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Abstract
In this paper, we introduce a new mapping in a real Hilbert space to prove a strong
convergence theorem for finding a common fixed point of a finite family of strictly
pseudo-contractive mappings and a strictly pseudononspreading mapping.
Moreover, we also obtain a strong convergence theorem for a finite family of
inverse-strongly monotone mappings and a strictly pseudononspreading mapping.
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1 Introduction
In this paper, we assume that H is a real Hilbert space with the inner product 〈·, ·〉 and the
induced norm ‖ · ‖, and C is a nonempty closed convex subset of H . Let T : C → C be a
mapping. F(T) denotes the set of fixed points of the mapping T , i.e., F(T) = {x ∈ C : Tx =
x}.

Recall that a mapping T : C → C is nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C. (.)

A mapping T : C → C is κ-strictly pseudo-contractive if there exists a constant κ ∈ [, )
such that

‖Tx – Ty‖ ≤ ‖x – y‖ + κ
∥
∥(I – T)x – (I – T)y

∥
∥

, ∀x, y ∈ C. (.)

A mapping T : C → C is ρ-strictly pseudononspreading if there exists a constant ρ ∈ [, )
such that

‖Tx – Ty‖ ≤ ‖x – y‖ + ρ
∥
∥(I – T)x – (I – T)y

∥
∥

 + 〈x – Tx, y – Ty〉, ∀x, y ∈ C. (.)
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It is obvious that the -strictly pseudo-contractive mapping T is a nonexpansive mapping.
Note that (.) is equivalent to

〈Tx – Ty, x – y〉 ≤ ‖x – y‖ –
 – κ


∥
∥(I – T)x – (I – T)y

∥
∥

, ∀x, y ∈ C, (.)

and the κ-strictly pseudo-contractive mapping T is Lipschitz continuous with constant
+κ
–κ

, that is,

‖Tx – Ty‖ ≤  + κ

 – κ
‖x – y‖, ∀x, y ∈ C. (.)

A mapping T : C → H is said to be ξ -inverse-strongly monotone if there exists a positive
real number ξ such that

〈Tx – Ty, x – y〉 ≥ ξ‖Tx – Ty‖, ∀x, y ∈ C. (.)

Finding the fixed points of nonexpansive mappings is an important topic in the the-
ory of nonexpansive mappings, and it has wide applications in a number of applied areas
such as the convex feasibility problem [–], the split feasibility problem [], image recov-
ery and signal processing []. After that, as an important generalization of nonexpansive
mappings, strictly pseudo-contractive, strictly pseudononspreading and inverse-strongly
monotone mappings became one of the most interesting studied classes of nonexpansive
mappings. Iterative methods for them have been extensively investigated (see, e.g., [–]
and the references contained therein).

In , Takahashi and Shimoji [] introduced a W -mapping generated by T, T,
. . . , Tr and α,α, . . . ,αr as follows.

Definition . [] Let C be a convex subset of a Banach space E. Let T, T, . . . , Tr be
finite mappings of C into itself, and let α,α, . . . ,αr be real numbers such that  ≤ αi ≤ 
for every i = , , . . . , r. Then we define a mapping W of C into itself as follows:

U = αT + ( – α)I,

U = αTU + ( – α)I,

U = αTU + ( – α)I,

...

Ur– = αr–Tr–Ur– + ( – αr–)I,

W = Ur = αrTrUr– + ( – αr)I.

Such a mapping W is called the W -mapping generated by T, T, . . . , Tr and α,α, . . . ,αr .

Lemma . [] Let C be a closed convex subset of a Banach space E. Let T, T, . . . , Tr

be nonexpansive mappings of C into itself such that
⋂r

i= F(Ti) is nonempty, and let
α,α, . . . ,αr be real numbers such that  < αi <  for every i = , , . . . , r. Let W be the W -
mapping of C into itself generated by T, T, . . . , Tr and α,α, . . . ,αr . Then W is asymptot-
ically regular. Further, if E is strictly convex, then F(W ) =

⋂r
i= F(Ti).
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In , Kangtunyakarn and Suantai [] gave a K-mapping generated by T, T, . . . , TN

and λ,λ, . . . ,λN as follows.

Definition . [] Let C be a nonempty convex subset of a real Banach space. Let {Ti}N
i=

be a finite family of mappings of C into itself, and let λ,λ, . . . ,λN be real numbers such
that  ≤ λi ≤  for every i = , , . . . , N . We define a mapping K : C → C as follows:

U = λT + ( – λ)I,

U = λTU + ( – λ)U,

U = λTU + ( – λ)U,

...

UN– = λN–TN–UN– + ( – λN–)UN–,

K = UN = λN TN UN– + ( – λN )UN–.

Such a mapping K is called the K-mapping generated by T, T, . . . , TN and λ,λ, . . . ,λN .

In , Suwannaut and Kangtunyakarn [] established the following main result for
the K-mapping generated by T, T, . . . TN and λ,λ, . . . ,λN .

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let
{Ti}N

i= be a finite family of κi-strictly pseudo-contractive mappings of C into itself with κi ≤
γ for all i = , , . . . , N , and

⋂N
i= F(Ti) 
= ∅. Let λ,λ, . . . ,λN be real numbers with  < λi < γ

for all i = , , . . . , N and γ +γ < . Let K be the K-mapping generated by T, T, . . . , TN and
λ,λ, . . . ,λN . Then the following properties hold:

(i) F(K) =
⋂N

i= F(Ti);
(ii) K is a nonexpansive mapping.

In , Kangtunyakarn and Suantai [] also introduced an S-mapping generated by
T, T, . . . , TN and α,α, . . . ,αN as follows.

Definition . [] Let C be a nonempty convex subset of a real Banach space. Let {Ti}N
i=

be a finite family of mappings of C into itself. For each j = , , . . . , N , let αj = (αj
,αj

,αj
),

where α
j
,αj

,αj
 ∈ [, ] and α

j
 + α

j
 + α

j
 = . We define the mapping S : C → C as follows:

U = I,

U = α
TU + α

U + α
I,

U = α
 TU + α

U + α
I,

U = α
 TU + α

U + α
I,

...

UN– = αN–
 TN–UN– + αN–

 UN– + αN–
 I,

S = UN = αN
 TN UN– + αN

 UN– + αN
 I.

This mapping is called the S-mapping generated by T, T, . . . , TN and α,α, . . . ,αN .
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In , Kangtunyakarn and Suantai [] gave the following lemma for the S-mapping
generated by T, T, . . . , TN and α,α, . . . ,αN .

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space.
Let {Ti}N

i= be a finite family of κi-strict pseudocontractive mappings of C into C with
⋂N

i= F(Ti) 
= ∅ and κ = max{κi : i = , , . . . , N}, and let αj = (αj
,αj

,αj
) ∈ I × I × I , j =

, , . . . , N , where I = [, ], α
j
 + α

j
 + α

j
 = , α

j
,αj

 ∈ (κ , ) for all j = , , . . . , N –  and
αN

 ∈ (κ , ], αN
 ∈ [κ , ), α

j
 ∈ [κ , ) for all j = , , . . . , N . Let S be the mapping generated by

T, T, . . . , TN and α,α, . . . ,αN . Then F(S) =
⋂N

i= F(Ti) and S is a nonexpansive mapping.

Let T : C → H . The variational inequality problem is to find a point x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

The set of solutions of (.) is denoted by VI(C, A).
In the recent years, there have been many research works concerning the problem of

approximating a common fixed point of various classes of nonlinear mappings by using
W -mappings, K-mappings and S-mappings (see, e.g., [–]).

Recently, Kangtunyakarn [] proposed an iterative algorithm for finding a common
element of the set of fixed points of a κ-strictly pseudononspreading mapping and a finite
family of the set of solutions of variational inequality problems as follows.

Theorem . [] Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H . For every i = , , . . . , N , let Bi : C → H be δi-inverse strongly monotone map-
pings and let T : C → C be a κ-strictly pseudononspreading mapping for some κ ∈ [, ).
Let Gi : C → C be defined by Gix = PC(I – ηBi)x for every x ∈ C and η ∈ (, δi) for
every i = , , . . . , N , and let δj = (αj

,αj
,αj

) ∈ I × I × I , j = , , . . . , N , where I = [, ],
α

j
 + α

j
 + α

j
 = , α

j
 ∈ (, ) for all j = , , . . . , N – , αN

 ∈ (, ], α
j
,αj

 ∈ [, ) for all
j = , , . . . , N . Let S : C → C be the S-mapping generated by G, G, . . . , GN and δ, δ, . . . , δN .
Assume that F = F(T) ∩ ⋂N

i= VI(C, Bi) 
= ∅. For every n ∈ N, i = , , . . . , N , let x, u ∈ C and
{xn} be a sequence generated by

xn+ = αnu + βnPC
(

I – λn(I – T)
)

xn + γnSxn, ∀n ∈N, (.)

where {αn}, {βn}, {γn}, {λn} ⊂ (, ) such that αn + βn + γn = , βn ∈ [c, d] ⊂ (, ), {λn} ⊂
(,  – κ) and suppose the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞;
(ii)

∑∞
n= λn < ∞;

(iii)
∑∞

n= |λn+ – λn|,∑∞
n= |γn+ – γn|,∑∞

n= |αn+ – αn|,∑∞
n= |βn+ – βn| < ∞.

Then the sequence {xn} converges strongly to z = PFu.

Motivated and inspired by the above facts, we define a new mapping for the common
fixed point set of a finite family of strict pseudo-contractive mappings. Moreover, by using
our main result, we also obtain a new strong convergence theorem for the common fixed
point of a finite family of strict pseudo-contractive mappings and a strictly pseudonon-
spreading mapping.
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2 Preliminaries
Lemma . In the real Hilbert space H , the following relations hold:

(i) ‖x + y‖ = ‖x‖ + 〈x, y〉 + ‖y‖;
(ii) ‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉;

(iii) ‖∑m
i= αixi‖ =

∑m
i= αi‖xi‖ –

∑

i
=j αiαj‖xi – xj‖

for
∑m

i= αi = , αi ∈ [, ], ∀i ∈ {, , . . . , m}.

Definition . PC : H → C is called a metric projection if for every point x ∈ H , there
exists a unique nearest point in C, denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C. (.)

Lemma . Let C be a nonempty closed convex subset of H and PC : H → C be a metric
projection. Then

(i) ‖PCx – PCy‖ ≤ 〈x – y, PCx – PCy〉, ∀x, y ∈ H ;
(ii) PC is a nonexpansive mapping, i.e., ‖PCx – PCy‖ ≤ ‖x – y‖, ∀x, y ∈ H ;

(iii) 〈x – PCx, y – PCx〉 ≤ , ∀x ∈ H , y ∈ C.

From the proof of Theorem . in [], we have the following results.

Lemma . [] Let C be a nonempty closed convex subset of H and T : C → C be a ρ-
strictly pseudononspreading mapping with F(T) 
= ∅. Then

∥
∥PC

(

I – λ(I – T)
)

x – x∗∥∥ ≤ ∥
∥x – x∗∥∥ (.)

for any λ ∈ (,  – ρ), x∗ ∈ F(T).

Lemma . [] Let C be a nonempty closed convex subset of H and T : C → C be a ρ-
strictly pseudononspreading mapping with F(T) 
= ∅. Then

∥
∥Tx – x∗∥∥ ≤  + ρ

 – ρ

∥
∥x – x∗∥∥ (.)

for any x∗ ∈ F(T).

Lemma . [] Let {sn} be a sequence of nonnegative real numbers such that

sn+ ≤ ( – αn)sn + βn, ∀n ≥ , (.)

where {αn} is a sequence in (, ) and {βn} is a sequence such that
(i)

∑∞
n= αn = ∞;

(ii) lim supn→∞
βn
αn

≤  or
∑∞

n= |βn| < ∞.
Then limn→∞ sn = .

Lemma . [] Let {sn} be a sequence of nonnegative numbers such that

sn+ ≤ ( – αn)sn + αnβn, ∀n ≥ , (.)

where {αn} and {βn} are sequences of real numbers such that
(i) {αn} ⊂ [, ] and

∑∞
n= αn = ∞;
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(ii) lim supn→∞ βn ≤  or
∑∞

n= αnβn < ∞.
Then limn→∞ sn = .

Let C be a nonempty subset of H and T : C → H be a mapping. Then T is said to be
demi-closed at v ∈ H if for any sequence {xn} ⊆ C, the following implication holds:

xn ⇀ u ∈ C and Txn → v imply Tu = v, (.)

where → (resp. ⇀) denotes strong (resp. weak) convergence.

Lemma . [] Let C be a nonempty closed convex subset of H and T : C → H be a
nonexpansive mapping. Then the mapping I – T is demi-closed at zero.

Lemma . (Opial’s property []) If xn ⇀ u, then the following inequality holds:

lim inf
n→∞ ‖xn – y‖ > lim inf

n→∞ ‖xn – u‖, ∀y ∈ H , y 
= u. (.)

We define a new mapping as follows.

Definition . Let C be a nonempty convex subset of a Banach space E. Let {Ti}N
i= be a

finite family of mappings of C into itself. For each i = , , . . . , N , let πi = (αi,βi,γi, δi), where
αi,βi,γi, δi ∈ [, ] and αi + βi + γi + δi = . We define the mapping G : C → C as follows:

U = I,

U = αT
 U + βTU + γU + δI,

U = αT
 U + βTU + γU + δI,

U = αT
 U + βTU + γU + δI,

...

UN– = αN–T
N–UN– + βN–TN–UN– + γN–UN– + δN–I,

G = UN = αN T
N UN– + βN TN UN– + γN UN– + δN I.

This mapping is called the G-mapping generated by T, T, . . . , TN and π,π, . . . ,πN .

We remark that (i) if αi =  for every i = , , . . . , N , then G-mapping is reduced to S-
mapping; (ii) if αi =  and γi =  for every i = , , . . . , N , then G-mapping is reduced to
W -mapping; (iii) if αi =  and δi =  for every i = , , . . . , N , then G-mapping is reduced to
K-mapping.

Lemma . Let C be a nonempty closed convex subset of the real Hilbert space H . For every
i = , , . . . , N , let Ti : C → C be κi-strict pseudo-contractive mappings with

⋂N
i= F(Ti) 
= ∅,

and let πi = (αi,βi,γi, δi), where αi,βi,γi, δi ∈ [, ] and αi + βi + γi + δi = . Let G be the
G-mapping generated by T, T, . . . , TN and π,π, . . . ,πN . If the following conditions hold:

(i) κ ≤ β <  – κ and α(κ + β) < β( – β – κ);
(ii) βi ≥ κi, κi < γi <  and κiαi ≤ βiγi – βiκi for i = , , . . . , N .

Then F(G) =
⋂N

i= F(Ti) and G is a nonexpansive mapping.
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Proof It is clear that
⋂N

i= F(Ti) ⊆ F(G). Next, we will show that F(G) ⊆ ⋂N
i= F(Ti).

Let x ∈ F(G) and x∗ ∈ ⋂N
i= F(Ti), then we have

∥
∥x – x∗∥∥

=
∥
∥Gx – x∗∥∥

=
∥
∥αN

(

T
N UN–x – x∗) + βN

(

TN UN–x – x∗) + γN
(

UN–x – x∗) + δN
(

x – x∗)∥∥

= αN
∥
∥T

N UN–x – x∗∥∥ + βN
∥
∥TN UN–x – x∗∥∥

+ γN
∥
∥UN–x – x∗∥∥ + δN

∥
∥x – x∗∥∥

– αNβN
∥
∥T

N UN–x – TN UN–x
∥
∥

 – αNγN
∥
∥T

N UN–x – UN–x
∥
∥



– αNδN
∥
∥T

N UN–x – x
∥
∥

 – βNγN‖TN UN–x – UN–x‖

– βNδN‖TN UN–x – x‖ – γNδN‖UN–x – x‖

≤ αN
∥
∥T

N UN–x – x∗∥∥ + βN
∥
∥TN UN–x – x∗∥∥

+ γN
∥
∥UN–x – x∗∥∥ + δN

∥
∥x – x∗∥∥ – αNβN

∥
∥T

N UN–x – TN UN–x
∥
∥



– βNγN‖TN UN–x – UN–x‖

≤ αN
(∥
∥TN UN–x – x∗∥∥ + κN

∥
∥(I – TN )TN UN–x

∥
∥

)

+ βN
∥
∥TN UN–x – x∗∥∥ + γN

∥
∥UN–x – x∗∥∥ + δN

∥
∥x – x∗∥∥

– αNβN
∥
∥T

N UN–x – TN UN–x
∥
∥

 – βNγN‖TN UN–x – UN–x‖

= (αN + βN )
∥
∥TN UN–x – x∗∥∥ + αN (κN – βN )

∥
∥T

N UN–x – TN UN–x
∥
∥



+ γN
∥
∥UN–x – x∗∥∥ + δN

∥
∥x – x∗∥∥ – βNγN‖TN UN–x – UN–x‖

≤ (αN + βN )
(∥
∥UN–x – x∗∥∥ + κN

∥
∥(I – TN )UN–x

∥
∥

)

+ αN (κN – βN )
∥
∥T

N UN–x – TN UN–x
∥
∥



+ γN
∥
∥UN–x – x∗∥∥ + δN

∥
∥x – x∗∥∥ – βNγN‖TN UN–x – UN–x‖

= ( – δN )
∥
∥UN–x – x∗∥∥ +

(

 – ( – δN )
)∥
∥x – x∗∥∥

+ αN (κN – βN )
∥
∥T

N UN–x – TN UN–x
∥
∥



+
(

(αN + βN )κN – βNγN
)‖TN UN–x – UN–x‖

≤ ( – δN )
∥
∥UN–x – x∗∥∥ +

(

 – ( – δN )
)∥
∥x – x∗∥∥

...

≤ ( – δN )
[

( – δN–)
∥
∥UN–x – x∗∥∥ +

(

 – ( – δN–)
)∥
∥x – x∗∥∥]

+
(

 – ( – δN )
)∥
∥x – x∗∥∥

= ( – δN )( – δN–)
∥
∥UN–x – x∗∥∥ +

(

 – ( – δN )( – δN–)
)∥
∥x – x∗∥∥

...
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≤
N

∏

i=

( – δi)
∥
∥Ux – x∗∥∥ +

(

 –
N

∏

i=

( – δi)

)

∥
∥x – x∗∥∥

≤
N

∏

i=

( – δi)
[

( – δ)
∥
∥Ux – x∗∥∥ + δ

∥
∥x – x∗∥∥

+ α(κ – β)
∥
∥T

 Ux – TUx
∥
∥

 +
(

(α + β)κ – βγ
)‖TUx – Ux‖]

+

(

 –
N

∏

i=

( – δi)

)

∥
∥x – x∗∥∥ (.)

≤
N

∏

i=

( – δi)
∥
∥Ux – x∗∥∥ +

(

 –
N

∏

i=

( – δi)

)

∥
∥x – x∗∥∥

=
N

∏

i=

( – δi)
∥
∥α

(

T
 x – x∗) + β

(

Tx – x∗) + ( – α – β)
(

x – x∗)∥∥

+

(

 –
N

∏

i=

( – δi)

)

∥
∥x – x∗∥∥

=
N

∏

i=

( – δi)
[

α
∥
∥T

 x – x∗∥∥ + β
∥
∥Tx – x∗∥∥ + ( – α – β)

∥
∥x – x∗∥∥

– αβ
∥
∥T

 x – Tx
∥
∥

 – α( – α – β)
∥
∥T

 x – x
∥
∥



– β( – α – β)‖Tx – x‖] +

(

 –
N

∏

i=

( – δi)

)

∥
∥x – x∗∥∥

≤
N

∏

i=

( – δi)
[

α
∥
∥T

 x – x∗∥∥ + β
∥
∥Tx – x∗∥∥ + ( – α – β)

∥
∥x – x∗∥∥

– αβ
∥
∥T

 x – Tx
∥
∥

 – β( – α – β)‖Tx – x‖]

+

(

 –
N

∏

i=

( – δi)

)

∥
∥x – x∗∥∥

≤
N

∏

i=

( – δi)
[

α
(∥
∥Tx – x∗∥∥ + κ

∥
∥(I – T)Tx

∥
∥

) + β
∥
∥Tx – x∗∥∥

+ ( – α – β)
∥
∥x – x∗∥∥ – αβ

∥
∥T

 x – Tx
∥
∥

 – β( – α – β)‖Tx – x‖]

+

(

 –
N

∏

i=

( – δi)

)

∥
∥x – x∗∥∥

=
N

∏

i=

( – δi)
[

(α + β)
∥
∥Tx – x∗∥∥ + α(κ – β)

∥
∥T

 x – Tx
∥
∥



+ ( – α – β)
∥
∥x – x∗∥∥ – β( – α – β)‖Tx – x‖]

+

(

 –
N

∏

i=

( – δi)

)

∥
∥x – x∗∥∥
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≤
N

∏

i=

( – δi)
[

(α + β)
(∥
∥x – x∗∥∥ + κ

∥
∥(I – T)x

∥
∥

) + α(κ – β)
∥
∥T

 x – Tx
∥
∥



+ ( – α – β)
∥
∥x – x∗∥∥ – β( – α – β)‖Tx – x‖]

+

(

 –
N

∏

i=

( – δi)

)

∥
∥x – x∗∥∥

=
N

∏

i=

( – δi)
[∥
∥x – x∗∥∥ + α(κ – β)

∥
∥T

 x – Tx
∥
∥



+
(

(α + β)κ – β( – α – β)
)‖Tx – x‖]

+

(

 –
N

∏

i=

( – δi)

)

∥
∥x – x∗∥∥. (.)

By the condition (i), we have

α(κ – β)
∥
∥T

 x – Tx
∥
∥

 +
(

(α + β)κ – β( – α – β)
)‖Tx – x‖ ≤ . (.)

From (.) and δi <  for i = , , . . . , N , it yields

α(κ – β)
∥
∥T

 x – Tx
∥
∥

 +
(

(α + β)κ – β( – α – β)
)‖Tx – x‖ ≥ . (.)

This implies that

‖Tx – x‖ = . (.)

Therefore, Tx = x, that is, x ∈ F(T). By the definition of U, we have

Ux = αT
 Ux + βTUx + γUx + δx

= αT
 x + βTx + γx + δx

= αTx + βx + γx + δx

= x. (.)

Again, by (.), (.) and δi <  for i = , , . . . , N , we have

α(κ – β)
∥
∥T

 Ux – TUx
∥
∥

 +
(

(α + β)κ – βγ
)‖TUx – Ux‖

= α(κ – β)
∥
∥T

 x – Tx
∥
∥

 +
(

(α + β)κ – βγ
)‖Tx – x‖

≥ . (.)

From the condition (ii), this implies

‖Tx – x‖ = . (.)

Therefore, Tx = x, that is, x ∈ F(T). By the definition of U, we also have

Ux = x. (.)
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Using the same argument, we can conclude that

x ∈ F(Ti), i = , , . . . , N . (.)

Hence, F(G) ⊆ ⋂N
i= F(Ti).

Now, we show that G is nonexpansive. Let any x, y ∈ C. Then

‖Gx – Gy‖

=
∥
∥αN

(

T
N UN–x – T

N UN–y
)

+ βN (TN UN–x – TN UN–y)

+ γN (UN–x – UN–y) + δN (x – y)
∥
∥



≤ αN
∥
∥T

N UN–x – T
N UN–y

∥
∥

 + βN‖TN UN–x – TN UN–y‖

+ γN‖UN–x – UN–y‖ + δN‖x – y‖

– αNβN
∥
∥(I – TN )TN UN–x – (I – TN )TN UN–y

∥
∥



– βNγN
∥
∥(I – TN )UN–x – (I – TN )UN–y

∥
∥



≤ αN
(‖TN UN–x – TN UN–y‖ + κN

∥
∥(I – TN )TN UN–x – (I – TN )TN UN–y

∥
∥

)

+ βN‖TN UN–x – TN UN–y‖ + γN‖UN–x – UN–y‖ + δN‖x – y‖

– αNβN
∥
∥(I – TN )TN UN–x – (I – TN )TN UN–y

∥
∥



– βNγN
∥
∥(I – TN )UN–x – (I – TN )UN–y

∥
∥



= (αN + βN )
∥
∥TN UN–x – TN UN–y

∥
∥



+ αN (κN – βN )
∥
∥(I – TN )TN UN–x – (I – TN )TN UN–y

∥
∥



+ γN‖UN–x – UN–y‖ + δN‖x – y‖

– βNγN
∥
∥(I – TN )UN–x – (I – TN )UN–y

∥
∥



≤ (αN + βN )
(‖UN–x – UN–y‖ + κN

∥
∥(I – TN )UN–x – (I – TN )UN–y

∥
∥

)

+ αN (κN – βN )
∥
∥(I – TN )TN UN–x – (I – TN )TN UN–y

∥
∥



+ γN‖UN–x – UN–y‖ + δN‖x – y‖

– βNγN
∥
∥(I – TN )UN–x – (I – TN )UN–y

∥
∥



= ( – δN )‖UN–x – UN–y‖ +
(

 – ( – δN )
)‖x – y‖

+ αN (κN – βN )
∥
∥(I – TN )TN UN–x – (I – TN )TN UN–y

∥
∥



+
(

(αN + βN )κn – βNγN
)∥
∥(I – TN )UN–x – (I – TN )UN–y

∥
∥



≤ ( – δN )‖UN–x – UN–y‖ +
(

 – ( – δN )
)‖x – y‖

...

≤ ( – δN )
[

( – δN–)‖UN–x – UN–y‖ +
(

 – ( – δN–)
)‖x – y‖]

+
(

 – ( – δN )
)‖x – y‖

= ( – δN )( – δN–)‖UN–x – UN–y‖ +
(

 – ( – δN )( – δN–)
)‖x – y‖
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...

≤
N

∏

i=

( – δi)‖Ux – Uy‖ +

(

 –
N

∏

i=

( – δi)

)

‖x – y‖

=
N

∏

i=

( – δi)
∥
∥α

(

T
 x – T

 y
)

+ β(Tx – Ty) + ( – α – β)(x – y)
∥
∥



+

(

 –
N

∏

i=

( – δi)

)

‖x – y‖

≤
N

∏

i=

( – δi)
[

α
∥
∥T

 x – T
 y

∥
∥

 + β‖Tx – Ty‖ + ( – α – β)‖x – y‖

– αβ
∥
∥(I – T)Tx – (I – T)Ty

∥
∥

 – β( – α – β)
∥
∥(I – T)x – (I – T)y

∥
∥

]

+

(

 –
N

∏

i=

( – δi)

)

‖x – y‖

≤
N

∏

i=

( – δi)
[

α
(‖Tx – Ty‖ + κ

∥
∥(I – T)Tx – (I – T)Ty

∥
∥

) + β‖Tx – Ty‖

+ ( – α – β)‖x – y‖ – αβ
∥
∥(I – T)Tx – (I – T)Ty

∥
∥



– β( – α – β)
∥
∥(I – T)x – (I – T)y

∥
∥

]

+

(

 –
N

∏

i=

( – δi)

)

‖x – y‖

=
N

∏

i=

( – δi)
[

(α + β)‖Tx – Ty‖ + α(κ – β)
∥
∥(I – T)Tx – (I – T)Ty

∥
∥



+ ( – α – β)‖x – y‖ – β( – α – β)
∥
∥(I – T)x – (I – T)y

∥
∥

]

+

(

 –
N

∏

i=

( – δi)

)

‖x – y‖

≤
N

∏

i=

( – δi)
[

(α + β)
(‖x – y‖ + κ

∥
∥(I – T)x – (I – T)y

∥
∥

)

+ α(κ – β)
∥
∥(I – T)Tx – (I – T)Ty

∥
∥

 + ( – α – β)‖x – y‖

– β( – α – β)
∥
∥(I – T)x – (I – T)y

∥
∥

] +

(

 –
N

∏

i=

( – δi)

)

‖x – y‖

=
N

∏

i=

( – δi)
[‖x – y‖ + α(κ – β)

∥
∥(I – T)Tx – (I – T)Ty

∥
∥



+
(

(α + β)κ – β( – α – β)
)∥
∥(I – T)x – (I – T)y

∥
∥

]

+

(

 –
N

∏

i=

( – δi)

)

‖x – y‖
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≤
N

∏

i=

( – δi)‖x – y‖ +

(

 –
N

∏

i=

( – δi)

)

‖x – y‖

= ‖x – y‖. (.)

This completes the proof. �

Remark . From the above proof, we can see that the mapping G is quasi-nonexpansive
under the conditions in Lemma ., that is,

∥
∥Gx – x∗∥∥ ≤ ∥

∥x – x∗∥∥, ∀x ∈ C, x∗ ∈ F(G). (.)

Example . Let T, T : R→R be defined by

Tx =

{

x, x ∈ (–∞, ],
– 

 x, x ∈ [, +∞);

and

Tx =

{

–x, x ∈ (–∞, ],
x, x ∈ [, +∞).

Then we observe that F(T) = (–∞, ] and F(T) = [, +∞). Hence, F(T) ∩ F(T) = {}.
Firstly, we show that T is a 

 -strictly pseudo-contractive mapping.
() If x, y ∈ (–∞, ], then we have

‖Tx – Ty‖ = (x – y)

and

∥
∥(I – T)x – (I – T)y

∥
∥

 = .

From the above, then there exists κ ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + κ
∥
∥(I – T)x – (I – T)y

∥
∥

.

() If x, y ∈ [, +∞), then we have

‖Tx – Ty‖ =
(

–



x +



y
)

=



(x – y)

and

∥
∥(I – T)x – (I – T)y

∥
∥

 =
((

x +



x
)

–
(

y +



y
))

=



(x – y).

From the above, then there exists κ ∈ [ 
 , ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + κ
∥
∥(I – T)x – (I – T)y

∥
∥

.
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() If x ∈ (–∞, ] and y ∈ [, +∞), then we have

‖Tx – Ty‖ =
(

x +



y
)

and

∥
∥(I – T)x – (I – T)y

∥
∥

 =
(

(x – x) –
(

y +



y
))

=



y.

Note that

(

x +



y
)

– (x – y) – κ



y =
(




–



κ

)

y + xy.

From the above, then there exists κ ∈ [ 
 , ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + κ
∥
∥(I – T)x – (I – T)y

∥
∥

.

Next, we show that T is a 
 -strictly pseudo-contractive mapping.

() If x, y ∈ (–∞, ], then we have

‖Tx – Ty‖ = (–x + y) = (x – y)

and

∥
∥(I – T)x – (I – T)y

∥
∥

 =
(

(x + x) – (y + y)
) = (x – y).

From the above, then there exists κ ∈ [ 
 , ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + κ
∥
∥(I – T)x – (I – T)y

∥
∥

.

() If x, y ∈ [, +∞), then we have

‖Tx – Ty‖ = (x – y)

and

∥
∥(I – T)x – (I – T)y

∥
∥

 = .

From the above, then there exists κ ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + κ
∥
∥(I – T)x – (I – T)y

∥
∥

.

() If x ∈ (–∞, ] and y ∈ [, +∞), then we have

‖Tx – Ty‖ = (–x – y)
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and

∥
∥(I – T)x – (I – T)y

∥
∥

 =
(

(x + x) – (y – y)
) = x.

Note that

(–x – y) – (x – y) – κx = ( – κ)x + xy.

From the above, then there exists κ ∈ [ 
 , ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + κ
∥
∥(I – T)x – (I – T)y

∥
∥

.

Let

π =
(




,



,



,



)

,

which satisfies condition (i) in Lemma .. And

T
 x =

{

x, x ∈ (–∞, ],
– 

 x, x ∈ [, +∞).

Then

Ux =



T
 x +




Tx +



x +



x =

{

x, x ∈ (–∞, ],
, x ∈ [, +∞).

Let

π =
(




,



,



,




)

,

which satisfies condition (ii) in Lemma .. Again, we have

TUx =

{

–x, x ∈ (–∞, ],
, x ∈ [, +∞);

and

T
 Ux =

{

–x, x ∈ (–∞, ],
, x ∈ [, +∞).

Then

Gx = Ux =



T
 Ux +




TUx +



Ux +



x

=

{

– 
 x, x ∈ (–∞, ],


 x, x ∈ [, +∞).

From the above, we can get F(G) = {}, that is, F(G) = F(T) ∩ F(T).
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Finally, we show that G is nonexpansive.
() If x, y ∈ (–∞, ], it is easy to see that

∣
∣
∣
∣
–




x +



y
∣
∣
∣
∣
≤ |x – y|.

() If x, y ∈ [, +∞), we have

∣
∣
∣
∣




x –



y
∣
∣
∣
∣
≤ |x – y|.

() If x ∈ (–∞, ] and y ∈ [, +∞), then

∣
∣
∣
∣
–




x –



y
∣
∣
∣
∣



– |x – y|

= –



x –
,
,

y +



xy

≤ 
(

since x ≤  and y ≥ , then



xy ≤ 
)

.

Hence,

∣
∣
∣
∣
–




x –



y
∣
∣
∣
∣
≤ |x – y|.

3 Main results
Theorem . Let C be a nonempty closed convex subset of the real Hilbert space H . For
every i = , , . . . , N , let Ti : C → C be κi-strict pseudo-contractive mappings and T : C → C
be a ρ-strictly pseudononspreading mapping for some ρ ∈ [, ). For i = , , . . . , N , let πi =
(αi,βi,γi, δi), where αi,βi,γi, δi ∈ [, ], αi + βi + γi + δi =  and satisfy

(i) κ ≤ β <  – κ and α(κ + β) < β( – β – κ);
(ii) βi ≥ κi, κi < γi <  and κiαi ≤ βiγi – βiκi for i = , , . . . , N .

Let G be the G-mapping generated by T, T, . . . , TN and π,π, . . . ,πN . Assume that F =
F(T) ∩ ⋂N

i= F(Ti) 
= ∅. Pick any u, x ∈ C, let {xn} be a sequence generated by

⎧

⎪⎨

⎪⎩

yn = ( – sn)xn + snPC(I – λn(I – T))xn,
zn = ( – tn)xn + tnPC(I – λn(I – T))yn,
xn+ = anu + bnzn + cnGzn,

(.)

where {sn}, {tn}, {an}, {bn}, {cn} ⊂ [, ] and {λn} ⊂ (, –ρ) satisfy the following conditions:
() an + bn + cn = ;
() limn→∞ an =  and

∑∞
n= an = ∞;

() lim infn→∞ bn >  and lim infn→∞ cn > ;
()

∑∞
n= λn < ∞;

()
∑∞

n= |λn+ – λn|,∑∞
n= |sn+ – sn|,∑∞

n= |tn+ – tn|,∑∞
n= |an+ – an|,

∑∞
n= |bn+ – bn|,∑∞

n= |cn+ – cn| < ∞.
Then {xn} converges strongly to x = PFu.
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Proof Step . Firstly, we show that L is bounded, where

L = max
n∈N

{‖u‖,‖xn‖,‖zn‖,‖Gzn‖,
∥
∥PC

(

I – λn(I – T)
)

xn
∥
∥,

∥
∥PC

(

I – λn(I – T)
)

yn
∥
∥,

∥
∥(I – T)xn – (I – T)xn–

∥
∥,

∥
∥(I – T)yn – (I – T)yn–

∥
∥,

∥
∥(I – T)xn

∥
∥,

∥
∥(I – T)yn

∥
∥
}

. (.)

Indeed, take p ∈ F arbitrarily. From (.), we have

‖xn+ – p‖ = ‖anu + bnzn + cnGzn – p‖
=

∥
∥an(u – p) + bn(zn – p) + cn(Gzn – p)

∥
∥

≤ an‖u – p‖ + bn‖zn – p‖ + cn‖Gzn – p‖
≤ an‖u – p‖ + bn‖zn – p‖ + cn‖zn – p‖
= an‖u – p‖ + ( – an)‖zn – p‖. (.)

From Lemma . and (.), we have

‖zn – p‖ =
∥
∥( – tn)xn + tnPC

(

I – λn(I – T)
)

yn – p
∥
∥

≤ ( – tn)‖xn – p‖ + tn
∥
∥PC

(

I – λn(I – T)
)

yn – p
∥
∥

≤ ( – tn)‖xn – p‖ + tn‖yn – p‖, (.)

and

‖yn – p‖ =
∥
∥( – sn)xn + snPC

(

I – λn(I – T)
)

xn – p
∥
∥

≤ ( – sn)‖xn – p‖ + sn
∥
∥PC

(

I – λn(I – T)
)

xn – p
∥
∥

≤ ( – sn)‖xn – p‖ + sn‖xn – p‖
= ‖xn – p‖. (.)

Substituting (.) and (.) into (.), we obtain that

‖xn+ – p‖ ≤ an‖u – p‖ + ( – an)‖xn – p‖. (.)

From (.), we can see by induction that

‖xn+ – p‖ ≤ max
{‖u – p‖,‖x – p‖}, ∀n ≥ . (.)

This implies that {xn} is bounded. Then {yn}, {zn} and {Gzn} are bounded. From Lemma .
and the boundedness of {xn} and {yn}, it can be seen that {PC(I – λn(I – T))xn} and {PC(I –
λn(I – T))yn} are bounded. And from Lemma ., we also have that {(I – T)xn – (I – T)xn–}
and {(I – T)yn – (I – T)yn–} are bounded. Hence, L is bounded.

Step . Next, we prove that limn→∞ ‖xn+ – xn‖ = .
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From (.), it follows that

‖xn+ – xn‖
=

∥
∥anu + bnzn + cnGzn – (an–u + bn–zn– + cn–Gzn–)

∥
∥

=
∥
∥(an – an–)u + bn(zn – zn–) + (bn – bn–)zn– + cn(Gzn – Gzn–)

+ (cn – cn–)Gzn–
∥
∥

≤ |an – an–|‖u‖ + bn‖zn – zn–‖ + |bn – bn–|‖zn–‖ + cn‖Gzn – Gzn–‖
+ |cn – cn–|‖Gzn–‖

≤ |an – an–|L + bn‖zn – zn–‖ + |bn – bn–|L + cn‖zn – zn–‖ + |cn – cn–|L
= ( – an)‖zn – zn–‖ + |an – an–|L + |bn – bn–|L + |cn – cn–|L, (.)

‖zn+ – zn‖
=

∥
∥( – tn)xn + tnPC

(

I – λn(I – T)
)

yn –
(

( – tn–)xn–

+ tn–PC
(

I – λn–(I – T)
)

yn–
)∥
∥

≤ ∥
∥( – tn)xn – ( – tn–)xn–

∥
∥ +

∥
∥tnPC

(

I – λn(I – T)
)

yn

– tn–PC
(

I – λn–(I – T)
)

yn–
∥
∥

≤ ( – tn)‖xn – xn–‖ + |tn – tn–|‖xn–‖ + tn
∥
∥PC

(

I – λn(I – T)
)

yn

– PC
(

I – λn–(I – T)
)

yn–
∥
∥

+ |tn – tn–|
∥
∥PC

(

I – λn–(I – T)
)

yn–
∥
∥

≤ ( – tn)‖xn – xn–‖ + |tn – tn–|L + tn
∥
∥
(

I – λn(I – T)
)

yn –
(

I – λn–(I – T)
)

yn–
∥
∥

+ |tn – tn–|L
≤ ( – tn)‖xn – xn–‖ + |tn – tn–|L + tn‖yn – yn–‖

+ tn
∥
∥λn(I – T)yn – λn(I – T)yn– + λn(I – T)yn– – λn–(I – T)yn–

∥
∥

≤ ( – tn)‖xn – xn–‖ + |tn – tn–|L + tn‖yn – yn–‖
+ tnλn

∥
∥(I – T)yn – (I – T)yn–

∥
∥ + tn|λn – λn–|

∥
∥(I – T)yn–

∥
∥

≤ ( – tn)‖xn – xn–‖ + tn‖yn – yn–‖ + |tn – tn–|L + tnλnL + tn|λn – λn–|L, (.)

and

‖yn+ – yn‖
=

∥
∥( – sn)xn + snPC

(

I – λn(I – T)
)

xn –
(

( – sn–)xn–

+ sn–PC
(

I – λn–(I – T)
)

xn–
)∥
∥

≤ ∥
∥( – sn)xn – ( – sn–)xn–

∥
∥ +

∥
∥snPC

(

I – λn(I – T)
)

xn

– sn–PC
(

I – λn–(I – T)
)

xn–
∥
∥

≤ ( – sn)‖xn – xn–‖ + |sn – sn–|‖xn–‖ + sn
∥
∥PC

(

I – λn(I – T)
)

xn
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– PC
(

I – λn–(I – T)
)

xn–
∥
∥

+ |sn – sn–|
∥
∥PC

(

I – λn–(I – T)
)

xn–
∥
∥

≤ ( – sn)‖xn – xn–‖ + |sn – sn–|L + sn
∥
∥
(

I – λn(I – T)
)

xn –
(

I – λn–(I – T)
)

xn–
∥
∥

+ |sn – sn–|L
≤ ( – sn)‖xn – xn–‖ + |sn – sn–|L + sn‖xn – xn–‖

+ sn
∥
∥λn(I – T)xn – λn(I – T)xn– + λn(I – T)xn– – λn–(I – T)xn–

∥
∥

≤ ‖xn – xn–‖ + |sn – sn–|L + snλn
∥
∥(I – T)xn – (I – T)xn–

∥
∥

+ sn|λn – λn–|
∥
∥(I – T)xn–

∥
∥

≤ ‖xn – xn–‖ + |sn – sn–|L + snλnL + sn|λn – λn–|L. (.)

Substituting (.) and (.) into (.), we can get that

‖xn+ – xn‖
≤ ( – an)‖zn – zn–‖ + |an – an–|L + |bn – bn–|L + |cn – cn–|L
≤ ( – an)

[

( – tn)‖xn – xn–‖ + tn‖yn – yn–‖ + |tn – tn–|L
+ tnλnL + tn|λn – λn–|L

]

+ |an – an–|L + |bn – bn–|L + |cn – cn–|L
≤ ( – an)

[

( – tn)‖xn – xn–‖ + tn
(‖xn – xn–‖ + |sn – sn–|L

+ snλnL + sn|λn – λn–|L
)]

+ ( – an)|tn – tn–|L + ( – an)tnλnL + ( – an)tn|λn – λn–|L
+ |an – an–|L + |bn – bn–|L + |cn – cn–|L

= ( – an)‖xn – xn–‖ + ( – an)tn|sn – sn–|L + ( – an)tnsnλnL

+ ( – an)tnsn|λn – λn–|L
+ ( – an)|tn – tn–|L + ( – an)tnλnL + ( – an)tn|λn – λn–|L
+ |an – an–|L + |bn – bn–|L + |cn – cn–|L

= ( – an)‖xn – xn–‖ + θn, (.)

where

θn = ( – an)tn|sn – sn–|L + ( – an)tnsnλnL + ( – an)tnsn|λn – λn–|L
+ ( – an)|tn – tn–|L + ( – an)tnλnL + ( – an)tn|λn – λn–|L
+ |an – an–|L + |bn – bn–|L + |cn – cn–|L. (.)

By the conditions in Theorem ., we can get that

∞
∑

n=

θn < ∞. (.)
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Thus, from Lemma . and (.), we have

lim
n→∞‖xn+ – xn‖ = . (.)

Step . In this step, we will show that limn→∞ ‖Gzn – zn‖ =  and limn→∞ ‖xn – zn‖ = .
From Lemma ., (.), (.) and (.), we have

‖xn+ – p‖ = ‖anu + bnzn + cnGzn – p‖

=
∥
∥an(u – p) + bn(zn – p) + cn(Gzn – p)

∥
∥



= an‖u – p‖ + bn‖zn – p‖ + cn‖Gzn – p‖

– anbn‖u – zn‖ – ancn‖u – Gzn‖ – bncn‖Gzn – zn‖

≤ an‖u – p‖ + bn‖zn – p‖ + cn‖Gzn – p‖ – bncn‖Gzn – zn‖

≤ an‖u – p‖ + bn‖zn – p‖ + cn‖zn – p‖ – bncn‖Gzn – zn‖

≤ an‖u – p‖ + ( – an)‖xn – p‖ – bncn‖Gzn – zn‖

≤ an‖u – p‖ + ‖xn – p‖ – bncn‖Gzn – zn‖, (.)

which implies that

bncn‖Gzn – zn‖ ≤ an‖u – p‖ + ‖xn – p‖ – ‖xn+ – p‖

≤ an‖u – p‖ +
(‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖. (.)

Since lim infn→∞ bn > , lim infn→∞ cn > , limn→∞ an = , limn→∞ ‖xn+ – xn‖ =  and by
the boundedness of ‖u – p‖ and {xn}, we have

lim
n→∞‖Gzn – zn‖ = . (.)

Again,

‖xn – zn‖ ≤ ‖xn – xn+‖ + ‖xn+ – zn‖
≤ ‖xn – xn+‖ + ‖anu + bnzn + cnGzn – zn‖
≤ ‖xn – xn+‖ + an‖u – zn‖ + cn‖Gzn – zn‖. (.)

Thus,

lim
n→∞‖xn – zn‖ = . (.)

Step . Now, we prove that lim supn→∞〈u – x, xn – x〉 ≤ , where x = PFu.
Take a subsequence {xni} of {xn} such that

lim sup
n→∞

〈u – x, xn – x〉 = lim
n→∞〈u – x, xni – x〉. (.)

Since {xn} is bounded, there exists a subsequence of {xn}, which converges weakly to x∗.
Without loss of generality, we may assume that xni ⇀ x∗. From (.), we have zni ⇀ x∗.
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From (.) and Lemma ., we have x∗ = Gx∗, that is, x∗ ∈ F(G). Since xni ⇀ x∗, then
x∗ ∈ F(T). In fact, if x∗ /∈ F(T), then Tx∗ 
= x∗. Thus,

(

I – λni (I – T)
)

x∗ 
= x∗. (.)

By Lemma ., we have

lim inf
i→∞

∥
∥xni – x∗∥∥ < lim inf

i→∞
∥
∥xni –

(

I – λni (I – T)
)

x∗∥∥

≤ lim inf
i→∞

(∥
∥xni – x∗∥∥ + λni

∥
∥(I – T)x∗∥∥)

≤ lim inf
i→∞

∥
∥xni – x∗∥∥. (.)

This is a contradiction. Therefore,

x∗ ∈ F = F(T) ∩
N
⋂

i=

F(Ti). (.)

This together with the property of metric projection implies that

lim sup
n→∞

〈u – x, xn – x〉 = lim
n→∞〈u – x, xni – x〉 =

〈

u – x, x∗ – x
〉 ≤ . (.)

Step . Finally, we will show that xn → x as n → ∞.

‖xn+ – x‖

= 〈anu + bnzn + cnGzn – x, xn+ – x〉
= an〈u – x, xn+ – x〉 + bn〈zn – x, xn+ – x〉 + cn〈Gzn – x, xn+ – x〉
≤ an〈u – x, xn+ – x〉 + bn‖zn – x‖‖xn+ – x‖ + cn‖Gzn – x‖‖xn+ – x‖
≤ an〈u – x, xn+ – x〉 + bn‖zn – x‖‖xn+ – x‖ + cn‖zn – x‖‖xn+ – x‖
≤ an〈u – x, xn+ – x〉 + bn‖xn – x‖‖xn+ – x‖ + cn‖xn – x‖‖xn+ – x‖

≤ an〈u – x, xn+ – x〉 +
bn


(‖xn – x‖ + ‖xn+ – x‖)

+
cn


(‖xn – x‖ + ‖xn+ – x‖), (.)

that is,

‖xn+ – x‖ ≤
(

 –
an

 + an

)

‖xn – x‖ +
an

 + an
〈u – x, xn+ – x〉. (.)

It is clear that
∑∞

n=
an

+an
= ∞. Hence, applying (.), (.) and Lemma ., we obtain

immediately that

lim
n→∞‖xn+ – x‖ = , (.)

that is, xn → x as n → ∞. This completes the proof. �
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4 Application
From Theorem ., we can obtain the following theorem.

Theorem . Let C be a nonempty closed convex subset of the real Hilbert space H . For
every i = , , . . . , N , let Ti : C → C be nonexpansive mappings and T : C → C be a ρ-strictly
pseudononspreading mapping for some ρ ∈ [, ). For i = , , . . . , N , let πi = (αi,βi,γi, δi),
where αi,βi,γi, δi ∈ [, ], αi + βi + γi + δi =  and satisfy

(i)  < β <  and α <  – β;
(ii)  < γi <  for i = , , . . . , N .

Let G be the G-mapping generated by T, T, . . . , TN and π,π, . . . ,πN . Assume that F =
F(T) ∩ ⋂N

i= F(Ti) 
= ∅. Pick any u, x ∈ C, let {xn} be a sequence generated by

⎧

⎪⎨

⎪⎩

yn = ( – sn)xn + snPC(I – λn(I – T))xn,
zn = ( – tn)xn + tnPC(I – λn(I – T))yn,
xn+ = anu + bnzn + cnGzn,

(.)

where {sn}, {tn}, {an}, {bn}, {cn} ⊂ [, ] and {λn} ⊂ (, –ρ) satisfy the following conditions:
() an + bn + cn = ;
() limn→∞ an =  and

∑∞
n= an = ∞;

() lim infn→∞ bn >  and lim infn→∞ cn > ;
()

∑∞
n= λn < ∞;

()
∑∞

n= |λn+ – λn|,∑∞
n= |sn+ – sn|,∑∞

n= |tn+ – tn|,∑∞
n= |an+ – an|,

∑∞
n= |bn+ – bn|,∑∞

n= |cn+ – cn| < ∞.
Then {xn} converges strongly to x = PFu.

Lemma . [] Let C be a nonempty closed convex subset of H and T : C → H be a ξ -
inverse-strongly monotone mapping, then for all x, y ∈ C and η > , we have

∥
∥(I – ηT)x – (I – ηT)y

∥
∥

 =
∥
∥(x – y) – η(Tx – Ty)

∥
∥



= ‖x – y‖ – η〈Tx – Ty, x – y〉 + η‖Tx – Ty‖

≤ ‖x – y‖ + η(η – ξ )‖Tx – Ty‖. (.)

So, if  < η ≤ ξ , then I – ηT is a nonexpansive mapping from C to H .

From Theorem ., Lemmas . and ., we have the following result.

Theorem . Let C be a nonempty closed convex subset of the real Hilbert space H . For
every i = , , . . . , N , let Bi : C → H be ξi-inverse-strongly monotone mappings and T : C →
C be a ρ-strictly pseudononspreading mapping for some ρ ∈ [, ). For i = , , . . . , N , let
Ti : C → C be defined by Tix = PC(I – ηiBi)x for every x ∈ C and ηi ∈ (, ξi), and let πi =
(αi,βi,γi, δi), where αi,βi,γi, δi ∈ [, ], αi + βi + γi + δi =  and satisfy

(i)  < β <  and α <  – β;
(ii)  < γi <  for i = , , . . . , N .
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Let G be the G-mapping generated by T, T, . . . , TN and π,π, . . . ,πN . Assume that F =
F(T) ∩ ⋂N

i= F(Ti) 
= ∅. Pick any u, x ∈ C, let {xn} be a sequence generated by

⎧

⎪⎨

⎪⎩

yn = ( – sn)xn + snPC(I – λn(I – T))xn,
zn = ( – tn)xn + tnPC(I – λn(I – T))yn,
xn+ = anu + bnzn + cnGzn,

(.)

where {sn}, {tn}, {an}, {bn}, {cn} ⊂ [, ] and {λn} ⊂ (, –ρ) satisfy the following conditions:
() an + bn + cn = ;
() limn→∞ an =  and

∑∞
n= an = ∞;

() lim infn→∞ bn >  and lim infn→∞ cn > ;
()

∑∞
n= λn < ∞;

()
∑∞

n= |λn+ – λn|,∑∞
n= |sn+ – sn|,∑∞

n= |tn+ – tn|,∑∞
n= |an+ – an|,

∑∞
n= |bn+ – bn|,∑∞

n= |cn+ – cn| < ∞.
Then {xn} converges strongly to x = PFu.
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