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Abstract

In this paper, we introduce a new mapping in a real Hilbert space to prove a strong
convergence theorem for finding a common fixed point of a finite family of strictly
pseudo-contractive mappings and a strictly pseudononspreading mapping.
Moreover, we also obtain a strong convergence theorem for a finite family of
inverse-strongly monotone mappings and a strictly pseudononspreading mapping.
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1 Introduction

In this paper, we assume that H is a real Hilbert space with the inner product (-, -) and the
induced norm | - ||, and C is a nonempty closed convex subset of H. Let T: C — C be a
mapping. F(T) denotes the set of fixed points of the mapping T, i.e., F(T) ={x € C: Tx =
x}.

Recall that a mapping T : C — C is nonexpansive if
ITx - Tyll < llx =y, Vax,yeC. 1.1)

A mapping T : C — C is k-strictly pseudo-contractive if there exists a constant « € [0,1)
such that

1T - Tyl® < llx—y% + | - Tx— (L= T)y|?,

Vx,y € C. (1.2)

A mapping T : C — C is p-strictly pseudononspreading if there exists a constant p € [0,1)
such that

1T — Ty|* < lx = g% + p|| U = T)x = (I = T)y|)* + 22 = T,y = Ty), Va,ye C. (1.3)
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It is obvious that the 0-strictly pseudo-contractive mapping 7 is a nonexpansive mapping.
Note that (1.2) is equivalent to

1-
(Tx— Ty, x—) < |lx—y|* - TKHU— T)x— (- Ty,

Vx,y € C, (1.4)

and the «-strictly pseudo-contractive mapping 7T is Lipschitz continuous with constant
i—i, that is,

l+k
1 Tx - Tyl < ﬁllx—yll, Vx,y € C. (L5)

A mapping T': C — H is said to be &-inverse-strongly monotone if there exists a positive
real number & such that

(Tx - Ty, x—y) > £ Tx - Ty||*, Vx,yeC. (1.6)

Finding the fixed points of nonexpansive mappings is an important topic in the the-
ory of nonexpansive mappings, and it has wide applications in a number of applied areas
such as the convex feasibility problem [1-3], the split feasibility problem [4], image recov-
ery and signal processing [5]. After that, as an important generalization of nonexpansive
mappings, strictly pseudo-contractive, strictly pseudononspreading and inverse-strongly
monotone mappings became one of the most interesting studied classes of nonexpansive
mappings. Iterative methods for them have been extensively investigated (see, e.g., [6—19]
and the references contained therein).

In 2000, Takahashi and Shimoji [20] introduced a W-mapping generated by T, T,
..., T, and a1, as,...,a, as follows.

Definition 1.1 [20] Let C be a convex subset of a Banach space E. Let T}, T5,..., T, be
finite mappings of C into itself, and let a;, oy, ..., @, be real numbers such that 0 <¢; <1
foreveryi=1,2,...,r. Then we define a mapping W of C into itself as follows:

U =o1Ti + (1 -ay)l,

Ug = OlngUl + (1 —(Xg)],

Uz =asTsly + (1 - a3)l,

U =a, Tr—l U,o + (1 - ar—l)I:

W=U=oTU_+1-a)l
Such a mapping W is called the W-mapping generated by T3, T5,..., T, and a3, t2,..., .

Lemma 1.1 [20] Let C be a closed convex subset of a Banach space E. Let Ty, T, ..., T,
be nonexpansive mappings of C into itself such that (\;_, F(T;) is nonempty, and let
a1,0,...,0, be real numbers such that 0 < «; <1 for every i =1,2,...,r. Let W be the W-
mapping of C into itself generated by Ty, T», ..., T, and o, a3, .. .,a,. Then W is asymptot-
ically regular. Further, if E is strictly convex, then F(W) = (._,; F(T;).
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In 2009, Kangtunyakarn and Suantai [21] gave a K-mapping generated by T3, T5,..., Ty
and Ay, As,. .., Ax as follows.

Definition 1.2 [21] Let C be a nonempty convex subset of a real Banach space. Let {Ti}ﬁ 1
be a finite family of mappings of C into itself, and let 11, A5,..., Ay be real numbers such
that 0 <X; <1foreveryi=1,2,...,N. We define a mapping K : C — C as follows:

Ul = )\lTl + (1 - )\1)1,
Uy = Tl + (1 - 2p)U,

Uz = A3 T3l + (1 - A3)Uy,

Un-1=AnaTnalyn-s + (1= o) Un-a,

K= UN = ANTNUN—I + (1 - )\N)UN—I'
Such a mapping K is called the K-mapping generated by 71, T5,..., Ty and A, Ay, ..., AN.

In 2014, Suwannaut and Kangtunyakarn [22] established the following main result for
the K-mapping generated by T3, T5,... Ty and Aq, Ag, ..., AN.

Lemma 1.2 [22] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
(TN, be a finite family of k;-strictly pseudo-contractive mappings of C into itself with «; <
wforalli=1,2,...,N,and ﬂf\il F(T;) #9.Let Ay, Ao, ..., AN bereal numbers with 0 < A; < y;
foralli=1,2,...,N and y + y» < 1. Let K be the K-mapping generated by T1, T, ..., Ty and
AL A2 ..., An. Then the following properties hold:

(i) F(K) = ML F(T);

(i) K is a nonexpansive mapping.

In 2009, Kangtunyakarn and Suantai [23] also introduced an S-mapping generated by
T1,T5,..., Ty and aq, s, . .., an as follows.

Definition 1.3 [23] Let C be a nonempty convex subset of a real Banach space. Let {T;}¥,
be a finite family of mappings of C into itself. For each j =1,2,...,N, let o; = (¢, &), &2},
where ai,o/z,o/s €[0,1] and 0/1 + 0/2 + 0/3 =1. We define the mapping S: C — C as follows:

Uy =1,
L[1 = (XllTluO + C(é[,[o +O{é1,
Uz = 0[12T2U1 + (X%Ul +(152.1,

Us = Ol?TgUz +a§’L[2 +a§1,

N-1 N-1 N-1
Uya =0y  InalUnog+ay Uy +ag

S=Uy=a)TxUyy +ad Uy +ad'1.

This mapping is called the S-mapping generated by T3, T5,..., Ty and oy, aa, . .., 0.
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In 2010, Kangtunyakarn and Suantai [24] gave the following lemma for the S-mapping

generated by T, T,..., Ty and a3, 2,..., an.

Lemma 1.3 [24] Let C be a nonempty closed convex subset of a real Hilbert space.
Let {T;}Y, be a finite family of x;-strict pseudocontractive mappings of C into C with
ﬂfilF(T,-) #0 and k = max{x; : i = 1,2,...,N}, and let o;j = (Ol{,oté,oté) elIxIxlj=
1,2,...,N, where I = [0,1], &, + o, + o =1, o, &} € (ic,1) for all j =1,2,...,N — 1 and
otf[ € (k,1], aé\[ € [«,1), 0/2 € [«,1) forallj=1,2,...,N. Let S be the mapping generated by
T, Ts, ..., Tn and oq,s,...,ay. Then F(S) = ﬂf\il F(T;) and S is a nonexpansive mapping.

Let T: C — H. The variational inequality problem is to find a point x € C such that
(Ax,y—x) >0, VyeC. 1.7)

The set of solutions of (1.7) is denoted by VI(C, A).

In the recent years, there have been many research works concerning the problem of
approximating a common fixed point of various classes of nonlinear mappings by using
W -mappings, K-mappings and S-mappings (see, e.g., [20—43]).

Recently, Kangtunyakarn [44] proposed an iterative algorithm for finding a common
element of the set of fixed points of a « -strictly pseudononspreading mapping and a finite

family of the set of solutions of variational inequality problems as follows.

Theorem 1.1 [44] Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. For every i =1,2,...,N, let B; : C — H be §;-inverse strongly monotone map-
pings and let T : C — C be a k-strictly pseudononspreading mapping for some « € [0,1).
Let G; : C — C be defined by Gix = Pc(I — nB;)x for every x € C and n € (0,26;) for
every i =1,2,...,N, and let §; = (a{,aé,aé) el xIxI j=12,...,N, where I = [0,1],
o+, +dy=1,0d €(01) forall j=1,2,...,N -1, a¥ € (0,1], &), &; € [0,1) for all
j=1,2,...,N.LetS: C — C bethe S-mapping generated by G, Gs, ...,Gy and §1,8,...,8N.
Assume that § = F(T) N ﬂf\il VI(C,B;) #0. Foreveryn € N,i=1,2,...,N, let x;,u € C and

{x,} be a sequence generated by
Kpsl = Oylh + ﬂnPC(I — Ay - T))x,, + YuSx,, VneN, (1.8)

where {oty}, {Bu}, {vn} {Au} C (0,1) such that o, + By + vu =1, Bu € [c,d] C (0,1), {A,} C
(0,1 - k) and suppose the following conditions hold:
(i) limyoooay =0andy 0oy, = 00;
(ii) D02 Ay < 00;
(i) Doy At = Auls Yooy Vet = Vauls Dot 10me1 = @by D2y | B = Bul < 00.
Then the sequence {x,} converges strongly to z = Pzu.

Motivated and inspired by the above facts, we define a new mapping for the common
fixed point set of a finite family of strict pseudo-contractive mappings. Moreover, by using
our main result, we also obtain a new strong convergence theorem for the common fixed
point of a finite family of strict pseudo-contractive mappings and a strictly pseudonon-
spreading mapping.
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2 Preliminaries
Lemma 2.1 In the real Hilbert space H, the following relations hold:
(@) lloe + 1% = Nl + 242, 9) + Iy 11
(i) floc +y11* < [l2ll> +2(y, % + );
(i) 1307 all® = 207 ellell® = 3o, il — 112
Jor > Mai=1,0;€[0,1], Vi€ {1,2,...,m}.

Definition 2.1 Pc: H — C is called a metric projection if for every point x € H, there
exists a unique nearest point in C, denoted by Pcx, such that

lloe = Pex|| < llx=yll, VyeC. (2.1)

Lemma 2.2 Let C be a nonempty closed convex subset of H and Pc : H — C be a metric
projection. Then
(i) 1Pcx—Pcyll* < (x—y,Pcx — Pcy), ¥x,y € H;
(i) Pc is a nonexpansive mapping, i.e., |Pcx — Pcy|| < ||lx =y, Vx,y € H;
(ili) (x—Pcx,y—Pcx) <0,Yxe H,ye C.

From the proof of Theorem 3.1 in [44], we have the following results.

Lemma 2.3 [44] Let C be a nonempty closed convex subset of H and T : C — C be a p-
strictly pseudononspreading mapping with F(T) # 0. Then

|Pc(I = - T))x—a*| < |x—a*| (2.2)
forany X € (0,1-p), x* € F(T).

Lemma 2.4 [44] Let C be a nonempty closed convex subset of H and T : C — C be a p-
strictly pseudononspreading mapping with F(T) # 0. Then

1+
73— < 22 ] 23
1-p
forany x* € F(T).
Lemma 2.5 [45] Let {s,} be a sequence of nonnegative real numbers such that
Sn+l =< (1 - an)sn + ﬂm Vn > 0: (24)
where {a,} is a sequence in (0,1) and {B,} is a sequence such that
(i) 2020 =00;
(ii) imsup,_, . o <0 o0r 3272 [Bal < 0.
Then lim,_, o S, = 0.
Lemma 2.6 [45] Let {s,} be a sequence of nonnegative numbers such that

Sual < (L= ap)sy + Py, Yn >0, (2.5)

where {a,} and {B,} are sequences of real numbers such that
(i) {on} C[0,1] and Y2, oy = 00;
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(ii) limsup,_, o By <0 o0r Y oooauBy < 00.
Then lim,_, S, = 0.

Let C be a nonempty subset of H and 7 : C — H be a mapping. Then T is said to be
demi-closed at v € H if for any sequence {x,} C C, the following implication holds:

x,—~ueC and Tx,—v imply Tu=v, (2.6)
where — (resp. —) denotes strong (resp. weak) convergence.

Lemma 2.7 [46] Let C be a nonempty closed convex subset of H and T : C — H be a
nonexpansive mapping. Then the mapping I — T is demi-closed at zero.

Lemma 2.8 (Opial’s property [47]) Ifx, — u, then the following inequality holds:
liminf||x, — y|| > liminf||x, —u|, VyeH,y#u. (2.7)
n— 00 n—0o00
We define a new mapping as follows.

Definition 2.2 Let C be a nonempty convex subset of a Banach space E. Let {T;}Y, be a
finite family of mappings of C into itself. Foreach i = 1,2,...,N, let 7; = (o}, Bi, vi» 8;), where
o, B, vir i € [0,1] and «; + B; + y; + 8; = 1. We define the mapping G : C — C as follows:

Uy =1,
Uy = TiUy + pr Tily + iUy + 81,
L[z = 012T22L[1 + ﬂzTQUl + )/2U1 + 821,

Us = a3 T3l + B3T3l + y3Us + 831,

Un=an1Tg Una + BnaTnaln-a + yn-1Un—2 + Snad,

G-= UN = (XNT]%[UN,l + ﬁNTNUN—l + VNUN—I + SNI.
This mapping is called the G-mapping generated by T3, T5,..., Ty and 73, 7o, ..., TN

We remark that (i) if o; = 0 for every i = 1,2,...,N, then G-mapping is reduced to S-
mapping; (ii) if ¢; = 0 and y; = O for every i = 1,2,...,N, then G-mapping is reduced to
W -mapping; (iii) if «; = 0 and §; = 0 for every i = 1,2,..., N, then G-mapping is reduced to
K-mapping.

Lemma 2.9 Let C be a nonempty closed convex subset of the real Hilbert space H. For every
i=1,2,...,N, let T;: C — C be k;-strict pseudo-contractive mappings with ﬂf\il F(T;) # 0,
and let w; = (a;, Bi, v, 8i), where a, Bi, Vi, 8; € [0,1] and a; + B; + y; + 8; = 1. Let G be the
G-mapping generated by T1, T», ..., Ty and 71, o, . .., N . If the following conditions hold:
(i) w1 < 1 <l—kyand ay(iy + B1) < pr(1 - B1 — k1);
(i) Bi =k ki <y;<1andkjo; < Biy; — Biki fori=2,3,...,N.

Then F(G) = ﬂf\il F(T;) and G is a nonexpansive mapping.
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Proof 1t is clear that ﬂﬁ\il F(T;) € F(G). Next, we will show that F(G) C ﬂf\il F(T)).
Let xg € F(G) and x* € ﬂﬁl F(T;), then we have

[0 -7
- lGso -
= [lon (T2 Un10 — &) + B (TnUn1%0 — %) + ya (Un-1%0 — %) + 8n (0 — %) ||
= an | T2 Un1x0 - ||* + By | TnUnxo - 2|
el Uscaso - + oy -
—an By | T2 Unaxo - TnUnaxo|* — anyn | T3 Un-1%0 — Unao|)?
— andy || T3 Un-1%0 = 0| = Byl T U160 = Unao |2
= BudN I T Un—1%0 — %o 1> = yndn | Un-axo — o1
< an | T2 Un1x0 - |* + B | TnUn-xo - 2|
+ || Unaxo — x| + S 0 — 2 ||* = an By || T2 Un1%0 — T Un1%o]”
- By | TnUn-axo — Unao |1
<an (| Tnlnaxo - |* + ien | (I = To) TnUn 1o ||*)
+ Bl Tl = 2 |+ v Unato — ° | + 8 |0 = ° |
— o B | T3 Un-1%0 = TeUnavo | = Byl T U160 = Unaso |2
= (o + Bn) | TnUnaxo —%* | + anliew — Br) | T3 Un-1%0 — TnUnaxo |
| Unaxo — 2| + 8 |20 — % | = By I T Un 10 — Un 1o 12
< (an + B)(|| Unoaxo = |* + ien | (T = T Unaxo )
+an(ien — Bu) | T2 Un1x0 — TnUn o]
| Unvoawo = |+ 8 o — & ||* = By | T Un-a%0 — Un-1%o 1>
= (1= 80| Unaxo — 2 |* + (1= (1= 8x)) |0 — 2|
+an(ion = Bn) || T2 Un-axo — T Un-a%o||”
+ ((an + Br)ien = Buyn) I TnUn-axo — Uy %o |1

<(1-8y)|Un-1%o - x* H2 +(1=(1=6n)) %0 —x* Hz

< (= 83)[(1 = 8yo) | Unvato — | + (1= (1= 8x-1) [0 — 2| ]
+ (1 - (1 - 61\1)) on —x* ||2

= (1= 8n)(1 = 8n-1) | Un-awo — &* ”2 + (1= (1= 801 = 8n-1)) |20 — &* ||2
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N N
=[Ta-s) o - +< H(l—(SJ)on—x*”z

i=3 i=3

N

< [T -8[@-62) | thio —%||* + 82 0 — | *
i=3

+aa(icy — Bo) | T3 Unxo — Tallixo ||2 + (a2 + Ba)ica = Boya) I Tallhixo — Unaxo ||

N
+ (1 -Tla- 5,»)) %0 — 2| (2.8)

i=3
N

N
<[Ta-s)]thxo -’ +( -1‘[(1_5,-))||x0_x*||2
i=2 i=2

N
= H(l ) ||a1(T12x0 -x*)+ ,61(T1x0 - x*) +1-0q - ,Bl)(xo - x*) ||2
i=2
N
+ (1 -Ta- 3,»)) %0 —*|?
i=2
N
= 1_[(1 _8i)[aln lexo —x* ”2 + 51” Tlxo —x*H2 + (1—0(1 —ﬂl)”xo —x*||2
i=2

—on | Tixo — Tixo ||2 — oy (1 -0 = B1)|| Ti%0 — %0 ||2

—Bi(l— a1 = B1) | Tixo — xoI°] ( 1‘[(1 6)) o0 -

N
1_[(1 8)[a1||T2x0—x H +,31||T1x0—x || + 1 o] — ﬁl)on—x ||

i=2

—on | Tixo — Taxo ||2 - B = a1 = B1)[ Taxo — 0]

N
+ (1 - 1_[(1 - 8,)) ”xo —x* ”2

i=2
N
l_ll 8 0[1 HTlxo—x || +K1|| 1 T1 T1x0” )+ﬁ1HT1x0—x ”
i=2

+ (L= = B1) |20 —*|* = B | T2x0 — Taaxo|* = P11 — it = B)II Toxo — %o 1]
N 2

+ (1 - l—[(l - 8,-)) ||x0 —x* ||
=2

N
= 1_[(1 = 8)[(ea + B1) || Taxo — &* ||2 +ay (i — B)|| TExo — Trxo H2
i=2

+ (1= aq = By)||xo — " ||2 - Bi(1 = a1 = 1) Taxo — %o %]

N
+ (1 - l_[(l - 5,’)) ||x0 —x* ||2
i=2
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N

< l_[(l = 8)[ (o + B (|0 — &* ||2 + 11| (I = Ty)xo ||2) +ay (k1 — By) | TEwo — Taxo H2
=2
+ (L= - B1) |20 — %> = B1(1 = a1 = B Tixo — %0 1%]

N
+ (1 - l_[(l - 8,')> ”xo —x* ”2

i=2
al 2 2

= 1_[(1 = 8)[ %0 —&*||” + en(ier — B1) | TT 0 — Taoco |
i=2

+ (o + Bk1 — Bl — o1 = B1)) | Tixo — %ol|]

N
+ (1 -T1a- 5,»)) %0 — 2| (2.9)

i=2

By the condition (i), we have

ik — B1)|| Txo — Tixo ||2 + (e + B = B — a1 = B1)) I Tixo — %)) <0. (2.10)
From (2.9) and §; <1 fori=2,3,...,N, it yields

o1 (it = )| Tixo — Trako|” + ((en + B — Bl — o = B) I Toto — o2 = 0. (2.11)
This implies that

I T2 — ol = 0. (2.12)
Therefore, T1xo = xo, that is, x9 € F(71). By the definition of U;, we have

Uixo = oy T Uoxo + B Toloxo + yiloxo + 81%0
2
= a1 T xo + Pr1Tixo + y1xo + 81x0
= a1 T1xo + Brxo + Y1xo + 1%

= %o. (2.13)
Again, by (2.8), (2.13) and §; <1 for i = 3,4,...,N, we have

aa(ica = Bo) | T3 Unxo — Tollixo ”2 + (a2 + B2)ica = Boya) | Tallixo — Unol|®

= ay(ics — B) | T2x0 — Too | + (02 + Bo)ica — Bays) | Taxo — %o 1>

> 0. (2.14)
From the condition (ii), this implies
[ T2x0 — %o = 0. (2.15)
Therefore, Toxo = xo, that is, xg € F(T,). By the definition of U5, we also have

szo =X0. (216)
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Using the same argument, we can conclude that
xo € F(T;), i=3,4,...,N. (2.17)

Hence, F(G) C ﬂﬁl F(T;).
Now, we show that G is nonexpansive. Let any x,y € C. Then

IGx - Gyl|*

= ”‘XN(T]%[UN—L’C - T)%[UN—U’) + Bn(TnUn-1x — TnUn-1y)
+ yN(Un-1x = Un-1y) + On(x ) ||2

< o || T3 Uy = T Uno1y|* + Bull Tnlinaax = Uyl
+ yn | Un-x = Un-ayll” + Snllx =y
—anBn | = Tn) TnUnax — (I - T1\1)T17\1L11\1—1}’||2
— B | = Ta) Ui = (I = Tn) Uy |

<an (I TnUn-ax — TnUn-1yII* + kx| (= Tn) TnUn-ax = (I - TN)TNUN—IJ’H2)
+ BN T Un-1x — TnUnoay > + yn |l Un-x = Un-ayll® + Snlle =yl
—anBn | = Tn) TnUnax — (I - TN)TNUN—U’HZ
- Buwn | = Tn)Unoax - (I - TN)UN—lyHZ

= (o + Bn) | TnUn-ax - TNUN—lyHZ
+an(kn — Bn)|| (= Tn) TnUn-1x — (I - Tz\z)Tz\rUJ\I—w’”2
+ yn | Un-x = Un-ayll® + Snllx =y
- By || = Tn)Unax — (I - Tz\z)Uz\z—v’H2

< (o + B (I Uy — Uyl + kn | (= T Unax = (= Ti)Un -1y *)
+an(en = Bn) || = To) TnUnax — (I - TN)TNUN—LV”Z
+ Yl Un-a% = Unayl® + Sl = 11
- By || = Tn)Unax — (I - TN)UN—lyH2

= (1= 83) | Un-rx = Un-ay|® + (1= (1= 8x) = y11?
+an (e = B)|| (= Tn) TnUn-ax - (I - TN)TNUN—LV”Z
+ ((aw + Bn)n = Buvw) | = Tn)Unox — (I - TN)UN—1y||2

<1 =80) I Unax = Uyl + (1= 1= 8n) lx = ylI?

< (1 =801 = Sn-) 1 Un—2x — Un—oyl* + (1= (1= 8x-1)) e = y11%]
+(1-1=80)lx-yI?

= (1= 8n)(1 = Sn-) [ Un—2x = Un—ayII* + (1 = (1 = 83) (1 = 85-1)) 16 =y
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N N
<[]a-sitnx-thy)? + (1 -T]a- si)) Il - y11?
i=2

i=2

N
=[-8 ]ea(T2x~ T2y) + Bu(Tax — Triy) + (L - en = Br)(x— )|
i=2

N
+ (1—]‘[(1—6») llx = 11>

i=2
N
< [Ta-s[oa| 72— T2y|* + Bull Tux — Tyl + (1 = ot — Bl -y
i=2

—on || - T) T — (I - Tl)leHZ Bl —ay - B)| (I - T)x— (I - Tl))’HZ]

N
¥ (1— []a —ai)) llx - 1>

i=2
N
<[a-s)[er(1 7w~ Tayll® + ka4 = T0) T — (4 = T Tay| ) + Bull Tax — Tay

i=2
+ (-1 = B)llx -yl — || (I - T) Tax — (I - Tl)le”2

— B == BT = To)x— (1 - Ty’

N
- (1_1‘[(1_5,.>> llx = 1>

i=2
N
= [T~ 80[(en + BT = Tryl? + 1 (ks = B)| (U = T1) Tox — (I - T) Ty
i=2

(=g = Bl —yI% = Bl = B) | (I = To)x— (I - To)y|]

N
+ (1—]‘[(1—6») llx = yII?

i=2
N
< Ta-s)[(e+ (Il = 31% + 11 | (1 = T)x — (1 - To)y )

i=2

rai(ic - )| (= T Thx = (L= T) Ty + (1= - Bl — 12

N
— B - - )| I - To)x— (I - T)y| "] + (1 - H(l—&)) llx = yII>

i=2
N

= [Ta -8l =y1? + et - B[ ~ T Tox— (I~ ) Try |
i=2

+ (o + Bk — Bl —on = B1)) | (T = T)x — (I - Tl)yﬂz]

N
+ (1—1"[(1—8») llx -1

i=2
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N N
<[Ja-s)lx—yl>+ (1 -T1a- 6;»)) llx = yII?
i=2 i=2
= [l —yl%. (2.18)

This completes the proof. g

Remark 2.1 From the above proof, we can see that the mapping G is quasi-nonexpansive
under the conditions in Lemma 2.9, that is,

|Gx =] < [ -2

, VxeC,x*eF(G). (2.19)

Example 2.1 Let T3, T, : R — R be defined by

-2x, x€[0,+00);

) St ’07
Tlx:{x x € (-00,0]
2

and

-2x, x¢€(-00,0],
sz =
X, x € [0, +00).

Then we observe that F(T7) = (—00,0] and F(T3) = [0, +00). Hence, F(T) N F(T,) = {0}.
Firstly, we show that 7; is a %-strictly pseudo-contractive mapping.
(1) If x,y € (00, 0], then we have
I Twx - Tiyl* = (x - )
and
|- Tx— (- Tyy|* = 0.
From the above, then there exists k1 € [0,1) such that

ITox = Tiyl> < =yl + 11 | (1 = To)x = (1 = Ty

(2) Ifx,y € [0, +00), then we have

3 33\ 9
|Thx - T1y||2 = (—§x+ 5}’) = E(x_)/)2

and

2
||(I— Ty)x— (I - Tl)y”2 = ((x+ %x) - <y+ %y)) = 24—5(x—y)2.

From the above, then there exists k; € [é, 1) such that

ITox = Tiyl> < e —yl1% + 11 | (T = To)x = (1 = Ty
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(3) Ifx € (—00,0] and y € [0, +00), then we have

3 2
| T — Tuyl)? = (x + 5y)

and
2 3\\* 25
||(1— Ty)x— (I - Tl)y|| = ((x—x) - <y+ §y>) = Zyz,
Note that
3\ 25 5 25
(x + 5.)/) - (x_y)2 —Ki Z}P = (E - Zlq)yZ + 5xy.

From the above, then there exists k1 € [é, 1) such that
2 2 2
T3 = Tuyl> < e =yl + 11 | (1 = To)ae = (1 = To)y| "

Next, we show that T; is a %—strictly pseudo-contractive mapping.
(1) If x,y € (00, 0], then we have

I To% = Toy|l* = (=25 + 29)* = 4(x ~ 9)°
and
[ =Ty U= Toy|” = (6 + 22) =+ 29))” = 9w = 5™,
From the above, then there exists «, € [%, 1) such that
I Tox = Toyl> < = yI2 + | (= To)x— (= To)y|”.
(2) If x,y € [0, +00), then we have
IT2% = Toy|l* = (2~ y)?
and
| = To)x— (- Ty)y|* = 0.
From the above, then there exists x5 € [0,1) such that
I Tox = Toyl> < = yI2 + | (= To)x— (= To)y|*
(3) Ifx € (—00,0] and y € [0, +00), then we have

[ Tox — Toyll* = (=2x — y)*
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and

| = To)x— (I = To)y|)* = ((x + 22) = (y - 3))” = 942,
Note that

(—2x — 9)? — (x — ) = Ik2x® = (3 — Yiy)x? + 6ixy.
From the above, then there exists «y € [%, 1) such that

1Ty = Toyl” < e =yl + 105 | (£ = To)oe = (1 = Toy”

Let

which satisfies condition (i) in Lemma 2.9. And

fo _x x € (-00,0],
—2x, x€[0,+00).

Then

1., 1 2 1
Ux==-Tix+=-Tix+ —x+-x=

5 5 5 5

x, X € (—OO, O]’
0, x€]0,+00).

Let

1111
Ty = e R R R B
7 3 2 42

which satisfies condition (ii) in Lemma 2.9. Again, we have

—2x, € (—00,0],
Tyl = x, x € (—00,0]
0, x € [0, +00);
and
-2x, € (—00,0],
T22U1x= oo ( 0 ]
0, x € [0, +00).
Then

1 _, 1 1 1
Gx=Ux=-T,Ux+ -Tolhx+ -Uix+ —x
7 3 2 42

L
42

] -3x xe(-00,0],
- x, x€[0,+00).

From the above, we can get F(G) = {0}, that is, F(G) = F(T1) N F(Ty).
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Finally, we show that G is nonexpansive.
(1) If x,y € (00, 0], it is easy to see that

SN I
——x+ = x-yl
A

(2) Ifx,y € [0, +00), we have

S IV B
—x— — 9.
)| =Y

(3) Ifx € (—00,0] and y € [0, +00), then

3 1 2 | 2
7XT Y| Y
40 , 1,763 , 99

19" T 17647 T2

. 99
<0 since x < 0 and y > 0, then Exyfo .

Hence,

3 1
“;x— E)” <lx-yl

3 Main results
Theorem 3.1 Let C be a nonempty closed convex subset of the real Hilbert space H. For
everyi=1,2,...,N,let T;: C — C be k;-strict pseudo-contractive mappings and T : C — C
be a p-strictly pseudononspreading mapping for some p € [0,1). For i =1,2,...,N, let w; =
(ctis B vir 81), where a;, Bi, vi, 8; € [0,1], o + Bi + i + 8; = 1 and satisfy

(i) k1 <B1<l—kyandoi(k + p1) < Bi(l-B1—K1);

(i) Bi =k ki <y <1landkjo; < Biy; — Biki fori=2,3,...,N.
Let G be the G-mapping generated by T\, T,,...,Tn and my,7s,...,wN. Assume that § =
F(T)N ﬂf\il F(T;) #9. Pick any u,x € C, let {x,} be a sequence generated by

IYn = (L =s,)%y + 8, P — 1(I = T))%n,
zy = (1= t)xy + t,Pc(l — X,(I - T))yn: (3.1)
Xyl = Apth + bz, + ¢,Gzp,

where {s,}, {t,}, {an}, {bn}, {cs} C[0,1] and {r,} C (0,1 - p) satisfy the following conditions:
1) a,+b,+c,=1;
(2) lim, ooy =0andy .. a, = 00;
(3) liminf,_, o b, > 0 and liminf,_, », ¢, > 0;
(4) D20 hn < 00;
(5) Ym0 A1 = Auls Do 1801 = Suls Do 1bns1 = tals Do 1@ns1 — anl,
Dm0 bt = bl D00 et = eal < 00.

Then {x,} converges strongly to x = Pzu.



Ke and Ma Fixed Point Theory and Applications (2015) 2015:116 Page 16 of 23

Proof Step 1. Firstly, we show that L is bounded, where

Pc(I= (I = T))xy

Pc(I = hnll =T))yn

’ ’

L = max{|lull, %], |2, | Gzall,
neN

|t = D)xy = (I = Thxa

(1 - T)yn - (1 - T)yn—l
(I = Tya| }- (3.2)

’ ’

’

|| (1 - T)xn

Indeed, take p € § arbitrarily. From (3.1), we have

%041 =PIl = lla@nts + buzy + €, Gz, — Pl
= || an( - p) + bu(zn — p) + cu(Gza - p) |
< aullu-pll +byllz, — pll + cullGz, — pli
< ayllu-pll +byllzy = pll + cullzn = pl

= ayllu - pll + 1 - an)llz. - pll. (3.3)
From Lemma 2.3 and (3.1), we have

Izn —pll = || = t)2n + taPc(I = AnT = T))y - p||
< @ =t)llxy = pll + ta|Pc(I = 20 = T))yu — p|

=< (1_tn)||xn —P|| +tn||yn_p”r (3'4)

and

ly. —pll = H (1= sp)x, + SnPC(]_ An(I - T))xn —P”
< (=)l = pll + 84| Pc(I = 2nT = T))xn — p |
< @ =su)llxn = pll + sullx, = pli

= % - pl. (35)
Substituting (3.4) and (3.5) into (3.3), we obtain that
%ne1 = pll < anll = pll + A = an)llx, - pll. (3.6)
From (3.6), we can see by induction that
”xn+l_p|| EmaX{HM—P”:HxO—P”}: VVIZ 0. (37)
This implies that {x,} is bounded. Then {y,}, {z,} and {Gz,} are bounded. From Lemma 2.3
and the boundedness of {x,} and {y,}, it can be seen that {Pc(I — A,(I — T))x,} and {Pc(I -
An(I=T))y,} are bounded. And from Lemma 2.4, we also have that {(/ - T)x,, — (I - T)x,_1}

and {(/ - T)y, — (I — T)y,-1} are bounded. Hence, L is bounded.

Step 2. Next, we prove that lim,,_, o, ||%,41 — %] = 0.



Ke and Ma Fixed Point Theory and Applications (2015) 2015:116

From (3.1), it follows that

%041 — %4l
= ||anu + bz, + ¢, Gz — (@ytt + by_1241 + €1-1GZy-1) ||
= [ (@n = @n1)ts + b2y — 2u-1) + (by = bp-1)Zu-1 + €u(Gzu — Gz1)
+(cn = €n-1)Gzn1 ”
<lan = apalllull + bullzn = zn-1ll + by = bu-alllzu-a | + €l Gz — Gz |
+1cn = cpalll Gzl
<lan = analL + bullzn = zua |l + by — bya|L + cullzn = Zna |l + |€n = €| L
=(L=anllzn = znall + la@n = @analL + [by = bya|L + |y — cpalL,
1Zns1 = znll
= || (1 =t + tuPc (I = 2T = T))y = (A = Lp1)%nn
+ tyaPe(l = e = T))yua) |
<[ @=t)wn = A= tu)xnr | + || &P (I = 1nT = T))yn
—ty1Pc (1 - A - T))J’nﬂ ”
< (U=t 1% = %1l + 180 = tua %1 | + 80| P (I = 2u T = T))ys
= Pc(I = hyaI = T))yu |

+ 1t = tual | Pe(I = Anr (T = T)) s |

Page 17 of 23

(3.8)

= (1 - tn)”xn - xn—l” + |tn - tn—1|L +1in || ([ - }‘n(l - T))yn - (I - )‘n—l(l - T))yn—l ||

+ |ty — tyalL
< (@ =t)llxn = x|l + 20t = tua L + tullyn = Yl

b || 2nl = Ty = 2ul = T)yno1 + Anl = )Yt = Ay = )y |
< (U= t)lln = xpall + 21t = tualL + tullyn = Yl

+ tuhn ”(1 - 1)y = =T)yua ” + Ay = Ayl ” (I = T)yua ”

< A=t )%y — x|l + Lallyn = Yu-1ll + 210 = Lyt IL + £y, L + ty| Ay — Xya | L,

and

1ye1 =yl
= (1= s + 0PI = 2l = T))aty = (1 = 1)1
+ 851 Pc (I = Ay (I = T)) %) |
< @ =su)xn = (1= sp1)nca | + [s6Pc(I = 2nll = T)),
— sy Pc(I =y (I = T |

< (U= s )19 = Xt | + 185 = St [ 1%n-1 | + 84 | Pc (I = 2T = T)) s

(3.9)
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= Pc(I=2yoa T = T))aya |
+ 180 = St || P (I = At (T = T))%a |
< (=519 = Xt | + 185 = St |L + 80 | (T = 2n(T = T))tn = (I = Apea (I = T) )00 |
+ Isn = suaalL
< (@ =su)lloen = ll + 2185 = Sp-1lL + Sulln — xua |l
+ 8| Al = TV = g = T)poy + Mg = TNy = Ayt (I = Tty |
< 1% = Xncall + 2085 = Snca|L + sk | (L= TNy = (I = )t |
+ Sl A = || (L= T)xa |

=< ”xn —Xn-1 ” + 2|Sn - Sn—1|L + SnknL + Snl)‘n - )"n—l |L (310)
Substituting (3.9) and (3.10) into (3.8), we can get that

%041 = %4l
< (U =an)llzn = zuall + l@n — @na|L + 16y — by a|L + |cy — o1 |L
<A -an)[( = t)l%n = Enea | + tallyn = Yua | + 21w = tua |L
+ budnL + tal oy = An1|L] + |Gy — an-a|L + by — bpoa|L + |cn — e |L
<@ =an)[(A = ta)ltn = Fnet | + ba (160 — Kt | + 25 — 551 |L
+ SuAuL + 8| Ay — k,,_llL)]
+2(1 = ap)lty = tualL + (1 = ap)tyhnL + (1 = @)ty — Apa|L
+lay —ana1lL + by — by |L + |c, — cpa|L
= (L=an)llxn —xpall + 20 = an)tulsy — sp-1|L + (1 = an)tusurnl
+ (1= an)tusu|ry — Ayl
+2(1 = a)|ty = tualL + (1= ap)tyhnL + (1= an)tylhy = Ay |L
+|ay —ana|L + |by = bya|L + |y — cua|L

= (1 - an) 0 = %pall + O, (311)
where

en = 2(1 - an)tn|sn - Sn—1|L + (1 - an)tnsn)\nL + (1 - ﬂn)tnsnp"n - )\‘}’1—1|L
+2(1 = ay)lty — tyalL + A = an)tuhnL + (1 — @)ty Ay — Ay |L

+|ay —ana|L + by — by_1|L + |cy — €y |L. (3.12)

By the conditions in Theorem 3.1, we can get that

00
Z 6, < oo. (3.13)
n=0
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Thus, from Lemma 2.5 and (3.11), we have
lim ||x,1 — %, = 0. (3.14)
n— 00

Step 3. In this step, we will show that lim,,_, o, [|Gz,, — z,|| = 0 and lim,,_, , ||x, — 2, = 0.
From Lemma 2.1, (3.1), (3.4) and (3.5), we have

”xn+l —P||2 = ||6{n1/£ + bnzn + CnGZn —P||2

|an(s = p) + Ba(zn — p) + €a(Gzu )|

2 2 2
anllu = plI” + bullzn — plI” + cull Gz, — p||

2 2 2
[ [ I

_anbn”u_zn _“ncn”u_ Gzn _bncn”Gzn —Zy

2 2 2 2
fﬂn”u_p” +bn||zn_p” +Cn||GZn_p|| —b,,C,,”GZ,,—Zn”
< _ 2 b _ 2 _ 2 —b G _ 2
< ayllu-pl~ + bullzy — plI” + cullzn — pll nCnll GZn — Zy ||

=< ﬂn||u—l9||2 + (1 —a,) %, —P||2 - byc,|| Gz, _Zn||2

<aullu —P||2 + [|xn —P||2 = buc,|Gz, _Zn”Z» (3.15)

which implies that

2
I

2 2 2
bucallGzy — 24 ||I” < anllu =pI7 + % = plI" = l%ni1 = pl

< aullu=pI* + (1% = pll + 121 =PI 1001 = 2. (3.16)

Since liminf,_, o b, > 0, liminf,_, o ¢, > 0, lim,_, o0 @, = 0, lim,,_, o [[X41 — %4 || = 0 and by
the boundedness of ||u — p|| and {x,,}, we have

lim ||Gz, —z,| = 0. (3.17)
n— 00
Again,

”xn - Zn” = ||xn _xn+1” + ||xn+l - Zrl”
=< ||xn _xn+1” + ||6lnbt + bnzn + CnGZn - Zn”

< 1w = X1 | + anllee = zu |l + €ull Gz — 2. (3.18)
Thus,
lim ||x, —z,|| = 0. (3.19)
n— 00

Step 4. Now, we prove that limsup,_, . (¥ — X, x, — %) < 0, where ¥ = Pzu.
Take a subsequence {x,,} of {x,} such that

limsup(u — X,%, — %) = lim (4 — %, x,, — ). (3.20)
11— 00 n— 00

Since {x,} is bounded, there exists a subsequence of {x,}, which converges weakly to x*.
Without loss of generality, we may assume that x,;, — x*. From (3.19), we have z,, — x*.



Ke and Ma Fixed Point Theory and Applications (2015) 2015:116 Page 20 of 23

From (3.17) and Lemma 2.7, we have x* = Gx¥, that is, x* € F(G). Since x,, — x*, then
x* € F(T). In fact, if x* ¢ F(T), then Tx* # x*. Thus,

(I =1, (I = T))x™ # 5. (3.21)
By Lemma 2.8, we have

lim infla,, — [ < liminfla,, — (1 =2, (7 = T))" |
< timinf(, =] + 2, (1= ")

—

< 1iminf“xm —-x* || (3.22)
11— 00

This is a contradiction. Therefore,
N
x* € §=F(T)N()E(T). (3.23)
i=1

This together with the property of metric projection implies that

limsup(u — %, %, — %) = lim (4 —%,%,, — %) = (u —x,x" —E) <0. (3.24)

H— 00 n—00

Step 5. Finally, we will show that x, — x as n — oo.

%1 — %12
={a,u+b,z, + ¢c,Gzy — X, %,,,1 — X)
= (U — X, %41 — %) + bp{2 — %, %041 — %) + €1 {GZyy — X, K41 — X)
< (U =%, %511 — %) + byllzn = X[ %041 — X[ + €ul| Gz = || [|241 — %]
< (U =%, %51 = %) + byllzy = X[ | %ns1 — X[ + cullzn = %[ 12041 — %]

< an (U —%,%001 = X) + byll%y — X % — %N + cullxn, — %N %501 — %]

by,
- - -2 -2
< (U =%, X1 — ) + E(Hxn = Z[I® + % — %[1%)

C _ _
+ o (llen =217 + 1 = 1), (3.25)
that is,
_ 2a _ 2a _ _
i1 = %> < (1= = )0 = EI* + —— (4 — %, X1 — X). (3.26)
l+a, l+a,

It is clear that ) -, 125:",, = 00. Hence, applying (3.24), (3.26) and Lemma 2.6, we obtain
immediately that

lim [|x,.1 - %[ =0, (3.27)

n— 00

that is, x, — X as n — 0o. This completes the proof. g
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4 Application

From Theorem 3.1, we can obtain the following theorem.

Theorem 4.1 Let C be a nonempty closed convex subset of the real Hilbert space H. For
everyi=1,2,...,N,let T;: C — C be nonexpansive mappingsand T : C — C be a p-strictly
pseudononspreading mapping for some p € [0,1). For i =1,2,...,N, let ; = (&;, Bi, Vi» 8i)s
where «;, Bi, Vi, 8; € [0,1], o + Bi + y; + 8; = 1 and satisfy

(i) 0<pr<landa; <1- By;

(i) 0O<y;<lfori=2,3,...,N.
Let G be the G-mapping generated by Ty, Ts,..., Tn and my,7,...,N. Assume that § =
F(T)N ﬂf\il F(T;) # 9. Pick any u,xq € C, let {x,} be a sequence generated by

Yn = (1= 82)%n + 8,Pc(l = k(I = T))xy,
Zy = (1 - tn)xn + tnPC(I - }‘n(l - T))ym (4'1)
Xpil = Al + byz, + ¢,Gz,,

where {s,}, {t,}, {an}, {bu}, {cn} C [0,1] and {A,} C (0,1- p) satisfy the following conditions:
1) a,+b,+c,=1;
(2) lim, ooy =0andy .. a, = 00;
(3) liminf,_, o b, > 0 and liminf,_, ¢, > 0;
(4) D00 Ay < 00;
(5) Yon2o et = Auls Yoo I8mer = Suls Yo lnst = bl g |@msr = aal,
Yoo bt = bal, 3520 Cnat = €l < 00.

Then {x,} converges strongly to x = Pzu.

Lemma 4.1 [48] Let C be a nonempty closed convex subset of H and T : C — H be a &-

inverse-strongly monotone mapping, then for all x,y € C and n > 0, we have

|T=nD)x—T-nDy|| = |(x=3) - n(Tx-Ty)|”
= llx=yI> = 20(Tx - Ty,x - y) + 0’| Tx - Ty|)>

< llx = yII* + n(n — 26) | Tx — Ty|*. (4.2)
So,if 0 <n <2&, then I - nT is a nonexpansive mapping from C to H.
From Theorem 4.1, Lemmas 2.2 and 4.1, we have the following result.

Theorem 4.2 Let C be a nonempty closed convex subset of the real Hilbert space H. For
everyi=1,2,...,N, let B;: C — H be §;-inverse-strongly monotone mappings and T : C —
C be a p-strictly pseudononspreading mapping for some p € [0,1). For i =1,2,...,N, let
T;: C — C be defined by Tix = Pc(I — n;B;)x for every x € C and n; € (0,2§;), and let 7r; =
(i, Biy Vi 8i), where a;, Bi, Vi 8; € [0,1], a; + B + v; + 8; = 1 and satisfy

(i) 0<pri<landa; <1-By;

(i) O<yi<lfori=2,3,...,N.
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Let G be the G-mapping generated by Ty, Ts,..., Tn and my,7,,...,N. Assume that § =
F(T)N ﬂf\il F(T;) # 0. Pick any u,xq € C, let {x,} be a sequence generated by

Yn = (1 _Sn)xn +SnPC(1_ }‘n(l - T))xnr
Zy = (1 - n)xn + tnPC(I - )WI(I - T))ym (43)
Xpsl = Anplh + bz, + ¢, Gz,

where {s,}, {tu}, {an}, {bn}, {cn} C [0,1] and {A,} C (0,1- p) satisfy the following conditions:
1) ap+b,+c,=1;
(2) lim,ooay, =0andy .. a, = 00;
(3) liminf,_, o b, > 0 and liminf,_, ., ¢, > 0;
(4) D0 hn < 00;
(5) 2020 et = Auls Yoo 181 = Suls Yoo et = Euls Yo | @mer = anl,
Ym0 bt = bl 350 et = cul < 00.

Then {x,} converges strongly to x = Pzu.
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