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Abstract
After the appearance of Nieto and Rodríguez-López’s theorem, the branch of fixed
point theory devoted to the setting of partially ordered metric spaces have attracted
much attention in the last years, especially when coupled, tripled, quadrupled and, in
general, multidimensional fixed points are studied. Almost all papers in this direction
have been forced to present two results assuming two different hypotheses: the
involved mapping should be continuous or the metric framework should be regular.
Both conditions seem to be different in nature because one of them refers to the
mapping and the other one is assumed on the ambient space. In this paper, we unify
such different conditions in a unique one. By introducing the notion of continuity of a
mapping from a metric space into itself depending on a function α, which is the case
that covers the partially ordered setting, we extend some very recent theorems
involving control functions that only must be lower/upper semi-continuous from the
right. Finally, we use metric spaces endowed with transitive binary relations rather
than partial orders.

1 Introduction
In recent times, some extensions of the Banach contractive mapping principle have been
introduced using a contractivity condition that involves two different functions. For in-
stance, in , Dutta and Choudhury presented the following generalization.

Theorem . (Dutta and Choudhury []) Let (X, d) be a complete metric space and let
F : X → X be a mapping such that

ψ
(
d(Fx, Fy)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
for all x, y ∈ X,

where ψ ,ϕ : [,∞) → [,∞) are continuous, nondecreasing and ψ–({}) = ϕ–({}) = {}.
Then F has a unique fixed point.

Functions like ψ verifying the previous properties are known in the literature as altering
distance functions (see []).
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Remark . Notice that Theorem . remains true if ϕ only satisfies the following assump-
tions: ϕ is lower semi-continuous and ϕ–({}) = {} (see, for instance, Abbas and Ðorić
[] and Ðorić []).

The above remark yields the following statement.

Theorem . Let (X, d) be a complete metric space and let F : X → X be a mapping such
that for each pair of points x, y ∈ X,

ψ
(
d(Fx, Fy)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
,

where ψ : [,∞) → [,∞) is continuous, nondecreasing, ψ–({}) = {}, and ϕ : [,∞) →
[,∞) is lower semi-continuous and ϕ–({}) = {}. Then F has a unique fixed point.

We have also an ordered version of Theorem . (see [–]).

Theorem . Let (X,�) be a partially ordered set and suppose that there is a metric d on
X such that (X, d) is a complete metric space. Let F : X → X be a continuous nondecreasing
mapping such that

ψ
(
d(Fx, Fy)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)

for all x, y ∈ X with x � y, where ψ : [,∞) → [,∞) is continuous, nondecreasing,
ψ–({}) = {}, and ϕ : [,∞) → [,∞) is lower semi-continuous and ϕ–({}) = {}. If
there exists x ∈ X such that x � Fx, then F has a fixed point.

The previous results were extended to the case of a contractivity condition involving
three different functions. For instance, Eslamian and Abkar [] established the following
result.

Theorem . (Eslamian and Abkar []) Let (X, d) be a complete metric space and f : X →
X be such that

ψ
(
d(fx, fy)

) ≤ α
(
d(x, y)

)
– β

(
d(x, y)

)

for all x, y ∈ X, where ψ ,α,β : [,∞) → [,∞) are such that ψ is continuous and nonde-
creasing, α is continuous, β is lower semi-continuous,

ψ(t) =  if and only if t = , α() = β() =  and

ψ(t) – α(t) + β(t) >  for all t > .

Then f has a unique fixed point.

Some of the previous results became equivalent.

Theorem . (Aydi et al. []) Theorem . and Theorem . are equivalent.
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Choudhury and Kundu [] also extended Theorem . to the ordered case.

Theorem . (Choudhury and Kundu []) Let (X,�) be a partially ordered set and sup-
pose that there is a metric d on X such that (X, d) is a complete metric space. Let f : X → X
be a continuous nondecreasing mapping such that

ψ
(
d(fx, fy)

) ≤ α
(
d(x, y)

)
– β

(
d(x, y)

)

for all x, y ∈ X with x � y, where ψ ,α,β : [,∞) → [,∞) are such that ψ is continuous
and nondecreasing, α is continuous, β is lower semi-continuous,

ψ(t) =  if and only if t = , α() = β() =  and

ψ(t) – α(t) + β(t) >  for all t > .

If there exists x ∈ X such that x � fx, then f has a fixed point.

Following similar arguments as in the proof of Theorem ., the following result was
obtained.

Theorem . (Aydi et al. []) Theorem . and Theorem . are equivalent.

In a very recent paper, Shaddad et al. proved the following result, which is a generaliza-
tion of the previous ones.

Theorem . (Shaddad et al. [], Theorem .) Let (X, d,�) be a complete partially or-
dered metric space. Let f : X → X be a mapping which obeys the following conditions:

. There exist an altering distance function ψ , an upper semi-continuous function
θ : [,∞) → [,∞), and a lower semi-continuous function ϕ : [,∞) → [,∞) such
that

ψ
(
d(fx, fy)

) ≤ θ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
for all x � y,

where θ () = ϕ() =  and ψ(t) – θ (t) + ϕ(t) >  for all t > .
. There exists x ∈ X such that x � f (x);
. f is nondecreasing;
. At least, one of the following conditions holds:

(a) f is continuous or
(b) if {xn} → x when n → ∞ in X , then xn � x for all n.

Then f has a fixed point. Moreover, if for each x, y ∈ X there exists z ∈ X which is compa-
rable to x and y, then the fixed point is unique.

The condition ‘ψ(t) –θ (t) +ϕ(t) >  for all t > ’ is not new because, as we have just com-
mented, under some weak continuity conditions, it was firstly considered in Choudhury
and Kundu [], and it can also be found in Razani and Parvaneh []. As a consequence of
the previous theorem, the authors obtained the following result.

Corollary . (Shaddad et al. [], Corollary .) Let (X, d,�) be a complete partially or-
dered metric space. Let f : X → X be a mapping which obeys the following conditions:
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. There exist an altering distance function ψ and a lower semi-continuous function
ϕ : [,∞) → [,∞) such that

ψ
(
d(fx, fy)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
for all x � y, ()

where ϕ() = ;
. There exists x ∈ X such that x � f (x);
. f is nondecreasing;
. At least, one of the following conditions holds:

(a) f is continuous or
(b) if {xn} → x when n → ∞ in X , then xn � x for all n.

Then f has a fixed point. Moreover, if for each x, y ∈ X there exists z ∈ X which is compa-
rable to x and y, then the fixed point is unique.

Two remarks must be done concerning the previous statements. On the one hand, con-
dition (b) in Theorem . is unclear. We suppose that it means that (X, d,�) is a regular
partially ordered metric space, that is, it verifies the following two properties:

• if {xm} ⊆ X is such that {xm} → x ∈ X and xm � xm+ for all m ∈N, then we have that
xm � x for all m ∈ N;

• if {xm} ⊆ X is such that {xm} → x ∈ X and xm � xm+ for all m ∈N, then we have that
xm � x for all m ∈ N.

On the other hand, in hypothesis  of Corollary ., the condition ‘ϕ(t) >  for all t > ’
is necessary. For instance, consider the following example.

Example . Let X = N\ {} be endowed with the usual partial order ≤ and the Euclidean
metric d(x, y) = |x – y| for all x, y ∈ X. Then (N \ {}, d,≤) is a complete partially ordered
metric space. Let define f : X → X by f (n) = n +  for all n ∈ X. Then f does not have any
fixed point on X. However, if we define

ψ(t) =

{
t if  ≤ t ≤ /,
 if t > /,

then ψ is an altering distance function satisfying assumption (), where ϕ(t) =  for all
t ∈ [,∞) (because ψ(n) =  for all n ∈ X). Hence, Corollary . is false if we omit the
condition ‘ϕ(t) >  for all t > ’, that is, ϕ(t) =  if, and only if, t = .

This paper has three main aims. On the one hand, we generalize Theorem . introduc-
ing a contractivity condition involving control function that does not have to be continu-
ous nor monotone. In fact, this new kind of control functions only have to verify sequential
properties. We will show that two functions are powerful enough to handle contractivity
conditions as in hypothesis  of Theorem ., in which three functions appear. The new
class of control functions includes pairs that are not necessary altering distance functions,
and the semi-continuity is imposed only from the right side and on the interval (,∞).
On the other hand, the second objective is to describe a unified condition to handle two
independent hypotheses (the continuity of a mapping and the regularity of the partially
ordered metric space), which were initially introduced from Ran and Reurings’ theorem
and Nieto and Rodríguez-López’s theorem. Finally, we show that many results obtained
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in the setting of a partially ordered metric space do not need a partial order, but only a
transitive binary relation on a subset of the metric space.

2 Preliminaries
In the sequel, N = {, , , , . . .} denotes the set of all nonnegative integers and R denotes
the set of all real numbers. Henceforth, X and Y will denote nonempty sets. Elements of
X are usually called points.

Let T : X → Y be a mapping. The domain of T is X and it is denoted by Dom T . Its
range, that is, the set of values of T in Y , is denoted by T(X). A mapping T is completely
characterized by its domain, its range, and the manner in which each origin x ∈ Dom T is
applied to its image T(x) ∈ T(X). For simplicity, we denote, as usual, T(x) by Tx. For any
set X, we denote the identity mapping on X by IX : X → X, which is defined by IXx = x for
all x ∈ X.

Given two self-mappings T , g : X → X, we will say that a point x ∈ X is a coincidence
point of T and g if Tx = gx. We will denote by Coin(T , g) the set of all coincidence points
of T and g . If x is a coincidence point of T and g , then the point ω = Tx = gx is called a
point of coincidence of T and g . A common fixed point of T and g is a point x ∈ X such
that Tx = gx = x. Given a self-mapping T : X → X, we will say that a point x ∈ X is a fixed
point of T if Tx = x. We will denote by Fix(T) the set of all fixed points of T .

Given two mappings T : X → Y and S : Y → Z, the composite of T and S is the mapping
S ◦ T : X → Z given by

(S ◦ T)x = STx for all x ∈ Dom T .

We say that two self-mappings T , S : X → X are commuting if TSx = STx for all x ∈ X (that
is, T ◦ S = S ◦ T ).

The iterates of a self-mapping T : X → X are the mappings {Tn : X → X}n∈N defined by

T = IX , T  = T , T = T ◦ T , Tn+ = T ◦ Tn for all n ≥ .

The notion of metric space and the concepts of convergent sequence and Cauchy sequence
in a metric space can be found, for instance, in []. We will write {xn} → x when a se-
quence {xn}n∈N of points of X converges to x ∈ X in the metric space (X, d). A metric
space (X, d) is complete if every Cauchy sequence in X converges to some point of X. The
limit of a convergent sequence in a metric space is unique.

In a metric space (X, d), a mapping T : X → X is continuous at a point z ∈ X if {Txn} →
Tz for all sequence {xn} in X such that {xn} → z. And T is continuous if it is continuous at
every point of X.

A binary relation on X is a nonempty subset R of X × X. For simplicity, we denote
x � y if (x, y) ∈ R, and we will say that � is the binary relation on X. This notation lets us
write x ≺ y when x � y and x �= y. We write y � x when x � y. We will say that x and y are
�-comparable, and we will write x � y if x � y or y � x. A binary relation � on X is reflexive
if x � x for all x ∈ X; it is transitive if x � z for all x, y, z ∈ X such that x � y and y � z; and it
is antisymmetric if x � y and y � x imply x = y.

A reflexive and transitive relation � on X is a preorder (or a quasiorder) on X. In such
a case, (X,�) is a preordered space. If a preorder � is also antisymmetric, then � is called
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a partial order, and (X,�) is a partially ordered space (or a partially ordered set). We will
use the symbol � for a general binary relation on X, and the symbol � for a reflexive binary
relation on X (for instance, a preorder or a partial order).

The usual order of the set of all real numbers R is denoted by ≤. In fact, this partial order
can be induced on any nonempty subset A ⊆ R. Let � be the binary relation on R given
by

x � y ⇔ (x = y or x < y ≤ ).

Then � is a partial order on R, but it is different from ≤. Any equivalence relation is a
preorder.

An ordered metric space is a triple (X, d,�) where (X, d) is a metric space and � is a
partial order on X. And if � is a preorder on X, then (X, d,�) is a preordered metric space.

Definition . Let (X, d) be a metric space, let A ⊆ X be a nonempty subset, and let � be
a binary relation on X. Then (A, d,�) is said to be:

• nondecreasing-regular if for all sequence {xm} ⊆ A such that {xm} → a ∈ A and
xm � xm+ for all m ∈N, we have that xm � a for all m ∈N;

• nonincreasing-regular if for all sequence {xm} ⊆ A such that {xm} → a ∈ A and
xm � xm+ for all m ∈N, we have that xm � a for all m ∈N;

• regular if it is both nondecreasing-regular and nonincreasing-regular.

Some authors called ordered complete to a regular ordered metric space (see, for in-
stance, []). Furthermore, Roldán et al. called sequential monotone property to non-
decreasing-regularity (see []).

Definition . Let � be a binary relation on X and let T , g : X → X be two mappings. We
say that T is (g,�) -nondecreasing if Tx � Ty for all x, y ∈ X such that gx � gy. And T is
�-nondecreasing if Tx � Ty for all x, y ∈ X such that x � y.

Let us consider the following families of control functions.

Falt =
{
φ : [,∞) → [,∞) : φ is continuous, nondecreasing,φ(t) =  ⇔ t = 

}
,

F ′
alt =

{
φ : [,∞) → [,∞) : φ is lower semi-continuous,φ(t) =  ⇔ t = 

}
.

Functions in Falt are called altering distance functions (see [, –]).

Remark . If φ : [,∞) → [,∞) is nondecreasing (for instance, if φ ∈ Falt) and t, s ∈
[,∞) verify φ(t) < φ(s), then t < s.

To prove it, assume that t ≥ s. As φ is nondecreasing, then φ(s) ≤ φ(t) < φ(s), which is
impossible.

Definition . Let s ∈ [,∞) be a point and let A ⊆ [,∞) be a nonempty subset. We will
say that a function φ : [,∞) → [,∞) is

• lower semi-continuous from the right at s ∈ [,∞) if

φ(s) ≤ lim inf
t→s+

φ(t);
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• lower semi-continuous from the right on A if it is lower semi-continuous from the right
at every s ∈ A;

• lower semi-continuous from the right if it is lower semi-continuous from the right on
[,∞).

Similarly, we will say that φ is upper semi-continuous from the right at s ∈ [,∞) if

φ(s) ≥ lim sup
t→s+

φ(t),

and φ is upper semi-continuous from the right if it is upper semi-continuous from the right
at every s ∈ [,∞).

Example . The function φ : [,∞) → [,∞) defined, for all t ∈ [,∞), by

φ(t) =

⎧
⎪⎨

⎪⎩

t if  ≤ t < ,
 if t = ,
t +  if t > ,

is strictly increasing and lower semi-continuous from the right, but it is not lower semi-
continuous at t = .

Lemma . Let (X, d) be a metric space and let {xn} ⊆ X be a sequence which is not Cauchy
in (X, d). Then there exist ε >  and two subsequences {xn(k)} and {xm(k)} of {xn} such that

k ≤ n(k) < m(k) < n(k + ) and d(xn(k), xm(k)–) ≤ ε < d(xn(k), xm(k)) for all k ∈N.

Furthermore, if {d(xn, xn+)} → , then

lim
k→∞

d(xn(k), xm(k)) = lim
k→∞

d(xn(k)+, xm(k)+) = ε.

3 Main results
In this section, we present some results that extend and unify all theorems given in
Introduction. To do that, some notions are introduced. In the sequel, X will denote a
nonempty set, d will be a metric on X, T , g : X → X will be arbitrary self-mappings and
α : X × X → [,∞) will denote a function.

Definition . Given a metric space (X, d), a point z ∈ X, a function α : X × X → [,∞)
and two mappings T , g : X → X, we say that T is (d, g,α)-right-continuous at z if we have
that {Txn} converges to Tz for all sequence {xn} ⊆ X such that {gxn} is convergent to gz

and verifying that α(gxn, gxn+) ≥  for all n ∈ N. And T is (d, g,α)-right-continuous if it is
(d, g,α)-right-continuous at every point of X. If g is the identity mapping on X, we say that
T is (d,α)-right-continuous.

Similarly, a mapping T : X → X is (d, g,α)-left-continuous at z if we have that {Txn}
converges to Tz for all sequence {xn} such that {gxn} is convergent to gz and verifying
that α(gxn+, gxn) ≥  for all n ∈ N. And T is (d, g,α)-left-continuous if it is (d, g,α)-left-
continuous at every point of X. If g is the identity mapping on X, we say that T is (d,α)-
left-continuous.



Shahzad et al. Fixed Point Theory and Applications  (2015) 2015:124 Page 8 of 24

A mapping T : X → X is (d, g,α)-continuous if it is both (d, g,α)-right-continuous and
(d, g,α)-left-continuous.

If α(x, y) =  for all x, y ∈ X, we say that T is (d, g)-continuous (notice that both sides lead
to the same condition) if {gxn} → gz implies that {Txn} → Tz, whatever the point z ∈ X
and the sequence {xn} ⊆ X.

It is obvious that every continuous mapping from X into itself is also (d, IX ,α)-right-
continuous and (d, IX ,α)-left-continuous whatever α, but the converse is false.

Definition . Given a function α : X × X → [,∞), we say that two points x, y ∈ X are
(g,α)-comparable if α(gx, gy) ≥  or α(gy, gx) ≥ .

Definition . We say that a function α : X × X → [,∞) is transitive if, for all x, y, z ∈ X,
we have

α(x, y) ≥ , α(y, z) ≥  ⇒ α(x, z) ≥ .

Similarly, we say that α is g-transitive if, for all x, y, z ∈ X, we have

α(gx, gy) ≥ , α(gy, gz) ≥  ⇒ α(gx, gz) ≥ .

Obviously, every transitive mapping α is also g-transitive, whatever the mapping g .

Definition . Let T : X → X and α : X × X → [,∞) be two mappings. We say that T is
(g,α)-admissible if, for all x, y ∈ X, we have

α(gx, gy) ≥  ⇒ α(Tx, Ty) ≥ .

Example . If α(x, y) ≥  for all x, y ∈ X, then α is transitive and g-transitive, and every
self-mapping T : X → X is (g,α)-admissible.

Remark . Given a binary relation � on X, let α� : X × X → [,∞) be the function
defined by

α�(x, y) =

{
 if x � y,
 otherwise.

()

• The binary relation � is transitive if, and only if, α� is transitive.
• A self-mapping T : X → X is (g,�)-nondecreasing if, and only if, T is

(g,α�)-admissible.

In the next definition, we present the kind of control functions we will involve in the
contractivity condition.

Definition . Let FA be the family of all pairs (ψ ,φ) where ψ ,φ : [,∞) → [,∞) are
two functions verifying the following two conditions:

(F 
A) If {an} ⊂ (,∞) is a sequence such that ψ(an+) ≤ φ(an) for all n ∈N, then {an} → ;
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(F
A) If {an}, {bn} ⊂ [,∞) are two sequences converging to the same limit L and such that

L < an and ψ(bn) ≤ φ(an) for all n ∈N, then L = .

Notice that the previous conditions do not impose any constraint about the continuity
nor the monotony of the functions ψ and φ, as in the following example.

Example . Let ψ ,φ : [,∞) → [,∞) be the functions given, for all t ∈ [,∞), by

ψ(t) =

{
t/, if  ≤ t ≤ ,
t/, if t > ;

φ(t) =
ψ(t)


.

Then ψ and φ are not continuous nor monotone in [,∞). However, (ψ ,φ) ∈ FA. To
prove it, notice that




< ψ(t) for all t >



. ()

Let {an} ⊂ (,∞) be a sequence such that ψ(an+) ≤ φ(an) for all n ∈N. Therefore,

ψ(an+) ≤ φ(an) =
ψ(an)


for all n ∈N.

Hence, {ψ(an)} → . It follows that there exists n ∈N such that ψ(an) < / for all n ≥ n.
By (), an ≤ / for all n ≥ n. In such a case, an = ψ(an) for all n ≥ n, so {an} → . As a
consequence, (F 

A) holds.
Next, assume that {an}, {bn} ⊂ [,∞) are two sequences converging to the same limit L

and such that L < an and ψ(bn) ≤ φ(an) for all n ∈N. We distinguish two cases.
• Suppose that L = . As  = L < an for all n ∈N, then ψ(an) = an/ and

{ψ(an)} → L/ = /. On the other hand, as / ≤ ψ(t) for all t ∈ (., .) and
{bn} → , then there exists n ∈N such that




≤ ψ(bn) ≤ φ(an) =
ψ(an)


=

an


for all n ≥ n,

which is a contradiction because {an/} → /. Hence, the case L =  is impossible.
• Suppose that L �= . As ψ and φ are continuous at L, then the inequality

ψ(bn) ≤ φ(an) =
ψ(an)


for all n ∈N

implies that ψ(L) ≤ ψ(L)/. Hence, ψ(L) =  and L = .

Let us show that the class FA includes several types of functions.

Lemma . If ψ ,φ : [,∞) → [,∞) are two functions such that ψ is continuous on (,∞),
φ is upper semi-continuous from the right on (,∞), and φ < ψ on (,∞), then (ψ ,φ) ver-
ifies (F

A).
Furthermore, if, additionally, ψ is nondecreasing on (,∞), then (ψ ,φ) ∈FA.

Proof Let {an}, {bn} ⊂ [,∞) be two sequences converging to the same limit L ∈ [,∞) and
such that L < an and ψ(bn) ≤ φ(an) for all n ∈N. We are going to show that L =  reasoning
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by contradiction. Assume that L > . As an > L >  for all n ∈ N, then φ(an) < ψ(an). Hence,

ψ(bn) ≤ φ(an) < ψ(an) for all n ∈N. ()

Since ψ is continuous at L ∈ (,∞), then {ψ(an)} → ψ(L) and {ψ(bn)} → ψ(L). Therefore,
by (), we also have that {φ(an)} → ψ(L). Since {an} → L+, the upper semi-continuity from
the right of φ in (,∞) yields

φ(L) ≥ lim sup
t→L+

φ(t).

As a consequence,

ψ(L) = lim
n→∞φ(an) ≤ lim sup

t→L+
φ(t) ≤ φ(L) < ψ(L),

which is a contradiction. Thus, L = .
Next, assume that ψ is nondecreasing on (,∞) and let {an} ⊂ (,∞) be a sequence

such that ψ(an+) ≤ φ(an) for all n ∈N. Since an > , then

ψ(an+) ≤ φ(an) < ψ(an) for all n ∈N.

By Remark ., an+ < an for all n ∈ N. As {an} is a decreasing sequence of positive real
numbers, then it is convergent. Let L be its limit. We are going to show that L =  reasoning
by contradiction. Assume that L > . Hence, L < an+ < an for all n ∈ N, which means that
{an} → L+. Repeating, point by point, the previous arguments, we deduce that

ψ(L) = lim
n→∞φ(an) ≤ lim sup

t→L+
φ(t) ≤ φ(L) < ψ(L),

which is a contradiction. As a consequence, L =  and {an} → . �

Corollary . If ψ ∈ Falt and φ : [,∞) → [,∞) is an upper semi-continuous from the
right function such that φ() =  and φ(t) < ψ(t) for all t > , then (ψ ,φ) ∈FA.

Corollary . If ψ , θ and ϕ are three functions as in hypothesis  of Theorem ., then
(ψ ,φ = θ – ϕ) ∈FA.

The main result of the present paper is the following one.

Theorem . Let (X, d) be a metric space, let α : X × X → [,∞) be a function, and let
T , g : X → X be two mappings such that the following conditions are fulfilled:

. There exists a subset A ⊆ X such that T(X) ⊆ A ⊆ g(X) and (A, d) is complete;
. α is g-transitive and T is (g,α)-admissible;
. There exists (ψ ,φ) ∈FA such that

α(gx, gy)ψ
(
d(Tx, Ty)

) ≤ φ
(
d(gx, gy)

)
for all x, y ∈ X; ()

. At least, one of the following conditions holds:
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(a) there exists x ∈ X such that α(gx, Tx) ≥  and T is (d, g,α)-right-continuous;
(b) there exists x ∈ X such that α(Tx, gx) ≥  and T is (d, g,α)-left-continuous.

Then T and g have, at least, a coincidence point.

Proof Starting from the point x ∈ X given by hypothesis , condition  guarantees that
there exists a Picard-Jungck sequence of (T , g) based on x, that is, a sequence {xn} ⊆ X
which verifies gxn+ = Txn for all n ∈N. If there exists some n ∈N such that gxn = gxn+,
then gxn = gxn+ = Txn , so xn is a coincidence point of T and g , and the proof is finished.
On the contrary, assume that gxn �= gxn+ for all n ∈ N, that is,

d(gxn, gxn+) >  for all n ∈ N.

We are going to show that {gxn} converges to a point of coincidence of T and g assuming
hypothesis (a), that is, supposing that α(gx, Tx) ≥  and T is (d, g,α)-right-continuous
(the other case is similar). As α(gx, gx) = α(gx, Tx) ≥  and T is (g,α)-admissible, then
α(gx, gx) = α(Tx, Tx) ≥ . By induction, we obtain that

α(gxn, gxn+) ≥  for all n ∈N. ()

Moreover, as α is g-transitive, then, if n < m,

α(gxn, gxn+) ≥ , α(gxn+, gxn+) ≥ , . . . , α(gxm–, gxm) ≥ 

⇒ α(gxn, gxm) ≥ .

As a result,

α(gxn, gxm) ≥  for all n, m ∈N with n < m. ()

Applying the contractivity condition () to x = xn and y = xn+, we obtain that

ψ
(
d(gxn+, gxn+)

) ≤ α(gxn, gxn+)ψ
(
d(gxn+, gxn+)

)

= α(gxn, gxn+)ψ
(
d(Txn, Txn+)

)

≤ φ
(
d(gxn, gxn+)

)

for all n ∈N. Since (ψ ,φ) ∈FA, then {d(gxn, gxn+)} →  by property (F 
A).

Next, we show that {gxn} is a Cauchy sequence in (X, d) reasoning by contradiction.
Assume that {gxn} is not Cauchy. By Lemma ., there exists ε >  and two subsequences
{gxn(k)} and {gxm(k)} of {gxn} such that

k ≤ n(k) < m(k) < n(k + ) and

d(gxn(k), gxm(k)–) ≤ ε < d(gxn(k), gxm(k)) for all k ∈N,

and also

lim
n→∞ d(gxn(k), gxm(k)) = lim

n→∞ d(gxn(k)+, gxm(k)+) = ε.
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As a consequence, there exists k ∈N such that

d(gxn(k), gxm(k)) > ε/ and d(gxn(k)+, gxm(k)+) > ε/ for all k ≥ k.

As n(k) < m(k), by () we have that α(gxn(k), gxm(k)) ≥  for all k ≥ k. Hence, the contrac-
tivity condition () yields

ψ
(
d(gxn(k)+, gxm(k)+)

) ≤ α(gxn(k), gxm(k))ψ
(
d(gxn(k)+, gxm(k)+)

)

= α(gxn(k), gxm(k))ψ
(
d(Txn(k), Txm(k))

) ≤ φ
(
d(gxn(k), gxm(k))

)

for all k ≥ k. Applying condition (F
A) to

{
ak = d(gxn(k), gxm(k))

}
k≥k

,
{

bk = d(gxn(k)+, gxm(k)+)
}

k≥k
and L = ε,

we deduce that ε = L = , which is a contradiction. This contradiction guarantees that
{gxn} is a Cauchy sequence in (X, d). Since {gxn+}n∈N = {Txn}n∈N ⊆ T(X) ⊆ A and (A, d) is
complete, there exists u ∈ A such that {gxn} → u. Moreover, as u ∈ A ⊆ g(X), then there
exists z ∈ X such that gz = u. Taking into account that T is (d, g,α)-right-continuous
and (), it follows that

{gxn} → u = gz,
α(gxn, gxn+) ≥  for all n ∈ N

}

⇒ {Txn} → Tz.

But as Txn = gxn+ for all n ∈N and {gxn} → gz, the uniqueness of the limit of a convergent
sequence in a metric space allows us to conclude that Tz = gz, that is, z is a coincidence
point of T and g . �

Theorem . Under the hypothesis of Theorem ., assume that φ() =  and ψ–({}) =
{}. If x and y are two coincidence points of T and g for which there exists z ∈ X such that
z is, at the same time, (g,α)-comparable to x and to y, then Tx = gx = gy = Ty.

Proof Let x, y ∈ Coin(T , g) be two coincidence points of T and g for which there exists
z ∈ X such that z is, at the same time, (g,α)-comparable to x and to y. Let {zn} be the
Picard-Jungck sequence of (T , g) based on z, that is, gzn+ = Tzn for all n ∈N. We are going
to show that {gzn} → gx and {gzn} → gy so, by the uniqueness of the limit, we will conclude
that gx = gy.

Firstly, we show that {gzn} → gx. Assume, for instance, that α(gz, gx) ≥ . As T is (g,α)-
admissible, then α(gz, gx) = α(Tz, Tx) ≥ . By induction, we deduce that α(gzn, gx) ≥  for
all n ∈N. Using the contractivity condition (),

ψ
(
d(gzn+, gx)

) ≤ α(gzn, gx)ψ
(
d(gzn+, gx)

)
= α(gzn, gx)ψ

(
d(Tzn, Tx)

) ≤ φ
(
d(gzn, gx)

)

for all n ∈N. Next, we distinguish two cases.
• If there exists some n ∈N such that d(gzn , gx) = , then ψ(d(gzn+, gx)) ≤ φ() = ,

so gzn+ = gx. In this case, by induction, we deduce that gzn = gx for all n ≥ n, which
implies that {gzn} → gx.
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• On the contrary case, assume that d(gzn, gx) >  for all n ∈N. In such a case, property
(F 

A) applied to {an = d(gzn, gx)}n∈N ⊂ (,∞) guarantees that {d(gzn, gx)} → , that is,
{gzn} → gx.

If we had supposed that α(gx, gz) ≥ , we would have obtained the same conclusion.
Then, in any case, {gzn} → gx. Changing the roles of x and y, we also have that {gzn} → gy.
Therefore gx = gy. �

Theorem . Under the hypothesis of Theorem ., assume that T and g commute, φ() =
, ψ–({}) = {}, and the following property holds:

(U) For all coincidence points x and y of T and g , there exists z ∈ X such that z is, at the
same time, (g,α)-comparable to x and to y.

Hence T and g have a unique common fixed point ω ∈ X. Furthermore, ω = gx for all
x ∈ Coin(T , g).

Proof Let x ∈ Coin(T , g) be an arbitrary coincidence point of T and g and let ω = gx. As T
and g commute, then Tω = Tgx = gTx = gω, so ω is another coincidence point of T and g .
By hypothesis (U), there exists z ∈ X such that z is, at the same time, (g,α)-comparable to
x and to ω. Hence, Theorem . guarantees that gx = gω, which means that ω = gx = gω.
As a result, ω = gω = Tω, that is, ω is a common fixed point of T and g .

To prove the uniqueness, let u, v ∈ X be two common fixed points of T and g . As u and
v are coincidence points of T and g , hypothesis (U) implies that there exists z ∈ X such
that z is, at the same time, (g,α)-comparable to u and to v. Thus, Theorem . guarantees
that gu = gv, which means that u = gu = gv = v. As a consequence, T and g have a unique
common fixed point, which is ω. �

4 Consequences of the main results
The best advantage of the previous theorems is that they can be particularized in a wide
variety of different results. This section is dedicated to deducing some direct consequences
of them in the context of metric spaces. For instance, in the following statement we use
Lemma ..

Corollary . Let (X, d) be a metric space, let α : X × X → [,∞) be a function, and let
T , g : X → X be two mappings such that the following conditions are fulfilled:

. There exists a subset A ⊆ X such that T(X) ⊆ A ⊆ g(X) and (A, d) is complete;
. α is g-transitive and T is (g,α)-admissible;
. There exist two functions ψ ,φ : [,∞) → [,∞) such that ψ is continuous and

nondecreasing on (,∞), φ is upper semi-continuous from the right on (,∞), φ < ψ

on (,∞), and the following inequality holds:

α(gx, gy)ψ
(
d(Tx, Ty)

) ≤ φ
(
d(gx, gy)

)
for all x, y ∈ X;

. At least, one of the following conditions holds:
(a) there exists x ∈ X such that α(gx, Tx) ≥  and T is (d, g,α)-right-continuous;
(b) there exists x ∈ X such that α(Tx, gx) ≥  and T is (d, g,α)-left-continuous.

Then T and g have, at least, a coincidence point.
Additionally, assume that T and g commute, φ() = , ψ–({}) = {}, and the following

property holds:
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(U) For all coincidence points x and y of T and g , there exists z ∈ X such that z is, at the
same time, (g,α)-comparable to x and to y.

Then T and g have a unique common fixed point ω ∈ X. Furthermore, ω = gx for all
x ∈ Coin(T , g).

Proof It follows from Theorems . and . taking into account that, by Lemma .,
(ψ ,φ) ∈FA. �

In the following result, we use a different contractivity condition involving three control
functions by decomposing φ = θ – ϕ.

Corollary . Let (X, d) be a metric space, let α : X × X → [,∞) be a function, and let
T , g : X → X be two mappings such that the following conditions are fulfilled:

. There exists a subset A ⊆ X such that T(X) ⊆ A ⊆ g(X) and (A, d) is complete;
. α is g-transitive and T is (g,α)-admissible;
. There exist three functions ψ , θ ,ϕ : [,∞) → [,∞) such that ψ is continuous and

nondecreasing on (,∞), θ is upper semi-continuous from the right on (,∞), ϕ is
lower semi-continuous from the right on (,∞), θ – ϕ < ψ on (,∞), and the following
inequality holds:

α(gx, gy)ψ
(
d(Tx, Ty)

) ≤ θ
(
d(gx, gy)

)
– ϕ

(
d(gx, gy)

)
for all x, y ∈ X;

. At least, one of the following conditions holds:
(a) there exists x ∈ X such that α(gx, Tx) ≥  and T is (d, g,α)-right-continuous;
(b) there exists x ∈ X such that α(Tx, gx) ≥  and T is (d, g,α)-left-continuous.

Then T and g have, at least, a coincidence point.
Additionally, assume that T and g commute, θ () = ϕ(), ψ–({}) = {}, and the follow-

ing property holds:
(U) For all coincidence points x and y of T and g , there exists z ∈ X such that z is, at the

same time, (g,α)-comparable to x and to y.
Then T and g have a unique common fixed point ω ∈ X. Furthermore, ω = gx for all

x ∈ Coin(T , g).

Proof We only have to use φ = θ – ϕ in Corollary ., because φ is upper semi-continuous
from the right on (,∞). Moreover, for all t > , we have that

ψ(t) – φ(t) = ψ(t) –
(
θ (t) – ϕ(t)

)
= ψ(t) – θ (t) + ϕ(t) > ,

so φ(t) < ψ(t) for all t > . �

Corollary . Corollary . also holds if we replace the third condition with the following
one:

(′) There exist three functions ψ ∈ Falt and θ ,ϕ : [,∞) → [,∞) such that θ is upper
semi-continuous from the right on (,∞), ϕ is lower semi-continuous from the right on
(,∞), θ – ϕ < ψ on (,∞), and the following inequality holds:

α(gx, gy)ψ
(
d(Tx, Ty)

) ≤ θ
(
d(gx, gy)

)
– ϕ

(
d(gx, gy)

)
for all x, y ∈ X.
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It is also interesting to highlight the case in which θ = ψ .

Corollary . Let (X, d) be a metric space, let α : X × X → [,∞) be a function, and let
T , g : X → X be two mappings such that the following conditions are fulfilled:

. There exists a subset A ⊆ X such that T(X) ⊆ A ⊆ g(X) and (A, d) is complete;
. α is g-transitive and T is (g,α)-admissible;
. There exist two functions ψ ,ϕ : [,∞) → [,∞) such that ψ is continuous and

nondecreasing on (,∞), ϕ is lower semi-continuous from the right on (,∞), ϕ >  on
(,∞), and the following inequality holds:

α(gx, gy)ψ
(
d(Tx, Ty)

) ≤ ψ
(
d(gx, gy)

)
– ϕ

(
d(gx, gy)

)
for all x, y ∈ X;

. At least, one of the following conditions holds:
(a) there exists x ∈ X such that α(gx, Tx) ≥  and T is (d, g,α)-right-continuous;
(b) there exists x ∈ X such that α(Tx, gx) ≥  and T is (d, g,α)-left-continuous.

Then T and g have, at least, a coincidence point.
Additionally, assume that T and g commute, ψ() = ϕ(), ψ–({}) = {}, and the follow-

ing property holds:
(U) For all coincidence points x and y of T and g , there exists z ∈ X such that z is, at the

same time, (g,α)-comparable to x and to y.
Then T and g have a unique common fixed point ω ∈ X. Furthermore, ω = gx for all

x ∈ Coin(T , g).

If we use ψ as the identity mapping on [,∞), we deduce the following statement.

Corollary . Corollary . remains true if we replace the third condition with the follow-
ing one:

(′) There exists a lower semi-continuous from the right on (,∞) function ϕ : [,∞) →
[,∞) such that ϕ >  on (,∞), and the following inequality holds:

α(gx, gy)d(Tx, Ty) ≤ d(gx, gy) – ϕ
(
d(gx, gy)

)
for all x, y ∈ X.

Furthermore, if λ ∈ [, ) and we use ϕ(t) = ( – λ)t for all t ∈ [,∞), then we derive the
following result.

Corollary . Corollary . remains true if we replace the third condition with the follow-
ing one:

(′′) There exists λ ∈ [, ) such that

α(gx, gy)d(Tx, Ty) ≤ λd(gx, gy) for all x, y ∈ X.

In the following result, we use α(x, y) =  for all x, y ∈ X.

Corollary . Let (X, d) be a metric space and let T , g : X → X be two mappings such that
the following conditions are fulfilled:

. There exists a subset A ⊆ X such that T(X) ⊆ A ⊆ g(X) and (A, d) is complete;
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. There exists (ψ ,φ) ∈FA such that

ψ
(
d(Tx, Ty)

) ≤ φ
(
d(gx, gy)

)
for all x, y ∈ X;

. T is (d, g)-continuous.
Then T and g have, at least, a coincidence point.
Additionally, assume that T and g commute, φ() =  and ψ–({}) = {}. Then T and g

have a unique common fixed point ω ∈ X. Furthermore, ω = gx for all x ∈ Coin(T , g).

5 Some coincidence point theorems in metric spaces endowed with a binary
relation

As we pointed out in Introduction, one of the branches that have attracted much attention
in fixed point theory is dedicated to partially ordered metric spaces. However, some prop-
erties of a partial order are not necessary to prove some fixed/coincidence point theorem.
In this section we show some consequences of our main results in the setting of metric
spaces endowed with a binary relation which has only to be transitive on a subset of the
metric space.

Definition . Let � be a binary relation on a set X and let A be a nonempty subset of X.
We say that � is transitive on A if a � c for all a, b, c ∈ A such that a � b and b � c.

Definition . Let (X, d) be a metric space and let � be a binary relation on X. Given
two mappings T , g : X → X and a point z ∈ X, we say that T is (d, g,�)-nondecreasing-
continuous at z is {Txn} → Tz for all sequence {xn} ⊆ X such that {gxn} → gz and gxn �

gxn+ for all n ∈ N. And T is (d, g,�)-nondecreasing-continuous in A ⊆ X if T is (d, g,�)-
nondecreasing-continuous at every point of A.

Similarly, we say that T is (d, g,�)-nonincreasing-continuous at z is {Txn} → Tz for all
sequence {xn} ⊆ X such that {gxn} → gz and gxn+ � gxn for all n ∈ N. And T is (d, g,�)-
nonincreasing-continuous in A ⊆ X if T is (d, g,�)-nonincreasing-continuous at every
point of A.

The following result directly follows from the respective definitions.

Lemma . Let (X, d) be a metric space, let T , g : X → X be two mappings, let� be a binary
relation on X, and let α� : X ×X → [,∞) be the function defined in (). Then the following
properties hold.

. Given z ∈ X , the mapping T is (d, g,�)-nonincreasing-continuous at z if and only if
it is (d, g,α�)-right-continuous at z;

. T is (d, g,�)-nonincreasing-continuous if and only if T is (d, g,α�)-right-continuous;
. T is (g,α�)-admissible if and only if T is (g,�)-nondecreasing;
. The binary relation � is transitive on g(X) if and only if α� is g-transitive.

The main result of this section is the following one.

Theorem . Let (X, d) be a metric space endowed with a binary relation � and let T , g :
X → X be two mappings such that the following conditions are fulfilled:

. There exists a subset A ⊆ X such that T(X) ⊆ A ⊆ g(X) and (A, d) is complete;
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. The binary relation � is transitive on g(X) and T is (g,�)-nondecreasing;
. There exists (ψ ,φ) ∈FA such that

ψ
(
d(Tx, Ty)

) ≤ φ
(
d(gx, gy)

)
for all x, y ∈ X such that gx � gy;

. At least, one of the following conditions holds:
(a) there exists x ∈ X such that gx � Tx and T is

(d, g,�)-nondecreasing-continuous;
(b) there exists x ∈ X such that Tx � gx and T is

(d, g,�)-nonincreasing-continuous.
Then T and g have, at least, a coincidence point.
Additionally, assume that T and g commute, φ() = , ψ–({}) = {}, and the following

property holds:
(U) For all coincidence points x and y of T and g , there exists z ∈ X such that gz is, at the

same time, �-comparable to gx and to gy.
Then T and g have a unique common fixed point ω ∈ X. Furthermore, ω = gx for all

x ∈ Coin(T , g).

Notice that, in the previous result, the binary relation �must only be transitive on g(X).

Proof It follows from Theorems . and . using the function α� : X ×X → [,∞) defined
in () and taking into account the equivalences given in Lemma .. �

We can repeat Corollaries .-. in this new framework. However, among them, we
only highlight the following one.

Corollary . Let (X, d) be a metric space endowed with a binary relation � and let T , g :
X → X be two mappings such that the following conditions are fulfilled:

. There exists a subset A ⊆ X such that T(X) ⊆ A ⊆ g(X) and (A, d) is complete;
. The binary relation � is transitive on g(X) and T is (g,�)-nondecreasing;
. There exist three functions ψ , θ ,ϕ : [,∞) → [,∞) such that ψ is continuous and

nondecreasing on (,∞), θ is upper semi-continuous from the right on (,∞), ϕ is
lower semi-continuous from the right on (,∞), θ – ϕ < ψ on (,∞), and the following
inequality holds:

ψ
(
d(Tx, Ty)

) ≤ θ
(
d(gx, gy)

)
– ϕ

(
d(gx, gy)

)
for all x, y ∈ X such that gx � gy;

. At least, one of the following conditions holds:
(a) there exists x ∈ X such that gx � Tx and T is

(d, g,�)-nondecreasing-continuous;
(b) there exists x ∈ X such that Tx � gx and T is

(d, g,�)-nonincreasing-continuous.
Then T and g have, at least, a coincidence point.
Additionally, assume that T and g commute, θ () = ϕ(), ψ–({}) = {}, and the follow-

ing property holds:
(U) For all coincidence points x and y of T and g , there exists z ∈ X such that gz is, at the

same time, �-comparable to gx and to gy.
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Then T and g have a unique common fixed point ω ∈ X. Furthermore, ω = gx for all
x ∈ Coin(T , g).

Proof It directly follows from Corollary . using the function α� : X × X → [,∞) de-
fined in (). �

Corollary . Theorem . and Corollary . also hold if � is a transitive relation on X,
or a preorder on X, or a partial order on X.

6 Fixed point theorems
If we use g as the identity mapping on X, we obtain the following fixed point theorems in
metric spaces, endowed with a binary relation or not.

Theorem . Let (X, d) be a metric space, let α : X × X → [,∞) be a function and let
T : X → X be a mapping such that the following conditions are fulfilled:

. There exists a subset A ⊆ X such that T(X) ⊆ A and (A, d) is complete;
. α is transitive and T is α-admissible;
. There exists (ψ ,φ) ∈FA such that

α(x, y)ψ
(
d(Tx, Ty)

) ≤ φ
(
d(x, y)

)
for all x, y ∈ X;

. At least, one of the following conditions holds:
(a) there exists x ∈ X such that α(x, Tx) ≥  and T is (d,α)-right-continuous;
(b) there exists x ∈ X such that α(Tx, x) ≥  and T is (d,α)-left-continuous.

Then T has, at least, a fixed point.
Additionally, assume that φ() = , ψ–({}) = {}, and the following property holds:
(U) For all fixed points x and y of T , there exists z ∈ X such that z is, at the same time,

α-comparable to x and to y.
Then T has a unique fixed point.

Proof It follows from Theorems . and . using g as the identity mapping on X. �

Corollary . Let (X, d) be a metric space, let α : X × X → [,∞) be a function and let
T : X → X be a mapping such that the following conditions are fulfilled:

. There exists a subset A ⊆ X such that T(X) ⊆ A and (A, d) is complete;
. α is transitive and T is α-admissible;
. There exist two functions ψ ,φ : [,∞) → [,∞) such that ψ is continuous and

nondecreasing on (,∞), φ is upper semi-continuous from the right on (,∞), φ < ψ

on (,∞), and the following inequality holds:

α(x, y)ψ
(
d(Tx, Ty)

) ≤ φ
(
d(x, y)

)
for all x, y ∈ X;

. At least, one of the following conditions holds:
(a) there exists x ∈ X such that α(x, Tx) ≥  and T is (d,α)-right-continuous;
(b) there exists x ∈ X such that α(Tx, x) ≥  and T is (d,α)-left-continuous.

Then T has, at least, a fixed point.
Additionally, assume that φ() = , ψ–({}) = {}, and the following property holds:
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(U) For all fixed points x and y of T , there exists z ∈ X such that z is, at the same time,
α-comparable to x and to y.

Then T has a unique fixed point.

Proof It follows from Corollary . using g as the identity mapping on X. �

In the context of metric spaces that are not endowed with binary relations, we can also
highlight the following statement, in which we assume that α(x, y) =  for all x, y ∈ X.

Corollary . Let (X, d) be a complete metric space and let T : X → X be a continu-
ous mapping. Assume that there exist an altering distance function ψ , an upper semi-
continuous from the right function θ : [,∞) → [,∞), and a lower semi-continuous from
the right function ϕ : [,∞) → [,∞) such that

ψ
(
d(Tx, Ty)

) ≤ θ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
for all x, y ∈ X,

where θ () = ϕ() =  and ψ(t) – θ (t) + ϕ(t) >  for all t > . Then T has a unique fixed
point.

In the case of metric spaces endowed with binary relations, we have the following results.

Theorem . Let (X, d) be a metric space endowed with binary relation � and let T : X →
X be a mapping such that the following conditions are fulfilled:

. There exists a subset A ⊆ X such that T(X) ⊆ A and (A, d) is complete;
. The binary relation � is transitive and T is �-nondecreasing;
. There exists (ψ ,φ) ∈FA such that

ψ
(
d(Tx, Ty)

) ≤ φ
(
d(x, y)

)
for all x, y ∈ X such that x � y;

. At least, one of the following conditions holds:
(a) there exists x ∈ X such that x � Tx and T is (d,�)-nondecreasing-continuous;
(b) there exists x ∈ X such that Tx � x and T is (d,�)-nonincreasing-continuous.

Then T has, at least, a fixed point.
Additionally, assume that φ() = , ψ–({}) = {}, and the following property holds:
(U) For all fixed points x and y of T , there exists z ∈ X such that z is, at the same time,
�-comparable to x and to y.

Then T has a unique fixed point.

Proof It follows from Theorem . using g as the identity mapping on X. �

Corollary . Let (X, d) be a metric space endowed with a binary relation � and let T :
X → X be a mapping such that the following conditions are fulfilled:

. There exists a subset A ⊆ X such that T(X) ⊆ A and (A, d) is complete;
. The binary relation � is transitive and T is �-nondecreasing;
. There exist three functions ψ , θ ,ϕ : [,∞) → [,∞) such that ψ is continuous and

nondecreasing on (,∞), θ is upper semi-continuous from the right on (,∞), ϕ is
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lower semi-continuous from the right on (,∞), θ – ϕ < ψ on (,∞), and the following
inequality holds:

ψ
(
d(Tx, Ty)

) ≤ θ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
for all x, y ∈ X such that x � y;

. At least, one of the following conditions holds:
(a) there exists x ∈ X such that x � Tx and T is (d,�)-nondecreasing-continuous;
(b) there exists x ∈ X such that Tx � x and T is (d,�)-nonincreasing-continuous.

Then T has, at least, a fixed point.
Additionally, assume that θ () = ϕ(), ψ–({}) = {}, and the following property holds:
(U) For all fixed points x and y of T , there exists z ∈ X such that z is, at the same time,
�-comparable to x and to y.

Then T has a unique fixed point.

Proof It follows from Corollary . using g as the identity mapping on X. �

7 A unified version of Ran and Reurings’ theorem and Nieto and
Rodríguez-López’s theorem

After the appearance of Ran and Reurings’ theorem [] and Nieto and Rodríguez-López’s
theorem [], many fixed point results were introduced in the ambient of metric spaces
endowed with partial orders (see, for instance, [] in which the authors introduced a close
contractivity condition in L-spaces). Since them, many coincidence/fixed point theorems
have been proved distinguishing between either the involved mappings are continuous or
the ambient space is regular. In this section, we show a unified version of both theorems
using a unique condition. The following one is the particularization of Definition . to
the case in which g is the identity mapping on X and � is an arbitrary binary relation on X.

Definition . Given a metric space (X, d) endowed with a binary relation �, a map-
ping T : X → X is (d,�)-nondecreasing-continuous at z ∈ X if we have that {Txn} con-
verges to Tz for all �-nondecreasing sequence {xn} convergent to z. And T is (d,�)-
nondecreasing-continuous if it is (d,�)-nondecreasing-continuous at every point of X.

Similarly, a mapping T : X → X is (d,�)-nonincreasing-continuous at z ∈ X if we have
that {Txn} converges to Tz for all �-nonincreasing sequence {xn} convergent to z. And T
is (d,�)-nonincreasing-continuous if it is (d,�)-nonincreasing-continuous at every point
of X.

It is obvious that every continuous mapping is also nondecreasing-continuous, but the
converse is false.

Example . If R is endowed with the Euclidean metric (de(x, y) = |x – y| for all x, y ∈ R)
and its usual partial order ≤, then the mapping

Tx =

{
 if x ≤ ,
 if x > ,

is (de,≤)-nondecreasing-continuous on R, but it is not continuous at x = .
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The following one is a particularization of Corollary . using altering distance func-
tions.

Theorem . Let (X, d,�) be a metric space endowed with a transitive binary relation �
and let T : X → X be a mapping such that the following conditions are fulfilled:

. (X, d) (or (T(X), d)) is complete;
. T is nondecreasing (w.r.t. �);
. There exist an altering distance function ψ and an upper semi-continuous from the

right function φ : [,∞) → [,∞) such that

ψ
(
d(Tx, Ty)

) ≤ φ
(
d(x, y)

)
for all x, y ∈ X such that x � y,

where φ() =  and φ(t) < ψ(t) for all t > ;
. At least, one of the following conditions holds:

(a) there exists x ∈ X such that x � Tx and T is (d,�)-nondecreasing-continuous;
(b) there exists x ∈ X such that x � Tx and T is (d,�)-nonincreasing-continuous;

Then T has, at least, a fixed point.
Furthermore, assume that the following property holds:
(U) For each x, y ∈ Fix(T), there exists z ∈ X which is �-comparable to x and y.
Then T has a unique fixed point.

The previous result improves Theorem . in three senses: () the binary relation � does
not have to be a partial order, but a transitive binary relation; () φ has only to be upper
semi-continuous from the right; () the mapping T must only be (d,�)-nondecreasing-
continuous, which is a condition that unifies and extends hypotheses (a) and (b) of
Theorem ..

Theorem . Theorem . also holds if we replace assumption  with the following one:
. There exist an altering distance function ψ , an upper semi-continuous from the right

function θ : [,∞) → [,∞), and a lower semi-continuous from the right function
ϕ : [,∞) → [,∞) such that

ψ
(
d(Tx, Ty)

) ≤ θ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
for all x � y, ()

where θ () = ϕ() =  and ψ(t) – θ (t) + ϕ(t) >  for all t > .

Corollary . Theorem . also holds if we replace assumption  with the following one:

(′) There exists x ∈ X such that x � Tx and T is continuous.

Proof If follows from the fact that if T is continuous, then it is both (d,�)-nondecreasing-
continuous and (d,�)-nonincreasing-continuous. �

Corollary . Theorem . also holds if we replace assumption  with the following one:

(′′) There exists x ∈ X such that x � Tx and (X, d,�) is regular.

Proof Following, point by point, the arguments of the proof of Theorem ., we obtain
that the Picard sequence {xn+ = Txn} is Cauchy and also it is �-monotone. As (X, d) (or
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(T(X), d)) is complete, there exists z ∈ X such that {xn} → z. Since (X, d,�) is regular, then

xn � z for all n ∈N or xn � z for all n ∈N.

In any case, we can use the contractivity condition (), which yields

ψ
(
d(xn+, Tz)

)
= ψ

(
d(Txn, Tz)

) ≤ θ
(
d(xn, z)

)
– ϕ

(
d(zn, z)

)
()

for all n ∈ N. Assume, for n arbitrarily large, that xn �= z. If d(xn+, Tz) > d(xn, z) for some
(large) n, then ψ(d(xn+, Tz)) ≥ ψ(d(xn, z)) > θ (d(xn, z)) –ϕ(d(xn, z)), which contradicts ().
As a result, we have d(xn+, Tz) ≤ d(xn, z) for n arbitrarily large. On taking limit as n → ∞,
we conclude that {d(xn+, Tz)} → , that is, {xn+} → Tz. By the uniqueness of the limit,
Tz = z and z is a fixed point of T . �

The following results are well known in the field of fixed point theory.

Corollary . (Ran and Reurings []) Let (X,�) be an ordered set endowed with a metric
d and T : X → X be a given mapping. Suppose that the following conditions hold:

(a) (X, d) is complete;
(b) T is nondecreasing (w.r.t. �);
(c) T is continuous;
(d) There exists x ∈ X such that x � Tx;
(e) There exists a constant λ ∈ (, ) such that d(Tx, Ty) ≤ λd(x, y) for all x, y ∈ X with

x � y.
Then T has a fixed point. Moreover, if for all (x, y) ∈ X there exists z ∈ X such that x � z

and y � z, we obtain uniqueness of the fixed point.

Proof It follows from Corollary .. �

Corollary . (Nieto and Rodríguez-López []) Let (X,�) be an ordered set endowed
with a metric d and T : X → X be a given mapping. Suppose that the following conditions
hold:

(a) (X, d) is complete;
(b) T is nondecreasing (w.r.t. �);
(c) If a nondecreasing sequence {xm} in X converges to some point x ∈ X , then xm � x for

all m;
(d) There exists x ∈ X such that x � Tx;
(e) There exists a constant λ ∈ (, ) such that d(Tx, Ty) ≤ λd(x, y) for all x, y ∈ X with

x � y.
Then T has a fixed point. Moreover, if for all (x, y) ∈ X there exists z ∈ X such that x � z

and y � z, we obtain uniqueness of the fixed point.

Proof It follows from Corollary .. �

Finally, we also prove that the Shaddad et al. theorem is an easy consequence of our
main results.
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Corollary . Theorem . immediately follows from Theorem ..

Proof It is only necessary to apply Corollaries . and . (which are immediate conse-
quences of Theorem .), which cover cases (a) and (b) in Theorem .. �

Finally, we point out that the present techniques can be easily generalized to guarantee
the existence and uniqueness of multidimensional coincidence/fixed points following the
techniques described in [–].
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