→∞

φ
(
d(Axm(k), Sxn(k)–), d(Txm(k), Bxn(k)–)

)

= lim
k→∞

φ
(
d(ym(k), yn(k)), d(ym(k)+, yn(k)–)

)

(F)= φ

(
lim

k→∞
d(ym(k), yn(k)), lim

k→∞
d(ym(k)+, yn(k)–)

)
= φ(ε, ε)

(F)≤ ε;

lim
k→∞

φ
(
d(Axm(k), Sxn(k)–), d(Txm(k), Bxn(k)–), d(Axm(k), Bxn(k)–)

)

= lim
k→∞

φ
(
d(ym(k), yn(k)), d(ym(k)+, yn(k)–), d(ym(k), yn(k)–)

)

(F)= φ

(
lim

k→∞
d(ym(k), yn(k)), lim

k→∞
d(ym(k)+, yn(k)–), lim

k→∞
d(ym(k), yn(k)–)

)

= φ(ε, ε, ε)
(F)≤ ε;

lim
k→∞

φ
(
d(Axm(k), Txm(k)), d(Bxn(k)–, Sxn(k)–), d(Axm(k), Bxn(k)–)

)

= lim
k→∞

φ
(
d(ym(k), ym(k)+), d(yn(k)–, yn(k)), d(ym(k), yn(k)–)

)

(F)= φ

(
lim

k→∞
d(ym(k), ym(k)+), lim

k→∞
d(yn(k)–, yn(k)), lim

k→∞
d(ym(k), yn(k)–)

)

= φ(, , ε)
(F)≤ ε;
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lim
k→∞

φ
(
d(Axm(k), Sxn(k)–), d(Txm(k), Bxn(k)–), d(Axm(k), Txm(k)),

d(Bxn(k)–, Sxn(k)–)
)

= lim
k→∞

φ
(
d(ym(k), yn(k)), d(ym(k)+, yn(k)–), d(ym(k), ym(k)+), d(yn(k)–, yn(k))

)

(F)= φ

(
lim

k→∞
d(ym(k), yn(k)), lim

k→∞
d(ym(k)+, yn(k)–),

lim
k→∞

d(ym(k), ym(k)+), lim
k→∞

d(yn(k)–, yn(k))
)

= φ(ε, ε, , )
(F)≤ ε.

As a result, it follows from () and (),

lim
k→∞

M(xm(k), xn(k)–)

= lim
k→∞

max
{

d(Axm(k), Bxn(k)–), d(Axm(k), Txm(k)), d(Bxn(k)–, Sxn(k)–),

φ
(
d(Axm(k), Sxn(k)–), d(Txm(k), Bxn(k)–)

)
,

φ
(
d(Axm(k), Sxn(k)–), d(Txm(k), Bxn(k)–), d(Axm(k), Bxn(k)–)

)
,

φ
(
d(Axm(k), Txm(k)), d(Bxn(k)–, Sxn(k)–), d(Axm(k), Bxn(k)–)

)
,

φ
(
d(Axm(k), Sxn(k)–), d(Txm(k), Bxn(k)–),

d(Axm(k), Txm(k)), d(Bxn(k)–, Sxn(k)–)
)}

= ε.

As ψ is upper semi-continuous, we deduce that

ε = lim
n→∞ d(ym(k)+, yn(k)) = lim sup

n→∞
d(ym(k)+, yn(k))

≤ lim sup
n→∞

ψ
(
M(xm(k), xn(k)–)

) ≤ ψ(ε) < ε,

which is a contradiction. As a result, {yn} is a Cauchy sequence in (X, d). Then there exists
z ∈ X such that {yn} → z. In particular,

z = lim
n→∞ yn = lim

n→∞ Txn = lim
n→∞ Bxn+ = lim

n→∞ Axn = lim
n→∞ Sxn–.

Next we distinguish some cases depending on the complete set. Notice that

{yn+ = Axn+ = Sxn+} ⊆ S(X) ⊆ A(X) and

{yn+ = Bxn+ = Txn} ⊆ T(X) ⊆ B(X).

Assume that A(X) (or S(X)) is complete. Then there exists u ∈ X such that z = Au. To show
that Tu = z, suppose, by contradiction, that d(Tu, z) > . Therefore, for all n ∈ N,

d(Tu, yn+) = d(Tu, Sxn+) ≤ ψ
(
M(u, xn+)

)
. ()
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Notice that

lim
n→∞ d(Au, Bxn+) = lim

n→∞ d(z, yn+) = ;

lim
n→∞ d(Au, Tu) = d(z, Tu) > ;

lim
n→∞ d(Bxn+, Sxn+) = d(yn+, yn+) = ;

lim
n→∞φ

(
d(Au, Sxn+), d(Tu, Bxn+)

)

= lim
n→∞φ

(
d(z, yn+), d(Tu, yn+)

)

(F)= φ

(
lim

n→∞ d(z, yn+), lim
n→∞ d(Tu, yn+)

)

= φ
(
, d(Tu, z)

) (F)≤ d(Tu, z)


< d(Tu, z);

lim
n→∞φ

(
d(Au, Sxn+), d(Tu, Bxn+), d(Au, Bxn+)

)

= lim
n→∞φ

(
d(z, yn+), d(Tu, yn+), d(z, yn+)

)

(F)= φ

(
lim

n→∞ d(z, yn+), lim
n→∞ d(Tu, yn+), lim

n→∞ d(z, yn+)
)

= φ
(
, d(Tu, z), 

) (F)≤ d(Tu, z);

lim
n→∞φ

(
d(Au, Tu), d(Bxn+, Sxn+), d(Au, Bxn+)

)

= lim
n→∞φ

(
d(z, Tu), d(yn+, yn+), d(z, yn+)

)

(F)= φ

(
lim

n→∞ d(z, Tu), lim
n→∞ d(yn+, yn+), lim

n→∞ d(z, yn+)
)

= φ
(
d(z, Tu), , 

) (F)≤ d(z, Tu);

lim
n→∞φ

(
d(Au, Sxn+), d(Tu, Bxn+), d(Au, Tu), d(Bxn+, Sxn+)

)

= lim
n→∞φ

(
d(z, yn+), d(Tu, yn+), d(z, Tu), d(yn+, yn+)

)

(F)= φ

(
lim

n→∞ d(z, yn+), lim
n→∞ d(Tu, yn+), lim

n→∞ d(z, Tu), lim
n→∞ d(yn+, yn+)

)

= φ
(
, d(Tu, z), d(z, Tu), 

) (F)≤ d(z, Tu).

Since

lim
n→∞ M(u, xn+)

= lim
n→∞ max

{
d(Au, Bxn+), d(Au, Tu), d(Bxn+, Sxn+),

φ
(
d(Au, Sxn+), d(Tu, Bxn+)

)
,φ

(
d(Au, Sxn+), d(Tu, Bxn+), d(Au, Bxn+)

)
,

φ
(
d(Au, Tu), d(Bxn+, Sxn+), d(Au, Bxn+)

)
,

φ
(
d(Au, Sxn+), d(Tu, Bxn+), d(Au, Tu), d(Bxn+, Sxn+)

)}

= d(z, Tu) > ,
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letting n → ∞ in (), the upper semi-continuity of ψ yields

d(z, Tu) = lim sup
n→∞

d(Tu, yn+) ≤ lim sup
n→∞

ψ
(
M(u, xn+)

)

≤ ψ
(

lim sup
n→∞

M(u, xn+)
)

= ψ
(
d(z, Tu)

)
< d(z, Tu),

which is a contradiction. As a consequence, Tu = z = Au. As T(X) ⊆ B(X), there exists
w ∈ X such that Tu = Bw. Then Au = Tu = z = Bw. We claim that z = Sw. To prove it,
suppose that d(z, Sw) > . By (), for all n ∈N,

d(yn+, Sw) = d(Txn, Sw) ≤ ψ
(
M(xn, w)

)
. ()

Notice that

lim
n→∞ d(Axn, Bw) = lim

n→∞ d(yn, z) = ;

lim
n→∞ d(Axn, Txn) = lim

n→∞ d(yn, yn+) = ;

lim
n→∞ d(Bw, Sw) = d(z, Sw) > ;

lim
n→∞φ

(
d(Axn, Sw), d(Txn, Bw)

)

= lim
n→∞φ

(
d(yn, Sw), d(yn+, z)

)

(F)= φ

(
lim

n→∞ d(yn, Sw), lim
n→∞ d(yn+, z)

)

= φ
(
d(z, Sw), 

) (F)≤ d(z, Sw);

lim
n→∞φ

(
d(Axn, Sw), d(Txn, Bw), d(Axn, Bw)

)

= lim
n→∞φ

(
d(yn, Sw), d(yn+, z), d(yn, z)

)

(F)= φ

(
lim

n→∞ d(yn, Sw), lim
n→∞ d(yn+, z), lim

n→∞ d(yn, z)
)

= φ
(
d(z, Sw), , 

) (F)≤ d(z, Sw);

lim
n→∞φ

(
d(Axn, Txn), d(Bw, Sw), d(Axn, Bw)

)

= lim
n→∞φ

(
d(yn, yn+), d(z, Sw), d(yn, z)

)

(F)= φ

(
lim

n→∞ d(yn, yn+), lim
n→∞ d(z, Sw), lim

n→∞ d(yn, z)
)

= φ
(
, d(z, Sw), 

) (F)≤ d(z, Sw);

lim
n→∞φ

(
d(Axn, Sw), d(Txn, Bw), d(Axn, Txn), d(Bw, Sw)

)

= lim
n→∞φ

(
d(yn, Sw), d(yn+, z), d(yn, yn+), d(z, Sw)

)

(F)= φ

(
lim

n→∞ d(yn, Sw), lim
n→∞ d(yn+, z), lim

n→∞ d(yn, yn+), lim
n→∞ d(z, Sw)

)

= φ
(
d(z, Sw), , , d(z, Sw)

) (F)≤ d(z, Sw).
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Hence,

lim
n→∞ M(xn, w) = lim

n→∞ max
{

d(Axn, Bw), d(Axn, Txn), d(Bw, Sw),

φ
(
d(Axn, Sw), d(Txn, Bw)

)
,

φ
(
d(Axn, Sw), d(Txn, Bw), d(Axn, Bw)

)
,

φ
(
d(Axn, Txn), d(Bw, Sw), d(Axn, Bw)

)
,

φ
(
d(Axn, Sw), d(Txn, Bw), d(Axn, Txn), d(Bw, Sw)

)}

= d(z, Sw) > .

Again, letting n → ∞ in () and using the upper semi-continuity of ψ , we deduce that

d(z, Sw) = lim sup
n→∞

d(yn+, Sw) ≤ lim sup
n→∞

ψ
(
M(xn, w)

)

≤ ψ
(

lim
n→∞ M(xn, w)

)
= ψ

(
d(z, Sw)

)
< d(z, Sw),

which is a contradiction. Thus, Sw = z, which means that z = Tu = Au = Bw = Sw. As {A, T}
and {B, S} are weakly compatible,

Az = ATu = TAu = Tz and Bz = BSw = SBw = Sz.

Next, let us show that Tz = Sz. On the contrary, suppose that d(Tz, Sz) > . Hence, by (),

d(Tz, Sz) ≤ ψ
(
M(z, z)

)
. ()

Notice that

d(Az, Bz) = d(Tz, Sz) > ;

d(Az, Tz) = d(Tz, Tz) = ;

d(Bz, Sz) = d(Sz, Sz) = ;

φ
(
d(Az, Sz), d(Tz, Bz)

)
= φ

(
d(Tz, Sz), d(Tz, Sz)

) (F)≤ d(Tz, Sz);

φ
(
d(Az, Sz), d(Tz, Bz), d(Az, Bz)

)

= φ
(
d(Tz, Sz), d(Tz, Sz), d(Tz, Sz)

) (F)≤ d(Tz, Sz);

φ
(
d(Az, Tz), d(Bz, Sz), d(Az, Bz)

)

= φ
(
d(Tz, Tz), d(Sz, Sz), d(Tz, Sz)

)

= φ
(
, , d(Tz, Sz)

) (F)≤ d(Tz, Sz);

φ
(
d(Az, Sz), d(Tz, Bz), d(Az, Tz), d(Bz, Sz)

)

= φ
(
d(Tz, Sz), d(Tz, Sz), d(Tz, Tz), d(Sz, Sz)

)

= φ
(
d(Tz, Sz), d(Tz, Sz), , 

) (F)≤ d(Tz, Sz).
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Therefore,

M(z, z) = max
{

d(Az, Bz), d(Az, Tz), d(Bz, Sz),

φ
(
d(Az, Sz), d(Tz, Bz)

)
,φ

(
d(Az, Sz), d(Tz, Bz), d(Az, Bz)

)
,

φ
(
d(Az, Tz), d(Bz, Sz), d(Az, Bz)

)
,

φ
(
d(Az, Sz), d(Tz, Bz), d(Az, Tz), d(Bz, Sz)

)}

= d(Tz, Sz) > .

Again, it follows from () that

d(Tz, Sz) ≤ ψ
(
M(z, z)

)
= ψ

(
d(Tz, Sz)

)
< d(Tz, Sz),

which is a contradiction. As a consequence, we conclude that Tz = Sz, which means that

Az = Tz = Sz = Bz.

In particular, z is a coincidence point of A, B, T , and S.
Next, let us show that Tz = z. Reasoning by contradiction, assume that d(Tz, z) > . By

(),

d(Tz, z) = d(Tz, Sw) ≤ ψ
(
M(z, w)

)
. ()

Notice that

d(Az, Bw) = d(Tz, Sw) = d(Tz, z) > ;

d(Az, Tz) = d(Tz, Tz) = ;

d(Bw, Sw) = d(Sw, Sw) = ;

φ
(
d(Az, Sw), d(Tz, Bw)

)
= φ

(
d(Tz, Sw), d(Tz, Sw)

) (F)≤ d(Tz, z);

φ
(
d(Az, Sw), d(Tz, Bw), d(Az, Bw)

)
= φ

(
d(Tz, z), d(Tz, z), d(Tz, z)

) (F)≤ d(Tz, z);

φ
(
d(Az, Tz), d(Bw, Sw), d(Az, Bw)

)

= φ
(
d(Tz, Tz), d(z, z), d(Tz, z)

)
= φ

(
, , d(Tz, z)

) (F)≤ d(Tz, z);

φ
(
d(Az, Sw), d(Tz, Bw), d(Az, Tz), d(Bw, Sw)

)

= φ
(
d(Tz, z), d(Tz, z), d(Tz, Tz), d(z, z)

)
= φ

(
d(Tz, z), d(Tz, z), , 

) (F)≤ d(Tz, z).

As a result,

M(z, w) = max
{

d(Az, Bw), d(Az, Tz), d(Bw, Sw),φ
(
d(Az, Sw), d(Tz, Bw)

)
,

φ
(
d(Az, Sw), d(Tz, Bw), d(Az, Bw)

)
,φ

(
d(Az, Tz), d(Bw, Sw), d(Az, Bw)

)

φ
(
d(Az, Sw), d(Tz, Bw), d(Az, Tz), d(Bw, Sw)

)}
= d(Tz, z) > .
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Again, it follows from () that

d(Tz, z) ≤ ψ
(
M(z, w)

)
< d(Tz, z), ()

which is a contradiction. Thus, Tz = z, so z is a common fixed point of A, B, T , and S.
Finally, let us show that z is the unique common fixed point of A, T , S, and B. Assume

that x, y ∈ X are two different common fixed points of A, T , S, and B. Then d(x, y) > .
Notice that

d(Ax, By) = d(x, y) > ;

d(Ax, Tx) = d(x, x) = ;

d(By, Sy) = d(y, y) = ;

φ
(
d(Ax, Sy), d(Tx, By)

)
= φ

(
d(x, y), d(x, y)

) (F)≤ d(x, y);

φ
(
d(Ax, Sy), d(Tx, By), d(Ax, By)

)
= φ

(
d(x, y), d(x, y), d(x, y)

) (F)≤ d(x, y);

φ
(
d(Ax, Tx), d(By, Sy), d(Ax, By)

)

= φ
(
d(x, x), d(y, y), d(x, y)

)
= φ

(
, , d(x, y)

) (F)≤ d(x, y);

φ
(
d(Ax, Sy), d(Tx, By), d(Ax, Tx), d(By, Sy)

)

= φ
(
d(x, y), d(x, y), d(x, x), d(y, y)

)
= φ

(
d(x, y), d(x, y), , 

) (F)≤ d(x, y).

Therefore,

M(x, y) = max
{

d(Ax, By), d(Ax, Tx), d(By, Sy),φ
(
d(Ax, Sy), d(Tx, By)

)
,

φ
(
d(Ax, Sy), d(Tx, By), d(Ax, By)

)
,φ

(
d(Ax, Tx), d(By, Sy), d(Ax, By)

)

φ
(
d(Ax, Sy), d(Tx, By), d(Ax, Tx), d(By, Sy)

)}

= d(x, y) > .

As a result,

d(x, y) = d(Tx, Sy) ≤ ψ
(
M(x, y)

)
< d(x, y), ()

which is a contradiction. Then x = y and A, B, S, and T have a unique common fixed point
in X. �

Using whatever functions φ ∈ F, φ ∈ F, φ ∈ F, and φ ∈ F (as we have shown in the
first part of this section), we can obtain a large variety of different corollaries. For instance,
the following one.

Corollary  Theorem  immediately follows from Theorem .

Proof It is only necessary to take, for all r, s, t, u ∈ [,∞),

φ(r, s) =
r + s


, φ(r, s, t) = φ(r, s, t, ) =

rs
 + t

, and φ(r, s, t, u) =
 + r + s
 + t + u

t.
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Hence φ ∈ F, φ ∈ F, φ ∈ F, and φ ∈ F. Furthermore, for all x, y ∈ X,

φ
(
d(Ax, Sy), d(Tx, By)

)
=

d(Ax, Sy) + d(Tx, By)


,

φ
(
d(Ax, Sy), d(Tx, By), d(Ax, By)

)
=

d(Ax, Sy)d(Tx, By)
 + d(Ax, By)

,

φ
(
d(Ax, Tx), d(By, Sy), d(Ax, By)

)
=

d(Ax, Tx)d(By, Sy)
 + d(Ax, By)

, and

φ
(
d(Ax, Sy), d(Tx, By), d(Ax, Tx), d(By, Sy)

)
=

 + d(Ax, Sy) + d(Tx, By)
 + d(Ax, Tx) + d(By, Sy)

d(Ax, Tx).

As a result, the contractivity condition () implies (), and Theorem  is applicable. �

As a particular case, we highlight the situation in which T = B and S = A. In such a case,
we obtain the following consequence.

Corollary  Let T , S : X → X be self-mappings in a metric space (X, d) such that

(a) {T , S} is weakly compatible;

(b) one of T(X) or S(X) is complete.

Also assume that there exist φ ∈ F, φ ∈ F, φ ∈ F, φ ∈ F, and ψ ∈ � such that

d(Tx, Sy) ≤ ψ
(
M(x, y)

)
for all x, y ∈ X,

where

M(x, y) = max
{

d(Sx, Ty), d(Sx, Tx), d(Ty, Sy),φ
(
d(Sx, Sy), d(Tx, Ty)

)
,

φ
(
d(Sx, Sy), d(Tx, Ty), d(Sx, Ty)

)
,φ

(
d(Sx, Tx), d(Ty, Sy), d(Sx, Ty)

)

φ
(
d(Sx, Sy), d(Tx, Ty), d(Sx, Tx), d(Ty, Sy)

)}
.

Then T and S have a unique common fixed point in X.

The following example shows that Theorem  improves Theorem . It is based on Ex-
ample . in [].

Example  Let X = [, ] be endowed with the Euclidean metric d(x, y) = |x – y| for all
x, y ∈ X, and let A, B, S, T : X → X be the self-mappings given, for all x ∈ X, by

Ax = x, Bx =
x


, Sx = , Tx =

{
, if x ∈ [, ),
., if x = .

Notice that, for all x, y ∈ X,

d(Tx, Sy) =

{
., if x = ,
, otherwise.
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If x < , the contractivity condition

d(Tx, Sy) ≤ ψ
(
M(x, y)

)
for all y ∈ X, ()

is obvious whatever ψ ∈ �. Next, let ψ : [,∞) → [,∞) and φ : [,∞) → [,∞) be
the functions given by

ψ(r) = .r and φ(r, s) = max

{
r,

r + s


}
for all r, s ≥ .

Clearly, ψ ∈ � and φ ∈ F. Notice that if x = , then d(Ax, Sy) = d(, ) = , so φ(d(Ax, Sy),
d(Tx, By)) = . Hence, for x = ,

M(x, y) = max
{

d(Ax, By), d(Ax, Tx), d(By, Sy),φ
(
d(Ax, Sy), d(Tx, By)

)
,

φ
(
d(Ax, Sy), d(Tx, By), d(Ax, By)

)
,φ

(
d(Ax, Tx), d(By, Sy), d(Ax, By)

)

φ
(
d(Ax, Sy), d(Tx, By), d(Ax, Tx), d(By, Sy)

)} ≥ .

In such a case, for all y ∈ X,

d
(
T(), Sy

)
= . = ψ() ≤ ψ

(
M(, y)

)
,

which means that the contractivity condition () holds for all x, y ∈ X. The pairs {A, T}
and {B, S} are weakly compatible because the unique solution of equations Ax = Tx and
Bx = Sx is x = . As all hypotheses of Theorem  are satisfied, we conclude that A, B, S,
and T have a unique common fixed point in X.

Notice that Theorem  is not applicable because if x =  and y = ., then d(T(), S(.)) =
. and

M(, .) = max

{
d
(
A(), B(.)

)
, d

(
A(), T()

)
, d

(
B(.), S(.)

)
,

d(A(), S(.)) + d(T(), B(.))


,
d(A(), S(.))d(T(), B(.))

 + d(A(), B(.))
,

d(A(), T())d(B(.), S(.))
 + d(A(), B(.))

,

 + d(A(), S(.)) + d(T(), B(.))
 + d(A(), T()) + d(B(.), S(.))

d
(
A(), T()

)}

= max{., ., ., ., ., ., .} = ..

As a result, d(T(), S()) = . > . = ψ(.) = ψ(M(, .)), that is, inequality
() does not hold.

To be precise, we point out that our contractivity condition holds because we have em-
ployed φ(r, s) = max{r, r+s

 }, which is better for our kind of contractivity conditions than
φ′

(r, s) = r+s
 , as Liu et al. used in Theorem .

4 Common fixed point theorems under α conditions
The study of fixed point theory in ordered metric spaces was initiated by Ran and Reurings
in [] and by Nieto and Rodríguez-López in []. Later, improved results were obtained
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by many authors (see, for instance, [, , , , –, , ]). In this section we obtain
a version of Theorem  involving a function α that can generalize a partial order.

In the sequel, let α : X × X → [,∞) be a function.

Definition  We will say that α is reflexive if α(x, x) ≥  for all x ∈ X.

Definition  We will say that α is transitive if α(x, z) ≥  for all x, y, z ∈ X such that
α(x, y) ≥  and α(y, z) ≥ .

Definition  Given two mappings f , g : X → X, we will say that f (X) is an α-subset of
g(X) if for all x ∈ X, there exists y ∈ X such that fx = gy and α(x, y) ≥ . In such a case, we
will write f (X) ⊆α g(X).

Remark  If f (X) ⊆α g(X) then f (X) ⊆ g(X). If α(x, y) ≥  for all x, y ∈ X, then f (X) ⊆α

g(X) if, and only if, f (X) ⊆ g(X).

Definition  Given two mappings f , g : X → X, we will say that the pair {f , g} is (α, d)-
regular if

max
{
α(xn, u),α(u, xn)

} ≥  for all n ∈ N

provided that {xn} ⊆ X is a sequence such that {fxn} → gu and α(xn, xn+) ≥  for all n ∈N.

Theorem  Let α : X × X → [,∞) be a reflexive, transitive function and let A, B, S, T :
X → X be self-mappings in a metric space (X, d) such that

(a) {A, T} and {B, S} are weakly compatible;

(b) T(X) ⊆α B(X) and S(X) ⊆α A(X);

(c) one of A(X), B(X), S(X), and T(X) is complete;

(d) the pairs {T , B} and {S, A} are (α, d)-regular.

Also assume that there exist φ ∈ F, φ ∈ F, φ ∈ F, φ ∈ F, and ψ ∈ � such that

max
{
α(x, y),α(y, x)

}
d(Tx, Sy) ≤ ψ

(
M(x, y)

)
for all x, y ∈ X, ()

where

M(x, y) = max
{

d(Ax, By), d(Ax, Tx), d(By, Sy),φ
(
d(Ax, Sy), d(Tx, By)

)
,

φ
(
d(Ax, Sy), d(Tx, By), d(Ax, By)

)
,φ

(
d(Ax, Tx), d(By, Sy), d(Ax, By)

)

φ
(
d(Ax, Sy), d(Tx, By), d(Ax, Tx), d(By, Sy)

)}
. ()

Then A, B, S, and T have a coincidence point in X.

Proof Let x ∈ X be an arbitrary point and let y = Tx. Since Tx ∈ T(X) ⊆α B(X), there
exists x ∈ X such that y = Tx = Bx and α(x, x) ≥ . Let y = Sx. Since Sx ∈ S(X) ⊆α
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A(X), there exists x ∈ X such that y = Sx = Ax and α(x, x) ≥ . Let y = Tx. Repeating
again and again this process, we can find two sequences {xn} and {yn} in X such that, for
all n ∈N,

yn+ = Bxn+ = Txn, yn+ = Axn+ = Sxn+, and ()

α(xn, xn+) ≥ .

As α is reflexive and transitive,

α(xn, xm) ≥  for all n, m ∈N with n ≤ m.

Let define dn = d(yn, yn+) for all n ∈ N. We claim that limn→∞ dn = . Indeed, by ()
and (), for all n ∈ N,

dn = d(yn, yn+) = d(yn+, yn) = d(Txn, Sxn–)

≤ max
{
α(xn, xn–),α(xn–, xn)

}
d(Txn, Sxn–) ≤ ψ

(
M(xn, xn–)

)
. ()

Taking into account the properties that define functions in {Fi}
i=, we deduce that

d(Axn, Bxn–) = d(yn, yn–) = d(yn–, yn) = dn–;

d(Axn, Txn) = d(yn, yn+) = dn;

d(Bxn–, Sxn–) = d(yn–, yn) = dn–;

φ
(
d(Axn, Sxn–), d(Txn, Bxn–)

)

= φ
(
d(yn, yn), d(yn+, yn–)

)
= φ

(
, d(yn–, yn+)

)

(F)≤ d(yn–, yn+)


≤ d(yn–, yn) + d(yn, yn+)


≤ max
{

d(yn+, yn), d(yn, yn–)
}

= max{dn–, dn};
φ

(
d(Axn, Sxn–), d(Txn, Bxn–), d(Axn, Bxn–)

)

= φ
(
d(yn, yn), d(yn+, yn–), d(yn, yn–)

)

= φ
(
, d(yn+, yn–), d(yn, yn–)

) (F)≤ max{dn–, dn};
φ

(
d(Axn, Txn), d(Bxn–, Sxn–), d(Axn, Bxn–)

)

= φ
(
d(yn, yn+), d(yn–, yn), d(yn, yn–)

)

= φ(dn, dn–, dn–)
(F)≤ max{dn–, dn};

φ
(
d(Axn, Sxn–), d(Txn, Bxn–), d(Axn, Txn), d(Bxn–, Sxn–)

)

= φ
(
d(yn, yn), d(yn+, yn–), d(yn, yn+), d(yn–, yn)

)

= φ
(
, d(yn+, yn–), d(yn, yn+), d(yn–, yn)

)

(F)≤ max

{
d(yn+, yn–)


, d(yn, yn+), d(yn–, yn)

}
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≤ max

{
d(yn–, yn) + d(yn, yn+)


, d(yn, yn+), d(yn–, yn)

}

= max{dn–, dn}.

Hence,

M(xn, xn–) = max
{

d(Axn, Bxn–), d(Axn, Txn), d(Bxn–, Sxn–),

φ
(
d(Axn, Sxn–), d(Txn, Bxn–)

)
,

φ
(
d(Axn, Sxn–), d(Txn, Bxn–), d(Axn, Bxn–)

)
,

φ
(
d(Axn, Txn), d(Bxn–, Sxn–), d(Axn, Bxn–)

)
,

φ
(
d(Axn, Sxn–), d(Txn, Bxn–), d(Axn, Txn), d(Bxn–, Sxn–)

)}

= max{dn–, dn}.

By (),

dn ≤ ψ
(
M(xn, xn–)

)
= ψ

(
max{dn–, dn}

)
.

If dn– < dn for some n, then dn >  and we get the contradiction dn ≤ ψ(max{dn–,
dn}) = ψ(dn) (recall Lemma ). As a consequence, we deduce that dn ≤ dn– for all
n ∈ N. Similarly, it can be proved that dn+ ≤ ψ({dn, dn+}), so dn+ ≤ dn for all n ∈ N.
Hence,

dn+ ≤ ψ(dn) and dn+ ≤ dn for all n ∈N.

Since {dn} is a non-increasing sequence of non-negative real numbers, it is convergent.
Let L ≥  be its limit. Taking into account that ψ ∈ � and dn+ ≤ ψ(dn) for all n ∈ N, we
deduce that {dn} → , that is,

lim
n→∞ d(yn, yn+) = .

Next, let us show that {yn} is a Cauchy sequence in (X, d) reasoning by contradiction.
Assume that {yn} is not a Cauchy sequence. By Proposition , the sequence {yn} is not
a Cauchy sequence. In particular, there exist ε >  and two subsequences {yn(k)} and
{ym(k)} of {yn} such that

k < n(k) < m(k), d(yn(k), ym(k)–) ≤ ε < d(yn(k), ym(k)) for all k ∈N,

lim
n→∞ d(yn(k), ym(k)) = lim

n→∞ d(yn(k), ym(k)–) = lim
n→∞ d(yn(k), ym(k)+)

= lim
n→∞ d(yn(k)–, ym(k)–) = lim

n→∞ d(yn(k)–, ym(k)+) = ε. ()

By () and (), for all k ∈N,

d(ym(k)+, yn(k)) = d(Txm(k), Sxn(k)–)

≤ max
{
α(xm(k), xn(k)–),α(xn(k)–, xm(k))

}
d(Txm(k), Sxn(k)–)

≤ ψ
(
M(xm(k), xn(k)–)

)
. ()
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Notice that

lim
k→∞

d(Axm(k), Bxn(k)–) = lim
k→∞

d(ym(k), yn(k)–) = ε;

lim
k→∞

d(Axm(k), Txm(k)) = lim
k→∞

d(ym(k), ym(k)+) = ;

lim
k→∞

d(Bxn(k)–, Sxn(k)–) = lim
k→∞

d(yn(k)–, yn(k)) = ;

lim
k→∞

φ
(
d(Axm(k), Sxn(k)–), d(Txm(k), Bxn(k)–)

)

= lim
k→∞

φ
(
d(ym(k), yn(k)), d(ym(k)+, yn(k)–)

)

(F)= φ

(
lim

k→∞
d(ym(k), yn(k)), lim

k→∞
d(ym(k)+, yn(k)–)

)
= φ(ε, ε)

(F)≤ ε;

lim
k→∞

φ
(
d(Axm(k), Sxn(k)–), d(Txm(k), Bxn(k)–), d(Axm(k), Bxn(k)–)

)

= lim
k→∞

φ
(
d(ym(k), yn(k)), d(ym(k)+, yn(k)–), d(ym(k), yn(k)–)

)

(F)= φ

(
lim

k→∞
d(ym(k), yn(k)), lim

k→∞
d(ym(k)+, yn(k)–), lim

k→∞
d(ym(k), yn(k)–)

)

= φ(ε, ε, ε)
(F)≤ ε;

lim
k→∞

φ
(
d(Axm(k), Txm(k)), d(Bxn(k)–, Sxn(k)–), d(Axm(k), Bxn(k)–)

)

= lim
k→∞

φ
(
d(ym(k), ym(k)+), d(yn(k)–, yn(k)), d(ym(k), yn(k)–)

)

(F)= φ

(
lim

k→∞
d(ym(k), ym(k)+), lim

k→∞
d(yn(k)–, yn(k)), lim

k→∞
d(ym(k), yn(k)–)

)

= φ(, , ε)
(F)≤ ε;

lim
k→∞

φ
(
d(Axm(k), Sxn(k)–), d(Txm(k), Bxn(k)–), d(Axm(k), Txm(k)),

d(Bxn(k)–, Sxn(k)–)
)

= lim
k→∞

φ
(
d(ym(k), yn(k)), d(ym(k)+, yn(k)–), d(ym(k), ym(k)+), d(yn(k)–, yn(k))

)

(F)= φ

(
lim

k→∞
d(ym(k), yn(k)), lim

k→∞
d(ym(k)+, yn(k)–),

lim
k→∞

d(ym(k), ym(k)+), lim
k→∞

d(yn(k)–, yn(k))
)

= φ(ε, ε, , )
(F)≤ ε.

As a result, it follows from () and () that

lim
k→∞

M(xm(k), xn(k)–)

= lim
k→∞

max
{

d(Axm(k), Bxn(k)–), d(Axm(k), Txm(k)), d(Bxn(k)–, Sxn(k)–),

φ
(
d(Axm(k), Sxn(k)–), d(Txm(k), Bxn(k)–)

)
,

φ
(
d(Axm(k), Sxn(k)–), d(Txm(k), Bxn(k)–), d(Axm(k), Bxn(k)–)

)
,
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φ
(
d(Axm(k), Txm(k)), d(Bxn(k)–, Sxn(k)–), d(Axm(k), Bxn(k)–)

)
,

φ
(
d(Axm(k), Sxn(k)–), d(Txm(k), Bxn(k)–), d(Axm(k), Txm(k)),

d(Bxn(k)–, Sxn(k)–)
)}

= ε.

As ψ is upper semi-continuous, we deduce that

ε = lim
n→∞ d(ym(k)+, yn(k)) = lim sup

n→∞
d(ym(k)+, yn(k))

≤ lim sup
n→∞

ψ
(
M(xm(k), xn(k)–)

) ≤ ψ(ε) < ε,

which is a contradiction. As a result, {yn} is a Cauchy sequence in (X, d). Then, there exists
z ∈ X such that {yn} → z. In particular,

z = lim
n→∞ yn = lim

n→∞ Txn = lim
n→∞ Bxn+ = lim

n→∞ Axn = lim
n→∞ Sxn–.

Next we distinguish some cases depending on the complete set. Notice that

{yn+ = Axn+ = Sxn+} ⊆ S(X) ⊆ A(X) and

{yn+ = Bxn+ = Txn} ⊆ T(X) ⊆ B(X).

Assume that A(X) (or S(X)) is complete. Then there exists u ∈ X such that z = Au. To show
that Tu = z, suppose, by contradiction, that d(Tu, z) > . As the pair {S, A} is (α, d)-regular
and {yn+ = Sxn+} → z = Au, we have

max
{
α(u, xn+),α(u, xn+)

} ≥  for all n ∈N.

Therefore, for all n ∈ N,

d(Tu, yn+) = d(Tu, Sxn+) ≤ max
{
α(u, xn+),α(u, xn+)

}
d(Tu, Sxn+)

≤ ψ
(
M(u, xn+)

)
. ()

Notice that

lim
n→∞ d(Au, Bxn+) = lim

n→∞ d(z, yn+) = ;

lim
n→∞ d(Au, Tu) = d(z, Tu) > ;

lim
n→∞ d(Bxn+, Sxn+) = d(yn+, yn+) = ;

lim
n→∞φ

(
d(Au, Sxn+), d(Tu, Bxn+)

)

= lim
n→∞φ

(
d(z, yn+), d(Tu, yn+)

)

(F)= φ

(
lim

n→∞ d(z, yn+), lim
n→∞ d(Tu, yn+)

)

= φ
(
, d(Tu, z)

) (F)≤ d(Tu, z)


< d(Tu, z);
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lim
n→∞φ

(
d(Au, Sxn+), d(Tu, Bxn+), d(Au, Bxn+)

)

= lim
n→∞φ

(
d(z, yn+), d(Tu, yn+), d(z, yn+)

)

(F)= φ

(
lim

n→∞ d(z, yn+), lim
n→∞ d(Tu, yn+), lim

n→∞ d(z, yn+)
)

= φ
(
, d(Tu, z), 

) (F)≤ d(Tu, z);

lim
n→∞φ

(
d(Au, Tu), d(Bxn+, Sxn+), d(Au, Bxn+)

)

= lim
n→∞φ

(
d(z, Tu), d(yn+, yn+), d(z, yn+)

)

(F)= φ

(
lim

n→∞ d(z, Tu), lim
n→∞ d(yn+, yn+), lim

n→∞ d(z, yn+)
)

= φ
(
d(z, Tu), , 

) (F)≤ d(z, Tu);

lim
n→∞φ

(
d(Au, Sxn+), d(Tu, Bxn+), d(Au, Tu), d(Bxn+, Sxn+)

)

= lim
n→∞φ

(
d(z, yn+), d(Tu, yn+), d(z, Tu), d(yn+, yn+)

)

(F)= φ

(
lim

n→∞ d(z, yn+), lim
n→∞ d(Tu, yn+), lim

n→∞ d(z, Tu), lim
n→∞ d(yn+, yn+)

)

= φ
(
, d(Tu, z), d(z, Tu), 

) (F)≤ d(z, Tu).

Since

lim
n→∞ M(u, xn+)

= lim
n→∞ max

{
d(Au, Bxn+), d(Au, Tu), d(Bxn+, Sxn+),

φ
(
d(Au, Sxn+), d(Tu, Bxn+)

)
,

φ
(
d(Au, Sxn+), d(Tu, Bxn+), d(Au, Bxn+)

)
,

φ
(
d(Au, Tu), d(Bxn+, Sxn+), d(Au, Bxn+)

)
,

φ
(
d(Au, Sxn+), d(Tu, Bxn+), d(Au, Tu), d(Bxn+, Sxn+)

)}

= d(z, Tu) > ,

letting n → ∞ in (), the upper semi-continuity of ψ yields

d(z, Tu) = lim sup
n→∞

d(Tu, yn+) ≤ lim sup
n→∞

ψ
(
M(u, xn+)

)

≤ ψ
(

lim sup
n→∞

M(u, xn+)
)

= ψ
(
d(z, Tu)

)
< d(z, Tu),

which is a contradiction. As a consequence, Tu = z = Au. As T(X) ⊆α B(X), there exists
w ∈ X such that Tu = Bw and α(u, w) ≥ . Then Au = Tu = z = Bw. We claim that z = Sw. To
prove it, suppose that d(z, Sw) > . As the pair {T , B} is (α, d)-regular and {yn+ = Txn} →
z = Bw,

max
{
α(xn, w),α(w, xn)

} ≥  for all n ∈N.
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By (), for all n ∈ N,

d(yn+, Sw) = d(Txn, Sw) ≤ max
{
α(xn, w),α(w, xn)

}
d(Txn, Sw)

≤ ψ
(
M(xn, w)

)
. ()

Notice that

lim
n→∞ d(Axn, Bw) = lim

n→∞ d(yn, z) = ;

lim
n→∞ d(Axn, Txn) = lim

n→∞ d(yn, yn+) = ;

lim
n→∞ d(Bw, Sw) = d(z, Sw) > ;

lim
n→∞φ

(
d(Axn, Sw), d(Txn, Bw)

)

= lim
n→∞φ

(
d(yn, Sw), d(yn+, z)

)

(F)= φ

(
lim

n→∞ d(yn, Sw), lim
n→∞ d(yn+, z)

)
= φ

(
d(z, Sw), 

) (F)≤ d(z, Sw);

lim
n→∞φ

(
d(Axn, Sw), d(Txn, Bw), d(Axn, Bw)

)

= lim
n→∞φ

(
d(yn, Sw), d(yn+, z), d(yn, z)

)

(F)= φ

(
lim

n→∞ d(yn, Sw), lim
n→∞ d(yn+, z), lim

n→∞ d(yn, z)
)

= φ
(
d(z, Sw), , 

) (F)≤ d(z, Sw);

lim
n→∞φ

(
d(Axn, Txn), d(Bw, Sw), d(Axn, Bw)

)

= lim
n→∞φ

(
d(yn, yn+), d(z, Sw), d(yn, z)

)

(F)= φ

(
lim

n→∞ d(yn, yn+), lim
n→∞ d(z, Sw), lim

n→∞ d(yn, z)
)

= φ
(
, d(z, Sw), 

) (F)≤ d(z, Sw);

lim
n→∞φ

(
d(Axn, Sw), d(Txn, Bw), d(Axn, Txn), d(Bw, Sw)

)

= lim
n→∞φ

(
d(yn, Sw), d(yn+, z), d(yn, yn+), d(z, Sw)

)

(F)= φ

(
lim

n→∞ d(yn, Sw), lim
n→∞ d(yn+, z), lim

n→∞ d(yn, yn+), lim
n→∞ d(z, Sw)

)

= φ
(
d(z, Sw), , , d(z, Sw)

) (F)≤ d(z, Sw).

Hence,

lim
n→∞ M(xn, w) = lim

n→∞ max
{

d(Axn, Bw), d(Axn, Txn), d(Bw, Sw),

φ
(
d(Axn, Sw), d(Txn, Bw)

)
,

φ
(
d(Axn, Sw), d(Txn, Bw), d(Axn, Bw)

)
,

φ
(
d(Axn, Txn), d(Bw, Sw), d(Axn, Bw)

)
,
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φ
(
d(Axn, Sw), d(Txn, Bw), d(Axn, Txn), d(Bw, Sw)

)}

= d(z, Sw) > .

Again, letting n → ∞ in () and using the upper semi-continuity of ψ , we deduce that

d(z, Sw) = lim sup
n→∞

d(yn+, Sw) ≤ lim sup
n→∞

ψ
(
M(xn, w)

)

≤ ψ
(

lim
n→∞ M(xn, w)

)
= ψ

(
d(z, Sw)

)
< d(z, Sw),

which is a contradiction. Thus, Sw = z, which means that z = Tu = Au = Bw = Sw. As {A, T}
and {B, S} are weakly compatible,

Az = ATu = TAu = Tz and Bz = BSw = SBw = Sz.

Next, let us show that Tz = Sz. On the contrary case, suppose that d(Tz, Sz) > . Hence, by
(),

d(Tz, Sz) ≤ max
{
α(z, z),α(z, z)

}
d(Tz, Sz) ≤ ψ

(
M(z, z)

)
. ()

Notice that

d(Az, Bz) = d(Tz, Sz) > ;

d(Az, Tz) = d(Tz, Tz) = ;

d(Bz, Sz) = d(Sz, Sz) = ;

φ
(
d(Az, Sz), d(Tz, Bz)

)
= φ

(
d(Tz, Sz), d(Tz, Sz)

) (F)≤ d(Tz, Sz);

φ
(
d(Az, Sz), d(Tz, Bz), d(Az, Bz)

)
= φ

(
d(Tz, Sz), d(Tz, Sz), d(Tz, Sz)

) (F)≤ d(Tz, Sz);

φ
(
d(Az, Tz), d(Bz, Sz), d(Az, Bz)

)
= φ

(
d(Tz, Tz), d(Sz, Sz), d(Tz, Sz)

)

= φ
(
, , d(Tz, Sz)

) (F)≤ d(Tz, Sz);

φ
(
d(Az, Sz), d(Tz, Bz), d(Az, Tz), d(Bz, Sz)

)

= φ
(
d(Tz, Sz), d(Tz, Sz), d(Tz, Tz), d(Sz, Sz)

)

= φ
(
d(Tz, Sz), d(Tz, Sz), , 

) (F)≤ d(Tz, Sz).

Therefore,

M(z, z) = max
{

d(Az, Bz), d(Az, Tz), d(Bz, Sz),

φ
(
d(Az, Sz), d(Tz, Bz)

)
,φ

(
d(Az, Sz), d(Tz, Bz), d(Az, Bz)

)
,

φ
(
d(Az, Tz), d(Bz, Sz), d(Az, Bz)

)
,

φ
(
d(Az, Sz), d(Tz, Bz), d(Az, Tz), d(Bz, Sz)

)}

= d(Tz, Sz) > .
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Again, it follows from () that

d(Tz, Sz) ≤ ψ
(
M(z, z)

)
= ψ

(
d(Tz, Sz)

)
< d(Tz, Sz),

which is a contradiction. As a consequence, we conclude that Tz = Sz, which means that

Az = Tz = Sz = Bz.

In particular, z is a coincidence point of A, B, T , and S. �

In the following result, we describe some sufficient conditions to ensure that the coin-
cidence point is a common fixed point, and it is unique.

Theorem  Under the hypotheses of Theorem , suppose that max{α(z, w),α(w, z)} ≥ 
for all coincidence point z of A, B, S, and T , and all w ∈ S–({z}). Then A, B, S, and T have,
at least, a common fixed point.

Furthermore, if we additionally assume that max{α(x, y),α(y, x)} ≥  for all distinct com-
mon fixed points x and y of A, B, S, and T , then A, B, S, and T have a unique common fixed
point.

Proof In such a case, we can repeat, point by point, the arguments of the proof of Theo-
rem  in order to demonstrate the following facts:

• Tz = z as in (), so z is a common fixed point of A, B, S, and T ;
• z is the unique common fixed point of A, B, S, and T , as in ().
This completes the proof. �

The following result corresponds to the case in which T = B and S = A in Theorem .

Corollary  Let α : X ×X → [,∞) be a reflexive, transitive function and let T , S : X → X
be self-mappings in a metric space (X, d) such that

(a) the pair {T , S} is weakly compatible;

(b) one of T(X) or S(X) is complete.

Also assume that there exist φ ∈ F, φ ∈ F, φ ∈ F, φ ∈ F, and ψ ∈ � such that

max
{
α(x, y),α(y, x)

}
d(Tx, Sy) ≤ ψ

(
M(x, y)

)
for all x, y ∈ X,

where

M(x, y) = max
{

d(Sx, Ty), d(Sx, Tx), d(Ty, Sy),φ
(
d(Sx, Sy), d(Tx, Ty)

)
,

φ
(
d(Sx, Sy), d(Tx, Ty), d(Sx, Ty)

)
,φ

(
d(Sx, Tx), d(Ty, Sy), d(Sx, Ty)

)

φ
(
d(Sx, Sy), d(Tx, Ty), d(Sx, Tx), d(Ty, Sy)

)}
.

Then T and S have a coincidence point in X.
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Remark  Theorem  can be particularized to the case in which the metric space (X, d)
is endowed with a partial order � (or even with a reflexive, transitive binary relation) by
defining

α�(x, y) =

{
, if x � y,
, otherwise.

In such a case, the contractivity condition () turns into the following one:

d(Tx, Sy) ≤ ψ
(
M(x, y)

)
for all x, y ∈ X such that x � y.

In [–], the authors illustrated their main results with a list of several corollaries
by choosing the function α in different ways. We could repeat here their studies but, for
short, we only describe the case in which S = T , and A and B are the identity mapping IX

in X in Theorem .

Corollary  Let α : X × X → [,∞) be a reflexive, transitive function and let T : X → X
be a self-mapping in a metric space (X, d) such that

(b) α(x, Tx) ≥  for all x ∈ X;

(c) X (or T(X)) is complete;

(d) the pair {T , IX} is (α, d)-regular.

Also assume that there exist φ ∈ F, φ ∈ F, φ ∈ F, φ ∈ F, and ψ ∈ � such that

max
{
α(x, y),α(y, x)

}
d(Tx, Ty) ≤ ψ

(
M(x, y)

)
for all x, y ∈ X,

where

M(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty),φ
(
d(x, Ty), d(Tx, y)

)
,

φ
(
d(x, Ty), d(Tx, y), d(x, y)

)
,φ

(
d(x, Tx), d(y, Ty), d(x, y)

)

φ
(
d(x, Ty), d(Tx, y), d(x, Tx), d(y, Ty)

)}
.

Then T has, at least, a fixed point in X.
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