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Abstract
We study the existence of fixed points for multivalued mappings f : S → S, where
(S, F, T ) is a complete Menger PM-space with a t-norm of H-type T and S is endowed
with a directed graph G = (V(G), E(G)) such that V(G) = S and � = {(x, x) : x ∈ S} ⊂ E(G).
The obtained results recover several existing fixed point theorems from the literature.
As applications, we obtain a convergence result of successive approximations for
certain nonlinear operators defined on a complete metric space. This last result allows
us to establish a Kelisky-Rivlin type result for a class of modified q-Bernstein operators
on the space C([0, 1]).
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1 Introduction
In recent years, many results related to metric fixed point theory in partially ordered sets
have appeared. The first work in this direction was the  paper of Ran and Reurings
[], where they established a fixed point result, which can be considered as a combina-
tion of two fundamental fixed point theorems: the Banach contraction principle and the
Knaster-Tarski fixed point theorem. More precisely, Ran and Reurings considered a class
of single-valued mappings f : X → X, where (X, d) is a complete metric space endowed
with a certain partial order �. The considered mappings are supposed to be continuous,
monotone with respect to the partial order �, and satisfying a Banach contraction inequal-
ity for every pair (x, y) ∈ X × X such that x � y. If for some x ∈ X we have x � fx, they
proved that the Picard sequence {f nx} converges to a fixed point of f . By combining this
result with the Schauder fixed point theorem, Ran and Reurings obtained some existence
and uniqueness results of positive definite solutions to some nonlinear matrix equations.
Nieto and Rodríguez-López [] extended the result of Ran and Reurings to single-valued
mappings that are not necessarily continuous. Under an additional assumption, that is,
xn � x for all n, whenever {xn} is an increasing sequence with respect to the partial order
� and convergent to x, they proved that f has at least one fixed point. For other related
results, we refer to [–] and references therein.

In [], Jachymski presented an interesting concept in fixed point theory with some gen-
eral structures by using the context of metric spaces endowed with a graph. He proved
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that it is possible to unify a large class of fixed point theorems including the previous cited
results by considering single-valued mappings satisfying a Banach contraction inequality
for every pair (x, y) ∈ X × X such that (x, y) is an edge of a certain directed graph G. He
also presented a new proof of the Kelisky and Rivlin theorem [] concerning Bernstein
operators using a fixed point theorem for linear operators on a Banach space following
from a fixed point theorem in a metric space with a graph.

Very recently, Dinevari and Frigon [] extended some fixed point results of Jachymski
[] to multivalued mappings. They introduced the notions of multivalued G-contractions
and weak G-contractions for which they established fixed point theorems. They also pre-
sented a comparison between fixed point sets obtained from Picard iterations starting
from different points. For other related works, we refer to [, ] and references therein.

Recently, Kamran et al. [] extended the results of Jachymski [] to the setting of
Menger probabilistic metric spaces. They introduced the class of probabilistic G-contrac-
tion single-valued mappings and studied the existence of fixed points for such mappings.

Our aim in this paper is to study the existence of fixed points for nonempty multivalued
mappings defined on a complete Menger probabilistic metric space (S, F , T), where T is a
t-norm of H-type and S is a set endowed with a directed graph G.

The paper is organized as follows. In Section , we recall some basic concepts on Menger
probabilistic metric spaces and fix some notations. In Section , we introduce the class
of multivalued G-contractions, and we study the existence of fixed points for such map-
pings. Some interesting consequences are derived from our main result in this section.
In particular, we obtain existence results of fixed points for nonempty closed multivalued
G-contractions, a probabilistic version of the fixed point theorem for (ε,λ)-uniformly lo-
cally contractive multivalued maps due to Nadler, and many other results including also
the case of single-valued mappings. In Section , we introduce the class of multivalued
weak G-contractions, for which we study the existence of fixed points. Finally, in Sec-
tion , we present an application to modified q-Bernstein polynomials. More precisely,
we obtain a Kelisky-Rivlin type result for a class of modified q-Bernstein operators on the
space C([, ]).

2 Preliminaries and notations
The introduction of the general concept of statistical metric spaces is due to Karl Menger
(), who dealt with probabilistic geometry. The new theory of fundamental probabilis-
tic structures was developed later on by many authors. In this section, we start by recalling
some basic concepts from Menger probabilistic metric spaces. For more details on such
spaces, we refer to [–].

A mapping F : R → [, ] is called a distribution function if it satisfies the following
conditions:

(d) F is nondecreasing;
(d) F is left continuous;
(d) inft∈R F(t) =  and supt∈R F(t) = .

If, in addition, we have
(d) F() = ,

then F is called a distance distribution function.
Let D+ be the set defined by

D+ =
{

F : R → [, ] : F is distance distribution function, lim
t→+∞ F(t) = 

}
.
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The element δ ∈D+ defined by

δ(t) =

{
 if t ≤ ,
 if t > ,

is the Dirac distribution function.

Definition . A mapping T : [, ]× [, ] → [, ] is said to be a triangular norm (briefly
t-norm) if for every x, y, z ∈ [, ], we have

(t) T(x, y) = T(y, x);
(t) T(x, T(y, z)) = T(T(x, y), z);
(t) T(x, y) ≤ T(x, z) if y ≤ z;
(t) T(x, ) = x.

The commutativity (t), the monotonicity (t), and the boundary condition (t) imply
that for each t-norm T and for each x ∈ [, ], we have the following boundary conditions:

T(x, ) = T(, x) = x

and

T(x, ) = T(, x) = .

Typical examples of t-norms are TM(x, y) = min{a, b} and TP(x, y) = xy.

Definition . A t-norm T is said to be of H-type if the family of functions {Tn}n∈N is
equicontinuous at t = , where Tn : [, ] → [, ] is recursively defined by

T (t) = T(t, t), Tn+(t) = T
(
Tn(t), t

)
; t ∈ [, ], n = , , . . . .

A trivial example of a t-norm of H-type is TM = min, but there exist t-norms of H-type
with T �= TM (see, e.g., []).

Definition . A Menger probabilistic metric space (briefly, Menger PM-space) is a triple
(S, F , T), where S is a nonempty set, F : S × S → D+, and T : [, ] × [, ] → [, ] is a
t-norm such that for every x, y, z ∈ S, we have

(PM) F(x, y) = δ ⇔ x = y;
(PM) F(x, y) = F(y, x);
(PM) F(x, z)(t + s) ≥ T(F(x, y)(t), F(y, z)(s)) for all t, s ≥ .

Let (S, F , T) be a Menger PM-space. For ε >  and δ ∈ (, ], the (ε, δ)-neighborhood of
x ∈ S is denoted by Nx(ε, δ) and is defined by

Nx(ε, δ) =
{

y ∈ S : F(x, y)(ε) >  – δ
}

.

Furthermore, if sup<a< T(a, a) = , then the family of neighborhoods

{
Nx(ε, δ) : x ∈ S, ε > , δ ∈ (, ]

}

determines a Hausdorff topology for S.



Argoubi et al. Fixed Point Theory and Applications  (2015) 2015:113 Page 4 of 19

Definition . Let (S, F , T) be a Menger PM-space.
(i) A sequence {xn} ⊂ S converges to an element x ∈ S if for every ε >  and δ ∈ (, ],

there exists N ∈N such that xn ∈ Nx(ε, δ) for every n ≥ N .
(ii) A sequence {xn} ⊂ S is a Cauchy sequence if for every ε >  and δ ∈ (, ], there

exists N ∈N such that F(xn, xm)(ε) >  – λ, whenever n, m ≥ N .
(iii) A Menger PM-space is complete if every Cauchy sequence in S converges to a

point in S.
(iv) A subset A of S is closed if every convergent sequence in A converges to an element

of A.

Let (S, F , T) be a Menger PM-space. For all λ ∈ (, ], we define the mapping dλ : S×S →
[,∞) by

dλ(x, y) = inf
{

t >  : F(x, y)(t) >  – λ
}

for all x, y ∈ S.

We denote

D(x, y) = sup
{

dλ(x, y) : λ ∈ (, ]
}

for all x, y ∈ S.

The following lemma (see [, ]) will be useful later.

Lemma . Let (S, F , T) be a Menger PM-space. For every λ ∈ (, ], we have
(i) dλ(x, y) < t if and only if F(x, y)(t) >  – λ;

(ii) dλ(x, y) =  for all λ ∈ (, ] if and only if x = y;
(iii) dλ(x, y) = dλ(y, x) for all x, y ∈ S;
(iv) if T is of H-type, then for each λ ∈ (, ], there exists μ ∈ (,λ] such that for each

m ∈N,

dλ(x, xm) ≤
m∑

i=

dμ(xi–, xi) for all x, x, . . . , xm ∈ S.

Let (S, F , T) be a Menger PM-space. Let G be a directed graph. The set of its vertices and
the set of its edges are denoted by V (G) and E(G), respectively. We assume that S = V (G),
� the diagonal in X × X is contained in E(G), and G has no parallel edges. We identify G
with the pair (V (G), E(G)).

For N ∈N, we say that (xi)N
i= is an N-directed path from x ∈ S to y ∈ S if

x = x, xN = y,
(
xi–, xi) ∈ E(G) and D

(
xi–, xi) < ∞ for all i = , , . . . , N .

For x ∈ S and N ∈N, we denote

[x]N
G = {y ∈ S : there is an N-directed path from x to y}

and

[x]G =
⋃

[x]N
G .
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Let x ∈ S, N ∈N, y ∈ [x]N
G and z ∈ [x]G. We define

pN (x, y) = inf

{ N∑
i=

D
(
xi–, xi) :

(
xi)N

i= is an N-directed path from x to y

}

and

p(x, z) = inf

{ N∑
i=

D
(
xi–, xi) :

(
xi)N

i= is an N-directed path from x to z

for some N ∈ N

}
.

We have the following properties.

Lemma . Let x ∈ S, N ∈N, y ∈ [x]N
G , and z ∈ [x]G. Then

(i) pN (x, y) ≥ PN+m(x, y) for every m, N ∈N;
(ii) p(x, z) = inf{pk(x, z) : k ∈N, z ∈ [x]k

G}.

Proof Let m, N ∈N. Let (xi)N
i= be an N-directed path from x to y, that is,

x = x, xN = y,
(
xi–, xi) ∈ E(G) and D

(
xi–, xi) < ∞ for all i = , , . . . , N .

Let

xN+i = y for all i = , , . . . , m.

Since � ⊂ E(G) and D(y, y) = , then (xi)N+m
i= is an N + m-directed path from x to y. More-

over, we have

N∑
i=

D
(
xi–, xi) =

N+m∑
i=

D
(
xi–, xi) ≥ PN+m(x, y).

Thus we proved (i). Now, let k ∈ N such that z ∈ [x]G
k . For every (xi)k

i=, a k-directed path
from x to z, we have

k∑
i=

D
(
xi–, xi) ≥ p(x, z).

Then pk(x, z) ≥ p(x, z). This implies that

p(x, z) ≤ inf
{

pk(x, z) : k ∈N, z ∈ [x]k
G
}

.

Finally, let N ∈N and (xi)N
i= be an N-directed path from x to z. We have

k∑
i=

D
(
xi–, xi) ≥ pN (x, z) ≥ inf

{
pk(x, z) : k ∈N, z ∈ [x]k

G
}

.
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Then we deduce that

p(x, z) ≥ inf
{

pk(x, z) : k ∈N, z ∈ [x]k
G
}

,

which yields (ii). �

3 The study of fixed points for multivalued G-contractions
In this section, we establish fixed point results for a multivalued contraction with respect
to the graph G in a Menger PM-space.

Definition . Let (S, F , T) be a Menger PM-space and f : S → S be a multivalued map-
ping with nonempty values. We say that f is a multivalued G-contraction if there exists
κ ∈ (, ) such that

(x, y) ∈ E(G), u ∈ fx �⇒ ∃v ∈ fy: (u, v) ∈ E(G), F(u, v)(κt) ≥ F(x, y)(t),∀t > .

Lemma . Let (S, F , T) be a Menger PM-space and f : S → S be a multivalued G-con-
traction with respect to some κ ∈ (, ). We have

(x, y) ∈ E(G), u ∈ fx �⇒ ∃v ∈ fy: (u, v) ∈ E(G), dλ(u, v) ≤ κdλ(x, y),∀λ ∈ (, ].

Proof Let (x, y) ∈ E(G) and u ∈ fx. Since f is a multivalued G-contraction with respect to
κ ∈ (, ), there exists v ∈ (, ) such that

F(u, v)(κt) ≥ F(x, y)(t) for all t > .

Let λ ∈ (, ] be fixed. Let s >  be such that F(x, y)(s) >  – λ. Then we have

F(u, v)(κs) >  – λ,

which implies that

s ≥ κ–dλ(u, v).

By the definition of the inf, we get the desired result. �

Lemma . Let (S, F , T) be a Menger PM-space with T a t-norm of H-type and f : S → S
be a multivalued G-contraction. Let ε >  and N ∈ N. Then, for every x ∈ S and y ∈ [x]N

G ,
one has

∀x ∈ fx,∃y ∈ fy ∩ [x]N
G : pN (x, y) ≤ κ

(
pN (x, y) + ε

)
(.)

and inductively, for all k = , , . . . ,

∀xk+ ∈ fxk ,∃yk+ ∈ fyk ∩ [xk+]N
G : pN (xk+, yk+) ≤ κk+(pN (x, y) + ε

)
. (.)
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Proof Let ε >  and (xi)N
i= be an N-directed path from x ∈ S to y ∈ [x]N

G such that

N∑
i=

D
(
xi–, xi) < pN (x, y) + ε.

Let x ∈ fx. Since f is a multivalued G-contraction, by Lemma ., there exists x
 ∈ fx such

that

(
x, x


) ∈ E(G) and D

(
x, x


) ≤ κD

(
x, x) < ∞.

Again, there exists x
 ∈ fx such that

(
x

, x

) ∈ E(G) and D

(
x

, x

) ≤ κD

(
x, x) < ∞.

Recursively, for i = , , . . . , N , there exists xi
 ∈ fxi such that

(
xi–

 , xi

) ∈ E(G) and D

(
xi–

 , xi

) ≤ κD

(
xi–, xi) < ∞.

Now, if we take y = xN
 , we get y ∈ fy ∩ [x]N

G and

pN (x, y) ≤
N∑

i=

D
(
xi–

 , xi

)

≤ κ

N∑
i=

D
(
xi–, xi)

≤ κ
(
pN (x, y) + ε

)
.

Thus (.) is proved.
Let x ∈ fx. As previously, there exists y ∈ fy ∩ [x]N

G such that

pN (x, y) ≤ κ

N∑
i=

D
(
xi–

 , xi

) ≤ κ(pN (x, y) + ε

)
.

Continuing this process, by induction, we obtain (.). �

The following concepts are adaptations of those introduced in [] to the case of Menger
PM-spaces.

Definition . Let (S, F , T) be a Menger PM-space. Let f : S → S be a multivalued map-
ping with nonempty values.

(i) Let N ∈N. We say that a sequence {xn} ⊂ S is a GN -Picard trajectory from x if
xn ∈ [xn–]N

G ∩ fxn– for all n ≥ . We denote by TN (f , G, x) the set of all such
GN -Picard trajectories from x.

(ii) We say that a sequence {xn} ⊂ S is a G-Picard trajectory from x if
xn ∈ [xn–]G ∩ fxn– for all n ≥ . We denote by T (f , G, x) the set of all such
G-Picard trajectories from x.
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Definition . Let (S, F , T) be a Menger PM-space. Let f : S → S be a multivalued map-
ping with nonempty values.

(i) Let N ∈N. We say that f is GN -Picard continuous from x ∈ S if the limit of any
convergent sequence {xn} ∈ TN (f , G, x) is a fixed point of T .

(ii) We say that f is G-Picard continuous from x ∈ S if the limit of any convergent
sequence {xn} ∈ T (f , G, x) is a fixed point of T .

Now, we are able to establish our first main result.

Theorem . Let (S, F , T) be a complete Menger PM-space with T a t-norm of H-type and
f : S → S be a multivalued G-contraction. Suppose that for some N ∈N, we have

(i) there exists x ∈ S such that [x]N
G ∩ fx �= ∅;

(ii) f is GN -Picard continuous from x.
Then there exists a sequence {xn} ∈ TN (f , G, x) converging to x∗ ∈ S, a fixed point of f .

Proof Since [x]N
G ∩ fx �= , we can take an element x ∈ [x]N

G ∩ fx. Let ε > . By
Lemma .(iv) and Lemma ., there exists x ∈ fx ∩ [x]N

G such that

D(x, x) ≤ pN (x, x) ≤ κ
(
pN (x, x) + ε

)
.

Again, since x ∈ [x]N
G ∩ fx, there exists x ∈ [x]N

G ∩ fx such that

D(x, x) ≤ pN (x, x) ≤ κ(pN (x, x) + ε
)
.

More generally, for n ≥ , there exists xn+ ∈ [xn]N
G ∩ fxn such that

D(xn, xn+) ≤ pN (xn, xn+) ≤ κn(pN (x, x) + ε
)
.

Then {xn} ∈ TN (f , G, x) and for m ≥ ,

D(xn, xn+m) ≤
n+m–∑

i=n

D(xi, xi+)

≤
n+m–∑

i=n

κ i(PN (x, x) + ε
)

≤ kn

 – k
(
PN (x, x) + ε

)
.

Let us prove now that {xn} is a Cauchy sequence in the Menger PM-space (S, F , T). Let
t >  and δ ∈ (, ]. From the above inequality, since κ ∈ (, ), there exists some p ∈ N

such that

dδ(xn, xn+m) ≤ D(xn, xn+m) < t for all n, m ≥ p.

Using Lemma .(i), we obtain

F(xn, xn+m)(t) >  – δ for all n, m ≥ p,
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which proves that {xn} is Cauchy. Since (S, F , T) is complete and f is GN -Picard continuous
from x, there exists some x∗ ∈ S such that {xn} converges to x∗, a fixed point of f . �

Suppose now that f : S → S is a multivalued G-contraction with closed values, and let us
consider the assumption (i) of Theorem . with the following assumption: (ii)′ If {xn} ⊂ S
is a sequence in TN (f , G, x) converging to some x ∈ S, then there exists a subsequence
{xnk } of {xn} such that (xnk , x) ∈ E(G) for every k ∈N.

From Theorem ., we know that there exists {xn} ∈ TN (f , G, x) that converges to some
x∗ ∈ S. At first, observe that D(xn, x∗) → , as n → ∞. In fact, since {xn} converges to x∗

with respect to the Menger PM-space (S, F , T) for ε >  and δ ∈ (, ], there exists some
p ∈ N such that F(xn, x∗)(ε) >  – δ for every n ≥ p. By Lemma .(i), we have dδ(xn, x∗) < ε

for every n ≥ p. Then we have D(xn, x∗) ≤ ε for every n ≥ p. This proves that D(xn, x∗) → ,
as n → ∞. Now, since f is a multivalued G-contraction, by Lemma ., for every k ∈ N,
there exists ynk + ∈ fx∗ such that (xnk +, ynk +) ∈ E(G) and D(xnk+, ynk +) ≤ κD(xnk , x∗). By
using the triangular inequality and the above expression, for all k ∈ N, we have

D
(
ynk +, x∗) ≤ D(ynk +, xnk +) + D

(
xnk +, x∗)

≤ κD
(
xnk , x∗) + D

(
xnk +, x∗).

Letting k → ∞ in the above inequality, we obtain D(ynk +, x∗) → , as k → ∞. As previ-
ously, by Lemma .(i), we have {ynk +} converges to x∗ with respect to the Menger PM-
space (S, F , T). Since fx∗ is closed, we get x∗ ∈ fx∗, that is, x∗ is a fixed point of f . Thus we
proved the following result.

Corollary . Let (S, F , T) be a complete Menger PM-space with T a t-norm of H-type
and f : S → S be a multivalued G-contraction with nonempty closed values. Suppose that
for some N ∈N, we have

(i) there exists x ∈ S such that [x]N
G ∩ fx �= ∅;

(ii)′ if {xn} ⊂ S is a sequence in TN (f , G, x) converging to some x ∈ S, then there exists a
subsequence {xnk } of {xn} such that (xnk , x) ∈ E(G) for every k ∈N.

Then there exists a sequence {xn} ∈ TN (f , G, x) converging to x∗ ∈ S, a fixed point of f .

Remark . Condition (ii)′ in Corollary . can be replaced by: if {xn} ⊂ S is a sequence
in TN (f , G, x) converging to some x ∈ S, then there exists a subsequence {xnk } of {xn} such
that (xnk , x) ∈ E(G) for every k large enough.

Taking N =  and G = S × S in Corollary ., we obtain the following Nadler fixed point
theorem in Menger PM-spaces.

Corollary . Let (S, F , T) be a complete Menger PM-space with T a t-norm of H-type
and f : S → S be a multivalued mapping with nonempty closed values. Suppose that

(i) there exists (x, x) ∈ S × S such that x ∈ fx and D(x, x) < ∞;
(ii) there exists κ ∈ (, ) such that

(x, y) ∈ S × S, u ∈ fx �⇒ ∃v ∈ fy: F(u, v)(κt) ≥ F(x, y)(t),∀t > .

Then f has a fixed point.
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Corollary . Let (S, F , T) be a complete Menger PM-space with T a t-norm of H-type
and f : S → S be a multivalued G-contraction. Suppose that

(i) there exists x ∈ S such that [x]G ∩ fx �= ∅;
(ii) f is G-Picard continuous from x.

Then there exist N ∈N and a sequence {xn} ∈ TN (f , G, x) converging to x∗ ∈ S, a fixed point
of f .

Proof From (i), there exists some N ∈ N such that [x]N
G ∩ fx �= ∅. Since from (ii) f is

G-Picard continuous from x, then it is GN -Picard continuous from x. Now, the result
follows from Theorem .. �

Similarly, from Corollary ., we have the following result.

Corollary . Let (S, F , T) be a complete Menger PM-space with T a t-norm of H-type
and f : S → S be a multivalued G-contraction with nonempty closed values. Suppose that

(i) there exists x ∈ S such that [x]G ∩ fx �= ∅;
(ii) if {xn} ⊂ S is a sequence in T (f , G, x) converging to some x ∈ S, then there exists a

subsequence {xnk } of {xn} such that (xnk , x) ∈ E(G) for every k ∈N.
Then there exist N ∈N and a sequence {xn} ∈ TN (f , G, x) converging to x∗ ∈ S, a fixed point
of f .

From Corollary ., we can obtain a probabilistic version of the fixed point theorem
for (ε,λ)-uniformly locally contractive multivalued maps due to Nadler []. At first, let
us introduce some concepts.

Definition . Let (S, F , T) be a Menger PM-space, ε >  and x, y ∈ S. We say that {x, y}
is ε-chainable in S if there exists a finite set of points {x = x, x, . . . , xp–, xp = y} ⊂ S (p ≥ )
such that for all λ ∈ (, ],

F(xi–, xi)(ε) >  – λ for all i = , , . . . , p.

Definition . Let (S, F , T) be a Menger PM-space, ε > , κ ∈ (, ) and f : S → S be a
multivalued mapping. We say that f is (ε,κ)-uniformly locally contractive if

(x, y) ∈ S × S, u ∈ fx, F(x, y)(ε) >  – λ,∀λ ∈ (, ]

�⇒ ∃v ∈ fy: F(u, v)(κt) ≥ F(x, y)(t),∀t > .

We have the following result.

Corollary . Let (S, F , T) be a complete Menger PM-space with T a t-norm of H-type
and f : S → S be a multivalued mapping with closed nonempty values. Assume that there
exist ε >  and κ ∈ (, ) such that

(i) f is (ε,κ)-uniformly locally contractive;
(ii) there exist x ∈ S and x̃ ∈ fx such that {x, x̃} is ε-chainable in S.

Then f has a fixed point.

Proof Let us consider the graph G with

E(G) =
{

(x, y) ∈ S × S : F(x, y)(ε) >  – λ,∀λ ∈ (, ]
}

.
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From (i), f is a multivalued G-contraction with respect to the graph G. From (ii), we have
x̃ ∈ fx ∩ [x]G. Then the result follows from Corollary .. �

Let us consider now the case of a single-valued mapping. From Definition ., a single-
valued mapping f : S → S is a G-contraction if there exists κ ∈ (, ) such that

(x, y) ∈ E(G) �⇒ (fx, fy) ∈ E(G), F(fx, fy)(κt) ≥ F(x, y)(t),∀t > .

In this case, for a given N ∈ N and a given x ∈ S, the set of GN -Picard trajectories from
x is given by

TN (f , G, x) =
{{xn}n∈N : xn = f nx

}
.

From Theorem ., we obtain the following result concerning single-valued mappings.

Corollary . Let (S, F , T) be a complete Menger PM-space with T a t-norm of H-type
and f : S → S be a single-valued G-contraction. Suppose that there exists x ∈ S such that
fx ∈ [x]G. Suppose that one of the following conditions is satisfied:

(i) if {f nx} converges to some x ∈ S, then x = fx;
(ii) if {f nx} converges to some x ∈ S, then there exists a subsequence {f nk x} of {f nx}

such that (f nk x, x) ∈ E(G) for every k ∈N.
Then f has a fixed point.

From Corollary ., we can obtain a probabilistic version of Kirk, Srinivasan and
Veeramani’s fixed point theorem for cyclic mappings [].

Corollary . Let (S, F , T) be a complete Menger PM-space with T a t-norm of H-type.
Let (Ai)

p
i= be a family of nonempty closed subsets. Suppose that f :

⋃p
i= Ai → ⋃p

i= Ai is a
single-valued mapping satisfying the following conditions:

(i) f (Ai) ⊆ Ai+ for every i = , , . . . , p, with Ap+ = A;
(ii) there exists κ ∈ (, ) such that for all i = , , . . . , p,

(x, y) ∈ Ai × Ai+ �⇒ F(fx, fy)(κt) ≥ F(x, y)(t),∀t > ;

(iii) there exists x ∈ A such that D(x, fx) < ∞.
Then f has a fixed point.

Proof Let G be the graph such that

E(G) =
p⋃

i=

Ai ×p
i= Ai+.

From conditions (i) and (iii), we have (x, fx) ∈ E(G) and D(x, fx) < ∞. This implies that
fx ∈ [x]

G ⊂ [x]G. Conditions (i) and (ii) imply that f is a single-valued G-contraction.
Suppose now that {f nx} converges to some x ∈ S. Since Ai is closed for every i = , , . . . , p,
it is easy to observe that x ∈ ⋂p

i= Ai. On the other hand, from condition (i), we can take
a subsequence {f nk x} of {f nx} such that {f nk x} ⊂ A for every k ∈ N. Thus (f nk x, x) ∈
A × ⋂p

i= Ai ⊂ A × A for every k ∈N. The conclusion follows from Corollary .. �
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4 The study of fixed points for multivalued weak G-contractions
In this section, we study the existence of fixed points for multivalued weak G-contractions.

Definition . Let (S, F , T) be a Menger PM-space and f : S → S be a multivalued map-
ping with nonempty values. We say that f is a multivalued weak G-contraction if there
exists κ ∈ (, ) such that

(x, y) ∈ S × S, y ∈ [x]G, u ∈ fx �⇒ ∃v ∈ fy ∩ [u]G: p(u, v) ≤ κp(x, y).

From the next result, we observe that the class of multivalued weak G-contractions is
larger than the class of multivalued G-contractions.

Lemma . Let (S, F , T) be a Menger PM-space and f : S → S be a multivalued mapping
with nonempty values. If f is a G-contraction, then f is a weak G-contraction.

Proof Suppose that f : S → S is a multivalued G-contraction. Let (x, y) ∈ S × S such that
u ∈ fx and y ∈ [x]G. Let an arbitrary ε > . From Lemma .(ii), there exists N = N(ε) such
that y ∈ [x]N

G and

pN (x, y) ≤ p(x, y) + ε.

On the other hand, by Lemma ., there exists v ∈ fy ∩ [u]N
G such that

p(u, v) ≤ pN (u, v)

≤ κ
(
pN (x, y) + ε

)

≤ κ
(
p(x, y) + ε

)
.

Letting ε →  in the above inequality, we get p(u, v) ≤ κp(x, y), which completes the
proof. �

We have the following fixed point result for the class of weak G-contractions.

Theorem . Let (S, F , T) be a complete Menger PM-space with T a t-norm of H-type
and f : S → S be a multivalued weak G-contraction. Suppose that the following conditions
hold:

(i) there exists x ∈ S such that [x]G ∩ fx �= ∅;
(ii) f is G-Picard continuous from x.

Then there exists a sequence {xn} ∈ T (f , G, x) converging to x∗, a fixed point of f .

Proof Let x ∈ [x]G ∩ fx. Since f is a weak G-contraction, there exists x ∈ [x]G ∩ fx

such that

p(x, x) ≤ κp(x, x).

Again, there exists x ∈ [x]G ∩ fx such that

p(x, x) ≤ κp(x, x).
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Continuing this process, we obtain a sequence {xn} ∈ T (f , G, x) such that

D(xn+, xn) ≤ p(xn+, xn) ≤ κnp(x, x) for all n ∈N.

This implies that {xn} is a Cauchy sequence in the complete Menger PM-space (S, F , T).
Then by (ii), {xn} converges to a fixed point of f . �

The next result concerns weak G-contraction multivalued mappings with nonempty
closed values.

Theorem . Let (S, F , T) be a complete Menger PM-space with T a t-norm of H-type and
f : S → S be a multivalued weak G-contraction with nonempty closed values. Suppose that
the following conditions hold:

(i) there exists x ∈ S such that [x]G ∩ fx �= ∅;
(ii) for every sequence {xn} ∈ T (f , G, x) converging to some x ∈ S, there exists a

subsequence {xnk } of {xn} such that x ∈ [xnk ]G for every k ∈N, and p(xnk , x∗) → , as
k → ∞.

Then there exists a sequence {xn} ∈ T (f , G, x) converging to x∗, a fixed point of f .

Proof From the proof of Theorem ., we know that there exists a sequence {xn} ∈
T (f , G, x) converging to some x∗ ∈ S. By condition (ii), there exists a subsequence {xnk } of
{xn} such that x ∈ [xnk ]G for every k ∈ N, and p(xnk , x∗) → , as k → ∞. Since f is a weak
G-contraction, there exists a sequence {ynk } ⊂ S such that ynk ∈ fx∗ ∩ [xnk ]G and

p(xnk +, ynk +) ≤ κp
(
xnk , x∗) for all k ∈N.

On the other hand, we have

D
(
ynk +, x∗) ≤ D

(
x∗, xnk +

)
+ D(xnk+, ynk +)

≤ D
(
x∗, xnk +

)
+ p(xnk +, ynk +)

≤ D
(
x∗, xnk +

)
+ κp

(
xnk , x∗).

Letting k → ∞ in the above inequality, we obtain that {ynk +} converges to x∗. Since fx∗ is
closed, we have x∗ ∈ fx∗, that is, x∗ is a fixed point of f . �

Finally, from Theorem . and Theorem ., we obtain the following fixed point theo-
rem for single-valued mappings.

Theorem . Let (S, F , T) be a complete Menger PM-space with T a t-norm of H-type and
f : S → S be a single weak G-contraction mapping, that is, there exists some κ ∈ (, ) such
that

(x, y) ∈ S × S, y ∈ [x]G �⇒ fy ∈ [fx]G, p(fx, fy) ≤ κp(x, y).

Suppose that there exists x ∈ S such that fx ∈ [x]G. Suppose that one of the following
conditions is satisfied:
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(i) if {f nx} converges to some x ∈ S, then x = fx;
(ii) if {f nx} converges to some x ∈ S, then there exists a subsequence {f nk x} of {f nx}

such that p(f nk x, x) → , as k → ∞, and f nk x ∈ [x]G for every k ∈ N.
Then f has a fixed point.

5 Applications: Kelisky-Rivlin type result for modified q-Bernstein polynomials
As applications, we establish in this section a Kelisky-Rivlin type result, a certain class of
modified q-Bernstein polynomials.

At first, we have the following result concerning the convergence of successive approx-
imations for a certain family of operators.

Theorem . Let E be a group with respect to a certain operation +. Let X be a subset of E
endowed with a certain metric d such that (X, d) is complete. Let X ⊆ X be a closed subset
of X such that X is a subgroup of E. Let us consider a single mapping f : X → X such that

(x, y) ∈ X × X, x – y ∈ X �⇒ d(fx, fy) ≤ κd(x, y),

where κ ∈ (, ) is a constant. Suppose that

x – fx ∈ X for all x ∈ X. (.)

Then we have
(i) for every x ∈ X , the Picard sequence {f nx} converges to a fixed point of f ;

(ii) for every x ∈ X , (x + X) ∩ Fix f = {limn→∞ f nx}, where Fix f denotes the set of fixed
points of f .

Proof Let us consider the mapping F : X × X →D+ defined by

F(x, y)(t) = δ
(
t – d(x, y)

)
for all x, y ∈ X, t > ,

where δ is the Dirac distribution function. Consider the graph G = (V (G), E(G)), where
V (G) = X and

E(G) =
{

(x, y) ∈ X × X : x – y ∈ X
}

.

Observe that by (.), we have

(x, y) ∈ E(G) �⇒ x – y ∈ X �⇒ fx – fy = (fx – x) + (y – fy) + (x – y) ∈ X

�⇒ (fx, fy) ∈ E(G).

Then by the definition of δ, we have

(x, y) ∈ E(G) �⇒ (fx, fy) ∈ E(G), F(fx, fy)(κt) ≥ F(x, y)(t),∀t > ,

which implies that f is a single-valued G-contraction. Recall that (X, F , TM), where TM =
min, is a complete metric space (see []). Moreover, a sequence {un} ⊂ X converges to
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some u ∈ X with respect to d if and only if {un} converges to u with respect to the Menger
PM-space (X, F , TM). Let x ∈ X be an arbitrary point. By (.), we have x – fx ∈ X,
that is, (x, fx) ∈ E(G), which implies that fx ∈ [x]G. Suppose now that {f nx} converges
to some x ∈ X with respect to (X, F , TM). Then {f nx} converges to x with respect to the
metric d. On the other hand, we have fx = (fx – x) + x ∈ X. Again, we have f x =
(f x – fx) + fx ∈ X. Continuing in this manner, we get f nx ∈ X for every n ≥ . Since
X is closed, then x ∈ X. As a consequence, we have (f nx, x) ∈ E(G) for every n ≥ .
Finally, by Theorem . (or Corollary .), we finish the proof of (i).

Now, let us prove (ii). Let x ∈ X be an arbitrary point. From (i), we know that {f nx}
converges with respect to the metric d to some x∗ ∈ X, a fixed point of f . Moreover, from
the proof of (i), we have f nx – x ∈ X for all n ≥ . Since X is closed, we get x∗ – x ∈ X,
that is, x∗ ∈ x + X. On the other hand, suppose that u, u ∈ (x + X) ∩ Fix f , with u �= u.
Since u – x, u – x ∈ X, then

d(u, u) = d(fu, fu) ≤ κd(u, u),

which is a contradiction. Thus we proved (ii). �

Remark . Theorem . recovers Theorem . in [], where X was supposed to be a
Banach space and f was supposed to be a linear operator.

The Bernstein operator on ϕ ∈ C([, ]), the space of all continuous real functions on
the interval [, ], is defined by

(Bnϕ)(t) =
N∑

k=

ϕ

(
k
n

)(
n
k

)
tk( – t)n–k , ϕ ∈ C

(
[, ]

)
, t ∈ [, ], n = , , . . . .

Kelisky and Rivlin [] proved that each Bernstein operator Bn is a weak operator. Moreover,
for any n and ϕ ∈ C([, ]),

lim
j→∞

(
Bj

nϕ
)
(t) = ϕ() +

(
ϕ() – ϕ()

)
t, t ∈ [, ].

The proof given by Kelisky and Rivlin is based on linear algebra tools, it involves the Stir-
ling numbers of the second kind, and eigenvalues and eigenvectors of some matrices. In
[], a more easy and elegant proof based on a fixed point theorem for linear operators on
a Banach space (see Theorem . in []) was presented.

In this section, we are interested in establishing Kelisky and Rivlin type results for a
class of modified q-Bernstein polynomials. To formulate our results, we need the following
definitions.

Let q > . For any n = , , , . . . , the q-integer [n]q is defined by

[n]q =  + q + q + · · · + qn– (n = , , . . .), []q = .

The q-factorial [n]q! is defined by

[n]q! = []q[]q · · · [n]q (n = , , . . .), []q! = .
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For integers  ≤ k ≤ n, the q-binomial is defined by

[
n
k

]

q

=
[n]q!

[n – k]q![k]q!
.

It is clear that for q = , we have

[n] = n, [n]! = n!,

[
n
k

]



=

(
n
k

)
.

Definition . (Phillips []) For ϕ ∈ C([, ]), the q-Bernstein polynomial of ϕ is defined
by

Bn(q,ϕ)(t) =
N∑

k=

ϕ

(
[k]q

[n]q

)[
n
k

]

q

tk
n––k∏

s=

(
 – qst

)
, t ∈ [, ], n = , , . . . .

(From here on an empty product is taken to be equal to .)

Note that for q = , the polynomials Bn(,ϕ)(t) are classical Bernstein polynomials.
We introduce the following class of modified q-Bernstein polynomials.

Definition . For ϕ ∈ C([, ]), the modified q-Bernstein polynomial of ϕ is defined by

Bn(q,ϕ)(t) =
N∑

k=

∣∣∣∣ϕ
(

[k]q

[n]q

)∣∣∣∣
[

n
k

]

q

tk
n––k∏

s=

(
 – qst

)
, t ∈ [, ], n = , , . . . .

(From here on an empty product is taken to be equal to .)

Observe that Bn(q, ·) is a nonlinear operator on C([, ]). Let

X =
{
φ ∈ C

(
[, ]

)
: φ() ≥ ,φ() ≥ 

}
.

Clearly, Bn(q, ·) : X → X is well defined.
We have the following result.

Theorem . Let n ∈ N and  < q ≤ . Then, for every ϕ ∈ X, the Picard sequence
{Bj

n(q,ϕ)}j∈N converges to a fixed point of Bn(q, ·). Moreover, for every ϕ ∈ X, we have

lim
j→∞ max

t∈[,]

∣∣Bj
n(q,ϕ)(t) – ω(t)

∣∣ = ,

where ω(t) = ϕ()( – t) + ϕ()t, t ∈ [, ].

Proof Let E = C([, ]). We endow X with the metric defined by

d(U , V ) = max
t∈[,]

∣∣U(t) – V (t)
∣∣, U , V ∈ X.
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Clearly, (X, d) is a complete metric space. Let

X =
{

U ∈ E : U() = U() = 
}

.

Then X ⊂ X is a closed subgroup of E. Let ψ ,ϕ ∈ X such that ψ – ϕ ∈ X. Let t ∈ [, ],
then we have

∣∣Bn(q,ϕ)(t) – Bn(q,ψ)(t)
∣∣ =

∣∣∣∣∣
N∑

k=

(∣∣∣∣ϕ
(

[k]q

[n]q

)∣∣∣∣ –
∣∣∣∣ψ

(
[k]q

[n]q

)∣∣∣∣
)[

n
k

]

q

tk
n––k∏

s=

(
 – qst

)
∣∣∣∣∣

≤
N∑

k=

∣∣∣∣(ϕ – ψ)
(

[k]q

[n]q

)∣∣∣∣
[

n
k

]

q

tk
n––k∏

s=

(
 – qst

)

≤
n–∑
k=

[
n
k

]

q

tk
n––k∏

s=

(
 – qst

)
d(ψ ,ϕ).

Note that (see [])

n∑
k=

[
n
k

]

q

tk
n––k∏

s=

(
 – qst

)
= .

Then, for q ≤ , it is easy to observe that

n–∑
k=

[
n
k

]

q

tk
n––k∏

s=

(
 – qst

) ≤  – tn – ( – t)n

≤  –


n– .

As a consequence, we have

ψ ,ϕ ∈ X,ψ – ϕ ∈ X �⇒ d
(
Bn(q,ϕ),Bn(q,ψ)

) ≤
(

 –


n–

)
d(ψ ,ϕ).

Now, let ϕ ∈ X. For any t ∈ [, ], we have

ϕ(t) – Bn(q,ϕ) =
n∑

k=

(
ϕ(t) –

∣∣∣∣ϕ
(

[k]q

[n]q

)∣∣∣∣
)[

n
k

]

q

tk
n––k∏

s=

(
 – qst

)
.

Observe that ϕ() – Bn(q,ϕ)() = ϕ() – Bn(q,ϕ)() = . Then, for every ϕ ∈ X, we have

ϕ – Bn(q,ϕ) ∈ X.

By Theorem ., we deduce that for every ϕ ∈ X, the Picard sequence {Bj
n(q,ϕ)}j∈N con-

verges to a fixed point of Bn(q, ·) and

(ϕ + X) ∩ FixBn(q, ·) =
{

lim
j→∞ Bj

n(q,ϕ)
}

.
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Let ϕ ∈ X. It is not difficult to observe that ω(t) = ϕ()( – t) + ϕ()t ∈ FixBn(q, ·). We have
also

ω(t) = ϕ(t) + θ (t),

where

θ (t) = ϕ()( – t) + ϕ()t – ϕ(t).

Observe that θ () = θ () = , which implies that θ ∈ X. This ends the proof of Theo-
rem .. �

Remark . Note that Theorem . in [] cannot be applied in the case of modified
q-Bernstein operators since it requires linear operators defined on a certain Banach
space X. Observe that in our case, X is not a linear space.

Remark . The case of modified -Bernstein operator was considered recently in [].
The authors claimed that if n ∈N for every ϕ ∈ X = C([, ]), the Picard sequence {Bj

n(,ϕ)}
converges uniformly to a fixed point of Bn(, ·) (see Corollary  in []). For the proof of
this claim, the authors used that ϕ – Bn(,ϕ) ∈ X for every ϕ ∈ X, where X is the set of
functions φ ∈ X such that φ() = φ() = . Unfortunately, the above property is not true. To
observe this fact, we have just to consider a function ϕ ∈ X such that ϕ() <  or ϕ() < .
Our Theorem . for the case q =  is a corrected version of Corollary  in [].
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