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Abstract
This paper aims to deal with an iterative algorithm for hierarchical fixed point
problems for a finite family of nonexpansive mappings in the setting of real Hilbert
spaces. We establish the strong convergence of the proposed method under some
suitable conditions. Numerical examples are presented to illustrate the proposed
method and convergence result. The algorithm and result presented in this paper
extend and improve some well-known algorithm and results, respectively, in the
literature.
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1 Introduction
Throughout this paper, we assume that H is a real Hilbert space whose inner product and
norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. We also assume that T : H → H is a
nonexpansive operator, that is, ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ H . The fixed point set of
T is denoted by F(T), that is, F(T) = {x ∈ H : Tx = x}. It is well known that F(T) is closed
and convex (see []).

Let C be a nonempty closed convex subset of H and S : C → H be a nonexpansive map-
ping. The hierarchical fixed point problem (in short, HFPP) is to find x ∈ F(T) such that

〈x – Sx, y – x〉 ≥ , ∀y ∈ F(T). (.)

It is linked with some monotone variational inequalities and convex programming prob-
lems. Various methods have been proposed to solve (.); see, for example, [–] and the
references therein.

Yao et al. [] introduced the following iterative algorithm to solve HFPP (.):

yn = βnSxn + ( – βn)xn,

xn+ = PC
[
αnf (xn) + ( – αn)Tyn

]
, ∀n ≥ ,

(.)

where f : C → H is a contraction mapping and {αn} and {βn} are sequences in (, ). Under
some restrictions on parameters, they proved that the sequence {xn} generated by (.)
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converges strongly to a point z ∈ F(T) which is also a unique solution of the following
variational inequality problem (VIP): Find z ∈ F(T) such that

〈
(I – f )z, y – z

〉 ≥ , ∀y ∈ F(T). (.)

In , Ceng et al. [] investigated the following iterative method:

xn+ = PC
[
αnρU(xn) + (I – αnμF)

(
T(xn)

)]
, ∀n ≥ , (.)

where U is a Lipschitzian mapping and F is a Lipschitzian and strongly monotone map-
ping. They proved that under some approximate assumptions on the operators and pa-
rameters, the sequence {xn} generated by (.) converges strongly to a unique solution of
the following variational inequality problem (VIP): Find z ∈ F(T) such that

〈
ρU(z) – μF(z), y – z

〉 ≥ , ∀y ∈ F(T). (.)

Simultaneously, the hierarchical fixed point problem is considered for a family of finite
nonexpansive mappings. By using a Wn-mapping [], Yao [] introduced the following
iterative method:

xn+ = αnγ f (xn) + βxn +
(
( – β)I – αnA

)
Wnxn, ∀n ≥ , (.)

where A is a strongly positive linear bounded operator, that is, there exists α >  such
that 〈Ax, x〉 ≥ α‖x‖, f : C → H is a contraction mapping and {αn} and {βn} are sequences
in (, ). Under some restrictions on parameters, he proved that the sequence {xn} gen-
erated by (.) converges strongly to a unique solution of the following variational in-
equality problem defined on the set of common fixed points of nonexpansive mappings
Ti : H → H , i = , , . . . , N : Find z ∈ ⋂N

i= F(Ti) such that

〈
(A – γ f )z, y – z

〉 ≥ , ∀y ∈
N⋂

i=

F(Ti). (.)

By combining Korpelevich’s extragradient method and the viscosity approximation
method, Ceng et al. [] introduced and analyzed implicit and explicit iterative schemes
for computing a common element of the set of fixed points of a nonexpansive mapping and
the set of solutions of a variational inequality problem for an α-inverse-strongly monotone
mapping defined on a real Hilbert space. Under suitable assumptions, they established the
strong convergence of the sequences generated by the proposed schemes.

By combining Krasnoselskii-Mann type algorithm and the steepest-descent method,
Buong and Duong [] introduced the following explicit iterative algorithm:

xk+ =
(
 – β

k
)
xk + β

k Tk
 Tk

N · · ·Tk
 xk , (.)

where Tk
i = ( – β i

k)xk + β i
kTi for  ≤ i ≤ N , {Ti}N

i= are N nonexpansive mappings on a real
Hilbert space H , Tk

 = I – λkμF , and F is an L-Lipschitz continuous and η-strongly mono-
tone mapping. They proved that the sequence {xk} generated by (.) converges strongly
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to a unique solution of the following variational inequality problem: Find z ∈ ⋂N
i= F(Ti)

such that

〈Fz, y – z〉 ≥ , ∀y ∈
N⋂

i=

F(Ti). (.)

Recently, Zhang and Yang [] considered the following explicit iterative algorithm:

xk+ = αkγ V (xk) + (I – μαkF)Tk
N Tk

N– · · ·Tk
 xk , (.)

where V is an α-Lipschitzian on a real Hilbert space H , F is an L-Lipschitz continuous
and η-strongly monotone mapping and Tk

i = (–β i
k)xk +β i

kTi for  ≤ i ≤ N . Under suitable
assumptions, they proved that the sequence {xk} generated by the iterative algorithm (.)
converges strongly to a unique solution of the variational inequality problem of finding
z ∈ ⋂N

i= F(Ti) such that

〈
(μF – γ V )z, y – z

〉 ≥ , ∀y ∈
N⋂

i=

F(Ti). (.)

In this paper, motivated by the above works and related literature, we introduce an it-
erative algorithm for hierarchical fixed point problems of a finite family of nonexpansive
mappings in the setting of real Hilbert spaces. We establish a strong convergence theo-
rem for the sequence generated by the proposed method. In order to verify the theoretical
assertions, some numerical examples are given. The algorithm and results presented in
this paper improve and extend some recent corresponding algorithms and results; see, for
example, Yao et al. [], Suzuki [], Tian [], Xu [], Ceng et al. [], Buong and Duong
[], Zhang and Yang [], and the references therein.

2 Preliminaries
In this section, we present some known definitions and results which will be used in the
sequel.

Definition . A mapping T : C → H is said to be α-inverse strongly monotone if there
exists α >  such that

〈Tx – Ty, x – y〉 ≥ α‖Tx – Ty‖, ∀x, y ∈ C.

Lemma . [] Let U : C → H be a τ -Lipschitzian mapping, and let F : C → H be a
k-Lipschitzian and η-strongly monotone mapping, then for  ≤ ρτ < μη, μF – ρU is μη –
ρτ -strongly monotone, i.e.,

〈
(μF – ρU)x – (μF – ρU)y, x – y

〉 ≥ (μη – ρτ )‖x – y‖, ∀x, y ∈ C.

Definition . [] A mapping T : H → H is said to be an averaged mapping if there
exists α ∈ (, ) such that

T = ( – α)I + αR, (.)
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where I : H → H is the identity mapping and R : H → H is a nonexpansive mapping. More
precisely, when (.) holds, we say that T is α-averaged.

It is easy to see that the averaged mapping T is also nonexpansive and F(T) = F(R).

Lemma . [, ] If the mappings {Ti}N
i= defined on a real Hilbert space H are averaged

and have a common fixed point, then

N⋂

i=

F(Ti) = F(TT · · ·TN ).

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . If
T : C → C is a nonexpansive mapping with F(T) 
= ∅, then the mapping I – T is demiclosed
at , i.e., if {xn} is a sequence in C weakly converging to x, and if {(I – T)xn} converges
strongly to , then (I – T)x = .

Definition . A mapping T : C → H is said to be a k-strict pseudo-contraction if there
exists a constant k ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H and S :
C → H be a k-strict pseudo-contraction mapping. Define B : C → H by Bx = λSx + ( – λ)x
for all x ∈ C. Then, as λ ∈ [k, ), B is a nonexpansive mapping such that F(B) = F(S).

Lemma . [] Let T : C → H be a k-Lipschitzian and η-strongly monotone operator. Let
 < μ < η

k , W = I –λμT and μ(η – μk

 ) = τ . Then, for  < λ < min{, 
τ
}, W is a contraction

mapping with constant  – λτ , that is,

‖Wx – Wy‖ ≤ ( – λτ )‖x – y‖, ∀x, y ∈ C.

Lemma . [] Let {xn} and {yn} be bounded sequences in a Banach space E and {βn} be
a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose xn+ = βnxn + ( –
βn)yn, ∀n ≥  and lim supn→∞(‖yn+ – yn‖ – ‖xn+ – xn‖) ≤ . Then limn→∞ ‖yn – xn‖ = .

We close this section by presenting the following lemma on the sequences of real num-
bers.

Lemma . [] Let {an} be a sequence of nonnegative real numbers such that

an+ ≤ ( – υn)an + δn,

where {υn} is a sequence in (, ) and δn is a sequence such that
(i)

∑∞
n= υn = ∞;

(ii) lim supn→∞
δn
υn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .
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3 An iterative method and strong convergence results
Let C be a nonempty closed convex subset of a real Hilbert space H and {Ti}N

i= be N non-
expansive mappings on C such that � =

⋂N
i= F(Ti) 
= ∅. Let T : C → C be a k-Lipschitzian

mapping and η-strongly monotone, and f : C → C be a contraction mapping with a con-
stant τ . We consider the following hierarchical fixed point problem (in short, HFPP) of
finding z ∈ � such that

〈
ρf (z) – μT(z), y – z

〉 ≤ , ∀y ∈ � =
N⋂

i=

F(Ti). (.)

Now we suggest the following algorithm for finding a solution of HFPP (.).

Algorithm . For a given arbitrarily point x ∈ C, let the iterative sequences {xn} and
{yn} be generated by

{
yn = βnxn + ( – βn)Tn

N Tn
N– · · ·Tn

 xn;
xn+ = αnρf (yn) + γnxn + (( – γn)I – αnμT)(yn), ∀n ≥ ,

(.)

where Tn
i = ( – δi

n)I + δi
nTi and δi

n ∈ (, ) for i = , , . . . , N . Suppose the parameters satisfy
 < μ < η

k and  ≤ ρ < ν
τ

, where ν = μ(η – μk

 ). Also {γn}, {αn} and {βn} are sequences in
(, ) satisfying the following conditions:

(a)  < lim infn→∞ γn ≤ lim supn→∞ γn < ,
(b) limn→∞ αn =  and

∑∞
n= αn = ∞,

(c) {βn} ⊂ [σ , ) and limn→∞ βn = β < ,
(d) limn→∞ |δi

n– – δi
n| =  for i = , , . . . , N .

Remark . Algorithm . can be viewed as an extension and improvement of some well-
known results.

(a) If βn = , γn = β , μ = , ρ = γ and f (yn) = f (xn), then Algorithm . reduces to the
one studied in [].

(b) If βn = , N = , γn = , ρ =  and f (yn) = f (xn), then Algorithm . can be seen as an
extension of an algorithm considered in [].

(c) If βn = , N = , δ
n = , γn =  and f (yn) = U(xn), then Algorithm . reduces to that

considered and studied in [].
(d) If βn = , γn =  – β

n , ρ = , then Algorithm . reduces to following algorithm:

xn+ =
(
 – β

n
)
xn + β

n (I – λnμT)Tn
N · · ·Tn

 xn, (.)

where λn = αn
β

n
. We can see that (.) coincides with the algorithm proposed in [].

(e) If βn = , γn =  and f (yn) = V (xn), then Algorithm . reduces to the one considered
in [].

This shows that Algorithm . is quite general and unified one. We expect the wide appli-
cability of Algorithm ..

Lemma . The sequences {xn} and {yn} are bounded.
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Proof Let x∗ ∈ �. We have

∥∥yn – x∗∥∥ =
∥∥( – βn)

(
Tn

N Tn
N– · · ·Tn

 xn – x∗) + βn
(
xn – x∗)∥∥

≤ ( – βn)
∥
∥xn – x∗∥∥ + βn

∥
∥xn – x∗∥∥ =

∥
∥xn – x∗∥∥. (.)

Since limn→∞ αn = , without loss of generality, we may assume that αn ≤ min{ε, ε
τ
} for all

n ≥ , where  < ε <  – lim supn→∞ γn. From (.) and (.), we obtain

∥∥xn+ – x∗∥∥ =
∥∥αnρf (yn) + γnxn +

(
( – γn)I – αnμT

)
(yn) – x∗∥∥

=
∥
∥αn

(
ρf (yn) – μT

(
x∗)) + γn

(
xn – x∗) +

(
( – γn)I – αnμT

)
(yn)

–
(
( – γn)I – αnμT

)(
x∗)∥∥

≤ αnρτ
∥∥yn – x∗∥∥ + αn

∥∥(ρf – μT)x∗∥∥ + γn
∥∥xn – x∗∥∥

+
∥∥(

( – γn)I – αnμT
)
(yn) –

(
( – γn)I – αnμT

)(
x∗)∥∥

= αnρτ
∥
∥yn – x∗∥∥ + αn

∥
∥(ρf – μT)x∗∥∥ + γn

∥
∥xn – x∗∥∥

+ ( – γn)
∥∥
∥∥

(
I –

αnμ

( – γn)
T

)
(yn) –

(
I –

αnμ

( – γn)
T

)(
x∗)

∥∥
∥∥

≤ αnρτ
∥∥yn – x∗∥∥ + αn

∥∥(ρf – μT)x∗∥∥

+ γn
∥∥xn – x∗∥∥ + ( – γn – αnν)

∥∥yn – x∗∥∥

≤ αnρτ
∥
∥xn – x∗∥∥ + αn

∥
∥(ρf – μT)x∗∥∥ + γn

∥
∥xn – x∗∥∥

+ ( – γn – αnν)
∥
∥xn – x∗∥∥

= αnρτ
∥∥xn – x∗∥∥ + αn

∥∥(ρf – μT)x∗∥∥ + ( – αnν)
∥∥xn – x∗∥∥

=
(
 – αn(ν – ρτ )

)∥∥xn – x∗∥∥ + αn
∥∥(ρf – μT)x∗∥∥

≤ max

{∥
∥xn – x∗∥∥,


ν – ρτ

(∥∥(ρf – μT)x∗∥∥)}
,

where the second inequality follows from Lemma . and the third inequality follows from
(.). By induction on n, we obtain

∥
∥xn – x∗∥∥ ≤ max

{∥
∥xn – x∗∥∥,


ν – ρτ

(∥∥(ρf – μT)x∗∥∥)}
, ∀n ≥  and x ∈ C.

Hence, {xn} is bounded, and consequently, we deduce that {yn}, {Tyn}, {Txn+}, ‖Tn
 xn+‖,

‖TTn
 xn+‖, . . . ,‖Tn

N– · · ·Tn
 xn+‖,‖TN Tn

N– · · ·Tn
 xn+‖ and {f (yn)} are bounded. �

Lemma . Let {xn} be a sequence generated by Algorithm .. Then:
(a) limn→∞ ‖xn+ – xn‖ = .
(b) The weak w-limit set ww(xn) ⊂ � (ww(xn) = {x : xni ⇀ x}).

Proof We estimate

‖yn – yn–‖
=

∥∥( – βn)Tn
N Tn

N– · · ·Tn
 xn + βnxn –

[
( – βn–)Tn–

N Tn–
N– · · ·Tn–

 xn– + βn–xn–
]∥∥
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=
∥∥( – βn)

(
Tn

N Tn
N– · · ·Tn

 xn – Tn–
N Tn–

N– · · ·Tn–
 xn–

)

– (βn – βn–)Tn–
N Tn–

N– · · ·Tn–
 xn– + βn(xn – xn–) – (βn– – βn)xn–

∥∥

≤ ‖xn– – xn‖ + ( – βn)
∥
∥Tn

N Tn
N– · · ·Tn

 xn – Tn–
N Tn–

N– · · ·Tn–
 xn–

∥
∥

+ |βn – βn–|
∥
∥Tn–

N Tn–
N– · · ·Tn–

 xn– – xn–
∥
∥. (.)

It follows from the definition of Tn+
i that

∥
∥Tn+

 Tn+
 xn+ – Tn

 Tn
 xn+

∥
∥

≤ ∥
∥Tn+

 Tn+
 xn+ – Tn+

 Tn
 xn+

∥
∥ +

∥
∥Tn+

 Tn
 xn+ – Tn

 Tn
 xn+

∥
∥

≤ ∥∥Tn+
 xn+ – Tn

 xn+
∥∥ +

∥∥Tn+
 Tn

 xn+ – Tn
 Tn

 xn+
∥∥

=
∥∥(

 – δ
n+

)
xn+ + δ

n+Txn+ –
(
 – δ

n
)
xn+ – δ

nTxn+
∥∥

+
∥
∥(

 – δ
n+

)
Tn

 xn+ + δ
n+TTn

 xn+ –
(
 – δ

n
)
Tn

 xn+ – δ
nTTn

 xn+
∥
∥

≤ ∣∣δ
n+ – δ

n
∣∣(‖xn+‖ + ‖Txn+‖

)
+

∣∣δ
n+ – δ

n
∣∣(∥∥Tn

 xn+
∥∥ +

∥∥TTn
 xn+

∥∥)
, (.)

and from (.) we have

∥
∥Tn+

 Tn+
 Tn+

 xn+ – Tn
 Tn

 Tn
 xn+

∥
∥

≤ ∥∥Tn+
 Tn+

 Tn+
 xn+ – Tn+

 Tn
 Tn

 xn+
∥∥

+
∥∥Tn+

 Tn
 Tn

 xn+ – Tn
 Tn

 Tn
 xn+

∥∥

≤ ∥
∥Tn+

 Tn+
 xn+ – Tn

 Tn
 xn+

∥
∥ +

∥
∥(

 – δ
n+

)
Tn

 Tn
 xn+

+ δ
n+TTn

 Tn
 xn+ –

(
 – δ

n
)
Tn

 Tn
 xn+ – δ

nTTn
 Tn

 xn+
∥
∥

≤ ∣∣δ
n+ – δ

n
∣∣(‖xn+‖ + ‖Txn+‖

)
+

∣∣δ
n+ – δ

n
∣∣(∥∥Tn

 xn+
∥∥

+
∥∥TTn

 xn+
∥∥)

+
∣∣δ

n+ – δ
n
∣∣(∥∥Tn

 Tn
 xn+

∥∥ +
∥∥TTn

 Tn
 xn+

∥∥)
.

By induction on N , we have

∥∥Tn+
N Tn+

N– · · ·Tn+
 xn+ – Tn

N Tn
N– · · ·Tn

 xn+
∥∥

≤ ∣∣δ
n+ – δ

n
∣∣(‖xn+‖ + ‖Txn+‖

)
+

∣∣δ
n+ – δ

n
∣∣(∥∥Tn

 xn+
∥∥ +

∥∥TTn
 xn+

∥∥)

+ · · · +
∣
∣δN

n+ – δN
n

∣
∣(

∥
∥Tn

N– · · ·Tn
 xn+

∥
∥ +

∥
∥TN Tn

N– · · ·Tn
 xn+

∥
∥)

.

Since limn→∞ |δi
n+ – δi

n| =  for i = , , . . . , N , and ‖xn+‖,‖Txn+‖,‖Tn
 xn+‖,‖TTn

 xn+‖,
. . . ,‖Tn

N– · · ·Tn
 xn+‖,‖TN Tn

N– · · ·Tn
 xn+‖ are bounded, we obtain

lim
n→∞

∥
∥Tn+

N Tn+
N– · · ·Tn+

 xn+ – Tn
N Tn

N– · · ·Tn
 xn+

∥
∥ = .

Define wn = xn+–γnxn
–γn

. Then xn+ = ( – γn)wn + γnxn, and therefore, from (.), we have

‖wn+ – wn‖
≤ αn+

 – γn+

∥∥ρf (yn+) – μT(yn+)
∥∥ +

αn

 – γn

∥∥ρf (yn) – μT(yn)
∥∥ + ‖yn+ – yn‖
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≤ αn+

 – γn+

∥∥ρf (yn+) – μT(yn+)
∥∥

+
αn

 – γn

∥∥ρf (yn) – μT(yn)
∥∥ + ‖xn+ – xn‖

+ ( – βn+)
∥
∥Tn+

N Tn+
N– · · ·Tn+

 xn+ – Tn
N Tn

N– · · ·Tn
 xn+

∥
∥

+ |βn+ – βn|
∥∥Tn

N Tn
N– · · ·Tn

 xn – xn
∥∥.

Since limn→∞ αn = , limn→∞ βn = β , lim infn→∞ γn < lim supn→∞ γn <  and

lim
n→∞

∥
∥Tn+

N Tn+
N– · · ·Tn+

 xn+ – Tn
N Tn

N– · · ·Tn
 xn+

∥
∥ = ,

we get

lim sup
n→∞

(‖wn+ – wn‖ – ‖xn+ – xn‖
) ≤ .

By Lemma ., we have limn→∞ ‖wn – xn‖ = . Since ‖xn+ – xn‖ = ( – γn)‖wn – xn‖, we
obtain

lim
n→∞‖xn+ – xn‖ = .

We next estimate

‖xn – yn‖ ≤ ‖xn+ – xn‖ + ‖xn+ – yn‖
≤ ‖xn+ – xn‖ + ‖xn+ – yn‖
≤ ‖xn+ – xn‖ + αn

∥
∥ρf (yn) – μT(yn)

∥
∥ + γn‖xn – yn‖,

which implies that

( – γn)‖xn – yn‖ ≤ ‖xn+ – xn‖ + αn
∥∥ρf (yn) – μT(yn)

∥∥.

Since limn→∞ αn =  and lim infn→∞ γn < lim supn→∞ γn < , we have

lim
n→∞‖xn – yn‖ = . (.)

Define a mapping W : C → H by

Wx = βx + ( – β)Tn
N Tn

N– · · ·Tn
 x,

with σ ≤ β < . It follows from Lemma . that W is a nonexpansive mapping and
F(W ) = �. Note that

‖Wxn – xn‖ ≤ ‖Wxn – yn‖ + ‖xn – yn‖
≤ |βn – β|∥∥Tn

N Tn
N– · · ·Tn

 xn – xn
∥∥ + ‖xn – yn‖.
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Since limn→∞ βn = β and limn→∞ ‖xn – yn‖ = , we obtain

lim
n→∞‖Wxn – xn‖ = .

Since {xn} is bounded, without loss of generality we may assume that xn ⇀ x∗ ∈ C. It fol-
lows from Lemma . that x∗ ∈ F(W ) = �. Therefore, ww(xn) ⊂ �. �

Theorem . The sequence {xn} generated by Algorithm . converges strongly to z ∈ � =
⋂N

i= F(Ti) such that it is also a unique solution of HFPP (.).

Proof Since {xn} is bounded and xn ⇀ w, from Lemma . we have w ∈ �. Since  ≤ ρτ <
μη, from Lemma . it can be easily seen that the operator μT – ρf is μη – ρτ strongly
monotone, and we get the uniqueness of the solution of HFPP (.). Let us denote this
unique solution of HFPP (.) by z ∈ �.

Since {xn} is bounded, there exists a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
ρf (z) – μT(z), xn – z

〉
= lim sup

k→∞

〈
ρf (z) – μT(z), xnk – z

〉

=
〈
ρf (z) – μT(z), w – z

〉 ≤ .

Next, we show that xn → z. We have

‖xn+ – z‖

=
〈
αnρf (yn) + γnxn +

(
( – γn)I – αnμT

)
(yn) – z, xn+ – z

〉

= αn
〈
ρf (yn) – μT(z), xn+ – z

〉
+ γn〈xn – z, xn+ – z〉

+
〈(

( – γn)I – αnμT
)
(yn) –

(
( – γn)I – αnμT

)
(z), xn+ – z

〉

≤ αn
〈
ρ
(
f (yn) – f (z)

)
, xn+ – z

〉
+ αn

〈
ρf (z) – μT(z), xn+ – z

〉

+ γn‖xn – z‖‖xn+ – z‖ + ( – γn – αnν)‖yn – z‖‖xn+ – z‖
≤ αnρτ‖xn – z‖‖xn+ – z‖ + αn

〈
ρf (z) – μT(z), xn+ – z

〉

+ γn‖xn – z‖‖xn+ – z‖ + ( – γn – αnν)‖xn – z‖‖xn+ – z‖
=

(
 – αn(ν – ρτ )

)‖xn – z‖‖xn+ – z‖ + αn
〈
ρf (z) – μT(z), xn+ – z

〉

≤  – αn(ν – ρτ )


(‖xn – z‖ + ‖xn+ – z‖) + αn
〈
ρf (z) – μT(z), xn+ – z

〉

≤  – αn(ν – ρτ )


‖xn – z‖ +


‖xn+ – z‖ + αn

〈
ρf (z) – μT(z), xn+ – z

〉
,

which implies that

‖xn+ – z‖ ≤ (
 – αn(ν – ρτ )

)‖xn – z‖ + αn
〈
ρf (z) – μT(z), xn+ – z

〉
.

Let υn = αn(ν – ρτ ) and δn = αn〈ρf (z) – μT(z), xn+ – z〉. Then we have

∞∑

n=

αn = ∞ and lim sup
n→∞

{


ν – ρτ

〈
ρf (z) – μT(z), xn+ – z

〉} ≤ .
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It follows that

∞∑

n=

υn = ∞ and lim sup
n→∞

δn

υn
≤ .

Thus, all the conditions of Lemma . are satisfied. Hence we deduce that xn → z. This
completes the proof. �

4 Examples
To illustrate Algorithm . and the convergence result, we consider the following exam-
ples.

Example . Let αn = 
(n+) , βn = 

n and γn = 
 . It is easy to show that the sequences {αn},

{βn} and {γn} satisfy conditions (a), (b) and (c). Let δi
n = n+i

n+i+ for i = , . Then

lim
n→∞

∣
∣δi

n– – δi
n
∣
∣ = lim

n→∞

∣∣
∣∣
n –  + i

n + i
–

n + i
n + i + 

∣∣
∣∣

= lim
n→∞

∣
∣∣
∣


(n + i)(n +  + i)

∣
∣∣
∣

= .

This implies that the sequence {δi
n} satisfies condition (d).

Let T, T : R →R be defined by

T(x) = sin(x) and T(x) =
x


, ∀x ∈R,

and let the mapping f : R →R be defined by

f (x) =
x


, ∀x ∈ R.

It is easy to see that T and T are nonexpansive, and f is a contraction mapping with
constant 

 . Clearly,

� =
⋂

i=

F(Ti) = {}.

Let T : R →R be defined by

T(x) =
x + 


, ∀x ∈R.

Then T is -Lipschitzian and 
 -strongly monotone.

In all tests we take ρ = 
 and μ = 

 . In this example, η = 
 , k =  and τ = 

 . It is easy to
see that the parameters satisfy  < μ < η

k and  ≤ ρτ < ν , where ν = μ(η – μk

 ). All codes
were written in Matlab, the values of {yn} and {xn} with different n are reported in Table .

Remark . Table  and Figure  show that the sequences {yn} and {xn} converge to .
Also, {} = �.
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Table 1 The values of {yn} and {xn} with initial values x1 = –10 and x1 = 20

x1 = 20 x1 = –10

yn xn yn xn

n = 1 20.000000 20.000000 –10.000000 –10.000000
n = 2 3.949639 19.792517 –1.804063 –9.919218
n = 3 0.879706 7.874854 –0.205577 –3.831499
n = 4 0.230981 2.616613 –0.225903 –1.118723
n = 5 0.157208 0.820379 –0.092935 –0.454362
n = 6 0.059840 0.317395 –0.035795 –0.188096
n = 7 0.021142 0.119691 –0.013820 –0.078145
n = 8 0.006951 0.041902 –0.005590 –0.033695
n = 9 0.001927 0.012272 –0.002513 –0.016005
n = 10 0.000217 0.001448 –0.001338 –0.008942

Figure 1 The convergence of {un}, {yn} and {xn} with initial values x1 = –10 and x1 = 20.

Example . All the mappings and parameters are the same as in Example . except T,
T and f . Let T, T, T : R →R be defined by

T(x) = cos( – x), T(x) = sin(x – ) + , T(x) =
–x + 


, ∀x ∈ R,

and let f : R →R be defined by

f (x) =
x + 


, ∀x ∈R.

Then T, T and T are nonexpansive mappings, and f is a contraction mapping with
constant 

 . Clearly,

� =
⋂

i=

F(Ti) = {}.

Let δi
n = n+i

n+i+ for i = , , .
All codes were written in Matlab, the values of {yn} and {xn} with different n are reported

in Table .
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Table 2 The values of {yn} and {xn} with initial values x1 = –20 and x1 = 30

x1 = 30 x1 = –20

yn xn yn xn

n = 1 30.000000 30.000000 –20.000000 –20.000000
n = 2 4.333515 29.766667 –1.182965 –19.842177
n = 3 1.213029 10.670109 1.191851 –5.840691
n = 4 1.457371 3.573234 1.389710 –0.570266
n = 5 1.122003 1.982320 1.008485 0.895911
n = 6 1.004885 1.334610 1.001361 0.978165
n = 7 0.997038 1.085459 1.000350 0.993713
n = 8 0.999184 1.017533 1.000150 0.997074
n = 9 0.999890 1.002336 1.000099 0.997945
n = 10 1.000035 0.999209 1.000078 0.998268

Figure 2 The convergence of {un}, {yn} and {xn} with initial values x1 = –20 and x1 = 30.

Remark . Table  and Figure  show that the sequences {yn} and {xn} converge to .
Also, {} = �.
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