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Abstract
In this paper, we introduce a new class of Ćirić type single-valued mapping with
respect to u-distance and prove some fixed point theorems for this mapping. An
example is given to show that our results are a proper extension of many well-known
results. As an application, we establish the existence of a solution for an integral
equation.

1 Introduction
The Banach contraction principle is a remarkable result in metric fixed point theory. Over
the years, it has been generalized in different directions and spaces by several mathemati-
cians, see [–] and the references therein. In , Ćirić [] proved the following fixed
point theorem on a complete metric space, which generalizes the Banach contraction prin-
ciple: Let X be a complete metric space and let T : X → X be a quasi-contractive mapping;
i.e., there exists a constant q ∈ [, ) such that, for all x, y ∈ X,

d(Tx, Ty) ≤ q · max
{

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

.

Then:
() T has a unique fixed point w in X .
() limn→∞ Tnx = w for every x ∈ X .
() d(Tnx, w) ≤ [ qn

–q ]d(x, Tx) for every x in X .
Recently, Ume [] generalized the notion of τ -distance [] by introducing u-distance as
follows.

Let X be metric space with metric d. Then a function p : X × X → R+ is called a u-
distance on X if there exists a function θ : X × X × R+ × R+ → R+ such that the following
hold for x, y, z ∈ X:

(u) p(x, z) ≤ p(x, y) + p(y, z);
(u) θ (x, y, , ) =  and θ (x, y, s, t) ≥ min{s, t} for each s, t ∈ R+, and for any x ∈ X and for

every ε > , there exists δ >  such that |s – s| < δ, |t – t| < δ, s, s, t, t ∈ R+ and y ∈ X
imply |θ (x, y, s, t) – θ (x, y, s, t)| < ε;

(u) limn→∞ xn = x and limn→∞ sup{θ (wn, zn, p(wn, xm), p(zn, xm)) : m ≥ n} =  imply
p(y, x) ≤ limn→∞ inf p(y, xn) for all y ∈ X ;

(u) limn→∞ sup{p(xn, wm) : m ≥ n} = , limn→∞ sup{p(yn, zm) : m ≥ n} = , limn→∞ θ (xn,
wn, sn, tn) = , limn→∞ θ (yn, zn, sn, tn) =  imply limn→∞ θ (wn, zn, sn, tn) =  or
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limn→∞ sup{p(wm, xn) : m ≥ n} = , limn→∞ sup{p(zm, yn) : m ≥ n} = , limn→∞ θ (xn,
wn, sn, tn) = , limn→∞ θ (yn, zn, sn, tn) =  imply limn→∞ θ (wn, zn, sn, tn) = ;

(u) limn→∞ θ (wn, zn, p(wn, xn), p(zn, xn)) = , limn→∞ θ (wn, zn, p(wn, yn), p(zn, yn)) =  im-
ply limn→∞ d(xn, yn) =  or limn→∞ θ (an, bn, p(xn, an), p(xn, bn)) = , limn→∞ θ (an, bn,
p(yn, an), p(yn, bn)) =  imply limn→∞ d(xn, yn) = .

Remark . ([])
(a) Suppose that θ from X × X × R+ × R+ into R+ is a mapping satisfying (u)∼(u).

Then there exists a mapping η from X × X × R+ × R+ into R+ such that η is
nondecreasing in its third and fourth variable, satisfying (u)η∼(u)η , where
(u)η∼(u)η stand for substituting η for θ in (u)∼(u), respectively.

(b) On account of (a), we may assume that θ is nondecreasing in its third and fourth
variables, respectively, for a function θ from X × X × R+ × R+ into R+ satisfying
(u)∼(u).

(c) Each τ -distance p on a metric space (X, d) is also a u-distance on X . We present
some example of u-distance which are not τ -distance. (For details, see [].)

Example . Let X = R+ with the usual metric. Define p : X × X → R+ by p(x, y) = ( 
 )x.

Then p is a u-distance on X but not a τ -distance on X.

Example . Let X be a normed space with norm ‖ · ‖. Then a function p : X × X → R+

defined by p(x, y) = ‖x‖ for every x, y ∈ X is a u-distance on X but not a τ -distance.

It follows from the above example and Remark .(c) that u-distance is a proper exten-
sion of τ -distance. Other useful examples on u-distance are given in [].

2 Preliminaries
Throughout this paper we denote by N the set of all positive integers, by R the set of all
real numbers and by R+ the set of all nonnegative real numbers.

Definition . ([]) Let X be a metric space with a metric d and let p be a u-distance
on X. Then a sequence {xn} in X is called p-Cauchy if there exists a function θ from X ×
X × R+ × R+ into R+ satisfying (u)∼(u) and a sequence {zn} of X such that

lim
n→∞ sup

{
θ
(
zn, zn, p(zn, xm), p(zn, xm)

)
: m ≥ n

}
=  or

lim
n→∞ sup

{
θ
(
zn, zn, p(xm, zn), p(xm, zn)

)
: m ≥ n

}
= .

Lemma . ([]) Let X be a metric space with a metric d and let p a u-distance on X. If
{xn} is a p-Cauchy sequence, then {xn} is a Cauchy sequence.

Lemma . ([]) Let X be a metric space with a metric d and let p be a u-distance on X.
() If sequences {xn} and {yn} of X satisfy limn→∞ p(z, xn) =  and limn→∞ p(z, yn) =  for

some z ∈ X , then limn→∞ d(xn, yn) = .
() If p(z, x) =  and p(z, y) = , then x = y.
() Suppose that sequences {xn} and {yn} of X satisfy limn→∞ p(xn, z) =  and

limn→∞ p(yn, z) =  for some z ∈ X , then limn→∞ d(xn, yn) = .
() If p(x, z) =  and p(y, z) = , then x = y.
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Lemma . ([]) Let X be a metric space with a metric d and let p be a u-distance on X.
Suppose that a sequence {xn} of X satisfies

lim
n→∞ sup

{
p(xn, xm) : m ≥ n

}
=  or

lim
n→∞ sup

{
p(xm, xn) : m ≥ n

}
= .

Then:
(i) {xn} is a p-Cauchy sequence.

(ii) If {xn} is a p-Cauchy sequence, then {xn} is a Cauchy sequence.

3 Fixed point theorems
The following lemma plays an important role in proving our theorems.

Lemma . Let (X, d) be a metric space with a u-distance p on X and {an} and {bn} be
sequences of X such that

lim
n→∞ sup

{
p(an, am) : m > n

}
=  and

lim
n→∞ sup

{
p(an, bm) : m > n

}
= .

Then there exist a subsequence {akn} of {an} and a subsequence {bkn} of {bn} such that
limn→∞ d(akn , bkn ) = .

Proof Since p is a u-distance on X,

there exists a mapping θ : X × X × R+ × R+ → R+

such that θ is nondecreasing in its third and (.)

fourth variable respectively, satisfying (u)∼(u).

For each n ∈ N , let

αn = sup
{

p(an, am) : m > n
}

and βn = sup
{

p(an, bm) : m > n
}

. (.)

By the hypotheses and (.), we have

lim
n→∞(αn + βn) = . (.)

Let k ∈ N be an arbitrary and fixed element. Then, by (u), for this ak ∈ X and ε = , there
exists δ >  such that

|s| = s < δ, |t| = t < δ, y ∈ X imply θ (ak , y, s, t) < . (.)

By virtue of (.) and (.), for this δ > , there exists M ∈ N such that

n ≥ M implies αn + βn < δ. (.)
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Let k ∈ N be such that

k ≥ max{ + k, M}. (.)

Due to (.), we have

k < k and k ≥ M. (.)

From (.), (.), (.), and (.) we get

θ (ak , ak ,αk + βk ,αk + βk ) < . (.)

In terms of (u) and (.), for this ak ∈ X and ε = 
 , there exists δ >  such that |s| = s < δ,

|t| = t < δ, y ∈ X imply

θ (ak , y, s, t) <



. (.)

In view of (.) and (.), for this δ > , there exists M ∈ N such that

n ≥ M implies αn + βn < δ. (.)

Let k ∈ N be such that

k ≥ max{ + k, M}. (.)

On account of (.), (.), (.), we obtain

k < k and θ (ak , ak ,αk + βk ,αk + βk ) <



. (.)

Continuing this process, there exist a subsequence {akn} of {an}, and a subsequence {bkn}
of {bn} such that, for all n ∈ N ,

θ (akn , akn+ ,αkn+ + βkn+ ,αkn+ + βkn+ ) <

n

. (.)

Using (.), (.), and (.), we know that

lim
n→∞

{
sup

[
p(akn , akm+ ) : m ≥ n

]}

≤ lim
n→∞

{
sup

[
p(akn , al) : l > kn

]}

= lim
n→∞αkn =  and

lim
n→∞ θ (akn , akn+ ,αkn+ + βkn+ ,αkn+ + βkn+ ) = .

(.)

Using (.), (.), (.) and putting xn = yn = akn , wm = zm = akm+ and sn = tn = αkn+ +βkn+

in (u) we deduce

lim
n→∞ θ

(
akn+ , akn+ , p(akn+ , akn+ ), p(akn+ , akn+ )

)
=  and

lim
n→∞ θ

(
akn+ , akn+ , p(akn+ , bkn+ ), p(akn+ , bkn+ )

)
= .

(.)
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Using (.) and putting wn = zn = akn+ , xn = akn+ , and yn = bkn+ in (u), we have

lim
n→∞ d(akn+ , bkn+ ) = . (.)

Due to (.) and (.), there exist a subsequence {akn} of {an} and a subsequence {bkn}
of {bn} such that

lim
n→∞ d(akn , bkn ) = . (.)

�

Definition . Let (X, d) be a metric space with a u-distance p on X and let T be a self-
mapping on X. For A ⊆ X, let δ(A) = sup{p(x, y) : x, y ∈ A} and for each x, y ∈ X, n ∈ N ,
let

O(x, y, n) =
{

Tix, Tjy :  ≤ i, j ≤ n, i, j ∈ N ∪ {}},

where Tx = x and Ti is the i times repeated composition of T with itself. Let

O(x, y,∞) =
{

Tix, Tjy : i, j ∈ N ∪ {}}

for each x, y ∈ X.

Lemma . Let (X, d) be a metric space with a u-distance p on X. Let T : X → X and
ϕ : R+ → R+ be mappings that satisfy the following conditions:

(i) p(Tx, Ty) ≤ ϕ
(
max

{
p(x, y), p(x, Tx), p(y, Ty), p(x, Ty), p(y, Tx),

p(y, x), p(Tx, x), p(Ty, y), p(Ty, x), p(Tx, y)
})

(.)

for all x, y ∈ X;

(ii) ϕ is nondecreasing and ϕ(t) < t for all t > ;

(iii) I – ϕ is nondecreasing and bijective, where I is identity mapping on R+;

(iv)
∞∑

n=

ϕn(t) < ∞ for each t ∈ (,∞), (.)

where ϕn is n-times repeated composition of ϕ with itself.
Then:
() For each x, y ∈ X and n ∈ N ,

max
{

p
(
Tix, Tjx

)
, p

(
Tix, Tjy

)
, p

(
Tiy, Tjx

)
, p

(
Tiy, Tjy

) | i, j ∈ N , i, j ≤ n
}

≤ ϕ
(
δ
(
O(x, y, n)

))
.

() For each x, y ∈ X , n ∈ N and for each i ∈ N with i ≤ , there exists li ∈ N with li ≤ n
such that

δ
(
O(x, y, n)

)
= max

{
p(x, x), p(x, y), p(y, x), p(y, y), p

(
x, Tl x

)
, p

(
x, Tl y

)
,

p
(
y, Tl x

)
, p

(
y, Tl y

)
, p

(
Tl x, x

)
, p

(
Tl x, y

)
, p

(
Tl y, x

)
, p

(
Tl y, y

)}
.
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() For each x, y ∈ X ,

δ
(
O(x, y,∞)

) ≤ (I – ϕ)–(b(x, y)
)
,

where b(x, y) = p(x, x) + p(y, y) + p(x, y) + p(y, x) + p(x, Tx) + p(Tx, x) + p(y, Ty) +
p(Ty, y).

() For each x ∈ X , {Tnx} is a Cauchy sequence.
() For each x, y ∈ X and n ∈ N ,

p
(
Tnx, Tny

) ≤ ϕn–((I – ϕ)–(b(x, y)
))

.

() For each x, y ∈ X , limn→∞ p(Tnx, Tny) = .

Proof Let x, y ∈ X and n ∈ N , and let i and j be natural numbers with i, j ≤ n. Then
Ti–x, Tix, Tj–x, Tjx, Ti–y, Tiy, Tj–y, Tjy ∈ O(x, y, n).

From (.) and hypothesis (ii), we have

p
(
Tix, Tjx

)
= p

(
TTi–x, TTj–x

)

≤ ϕ
(
max

{
p
(
Ti–x, Tj–x

)
, p

(
Ti–x, Tix

)
, p

(
Tj–x, Tjx

)
, p

(
Ti–x, Tjx

)
,

p
(
Tj–x, Tix

)
, p

(
Tj–x, Ti–x

)
, p

(
Tix, Ti–x

)
,

p
(
Tjx, Tj–x

)
, p

(
Tjx, Ti–x

)
, p

(
Tix, Tj–x

)})

≤ ϕ
(
δ
(
O(x, y, n)

))
,

p
(
Tix, Tjy

)
= p

(
TTi–x, TTj–y

)

≤ ϕ
(
max

{
p
(
Ti–x, Tj–y

)
, p

(
Ti–x, Tix

)
, p

(
Tj–y, Tjy

)
, p

(
Ti–x, Tjy

)
,

p
(
Tj–y, Tix

)
, p

(
Tj–y, Ti–x

)
, p

(
Tix, Ti–x

)
,

p
(
Tjy, Tj–y

)
, p

(
Tjy, Ti–x

)
, p

(
Tix, Tj–y

)})

≤ ϕ
(
δ
(
O(x, y, n)

))
,

p
(
Tiy, Tjx

)
= p

(
TTi–y, TTj–x

)

≤ ϕ
(
max

{
p
(
Ti–y, Tj–x

)
, p

(
Ti–y, Tiy

)
, p

(
Tj–x, Tjx

)
, p

(
Ti–y, Tjx

)
,

p
(
Tj–x, Tiy

)
, p

(
Tj–x, Ti–y

)
, p

(
Tiy, Ti–y

)
,

p
(
Tjx, Tj–x

)
, p

(
Tjx, Ti–y

)
, p

(
Tiy, Tj–x

)})

≤ ϕ
(
δ
(
O(x, y, n)

))
,

p
(
Tiy, Tjy

)
= p

(
TTi–y, TTj–y

)

≤ ϕ
(
max

{
p
(
Ti–y, Tj–y

)
, p

(
Ti–y, Tiy

)
, p

(
Tj–y, Tjy

)
, p

(
Ti–y, Tjy

)
,

p
(
Tj–y, Tiy

)
, p

(
Tj–y, Ti–y

)
, p

(
Tiy, Ti–y

)
,

p
(
Tjy, Tj–y

)
, p

(
Tjy, Ti–y

)
, p

(
Tiy, Tj–y

)})

≤ ϕ
(
δ
(
O(x, y, n)

))
,

which proves ().
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From (), it follows that for each x, y ∈ X, n ∈ N and for each i ∈ N with i ≤ , there exists
li ∈ N with li ≤ n such that

δ
(
O(x, y, n)

)
= max

{
p(x, x), p(x, y), p(y, x), p(y, y), p

(
x, Tl x

)
, p

(
x, Tl y

)
, p

(
y, Tl x

)
,

p
(
y, Tl y

)
, p

(
Tl x, x

)
, p

(
Tl x, y

)
, p

(
Tl y, x

)
, p

(
Tl y, y

)}
,

which proves ().
Applying the triangle inequality, hypothesis (iii), (), and (), we have

p
(
x, Tl x

) ≤ p(x, Tx) + p
(
Tx, Tl x

) ≤ p(x, Tx) + ϕ
(
δ
(
O(x, y, n)

))
,

p
(
x, Tl y

) ≤ p(x, Tx) + p
(
Tx, Tl y

) ≤ p(x, Tx) + ϕ
(
δ
(
O(x, y, n)

))
,

p
(
y, Tl x

) ≤ p(y, Ty) + p
(
Ty, Tl x

) ≤ p(y, Ty) + ϕ
(
δ
(
O(x, y, n)

))
,

p
(
y, Tl x

) ≤ p(y, Ty) + p
(
Ty, Tl x

) ≤ p(y, Ty) + ϕ
(
δ
(
O(x, y, n)

))
,

p
(
Tl x, x

) ≤ p
(
Tl x, Tx

)
+ p(Tx, x) ≤ p(Tx, x) + ϕ

(
δ
(
O(x, y, n)

))
,

p
(
Tl x, y

) ≤ p
(
Tl x, Ty

)
+ p(Ty, y) ≤ p(Ty, y) + ϕ

(
δ
(
O(x, y, n)

))
,

p
(
Tl y, x

) ≤ p
(
Tl y, Tx

)
+ p(Tx, x) ≤ p(Tx, x) + ϕ

(
δ
(
O(x, y, n)

))
,

p
(
Tl y, y

) ≤ p
(
Tl y, Ty

)
+ p(Ty, y) ≤ p(Ty, y) + ϕ

(
δ
(
O(x, y, n)

))
.

Therefore δ(O(x, y, n)) ≤ (I – ϕ)–(b(x, y)).
Since n is arbitrary, the proof of () is complete.
To prove (), let x be an arbitrary point of X and define xn = Tnx for every n ∈ N . On

account of (.) and hypothesis (ii), we have

p(xn, xn+) = p(Txn–, Txn)

≤ ϕ
(
max

{
p(xn–, xn), p(xn–, xn), p(xn, xn+), p(xn–, xn+), p(xn, xn),

p(xn, xn–), p(xn, xn–), p(xn+, xn), p(xn+, xn–), p(xn, xn)
})

, (.)

p(xn+, xn) = p(Txn, Txn–)

≤ ϕ
(
max

{
p(xn, xn–), p(xn, xn+), p(xn–, xn), p(xn, xn), p(xn–, xn+),

p(xn–, xn), p(xn+, xn), p(xn, xn–), p(xn, xn), p(xn+, xn–)
})

, (.)

p(xn–, xn) = p(Txn–, Txn–)

≤ ϕ
(
max

{
p(xn–, xn–), p(xn–, xn–), p(xn–, xn), p(xn–, xn), p(xn–, xn–),

p(xn–, xn–), p(xn–, xn–), p(xn, xn–), p(xn, xn–), p(xn–, xn–)
})

, (.)

p(xn, xn–) = p(Txn–, Txn–)

≤ ϕ
(
max

{
p(xn–, xn–), p(xn–, xn), p(xn–, xn–), p(xn–, xn–), p(xn–, xn),

p(xn–, xn–), p(xn, xn–), p(xn–, xn–), p(xn–, xn–), p(xn, xn–)
})

, (.)

p(xn–, xn+) = p(Txn–, Txn)

≤ ϕ
(
max

{
p(xn–, xn), p(xn–, xn–), p(xn, xn+), p(xn–, xn+),
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p(xn, xn–), p(xn, xn–), p(xn–, xn–),

p(xn+, xn), p(xn+, xn–), p(xn–, xn)
})

, (.)

p(xn+, xn–) = p(Txn, Txn–)

≤ ϕ
(
max

{
p(xn, xn–), p(xn, xn+), p(xn–, xn–), p(xn, xn–),

p(xn–, xn+), p(xn–, xn), p(xn+, xn),

p(xn–, xn–), p(xn–, xn), p(xn+, xn–)
})

, (.)

p(xn, xn) = p(Txn–, Txn–)

≤ ϕ
(
max

{
p(xn–, xn–), p(xn–, xn), p(xn, xn–)

})
. (.)

Substituting (.)∼(.) into (.), proceeding in this manner and by hypotheses, (),
(), and () of Lemma ., we have

p(xn, xn+) ≤ ϕ
(
max

{
p(xi, xj) : n –  ≤ i, j ≤ n + 

})

≤ ϕ(max
{

p(xi, xj) : n –  ≤ i, j ≤ n + 
})

...

≤ ϕn–(max
{

p(xi, xj) :  ≤ i, j ≤ n + 
})

≤ ϕn–(δ
(
O(x, x,∞)

))

≤ ϕn–((I – ϕ)–(a(x)
))

, (.)

where a(x) = [p(x, x) + p(x, Tx) + p(Tx, x)].
If n < m, then, by (.),

p(xn, xm) ≤ p(xn, xn+) + p(xn+, xn+) + · · · + p(xm–, xm)

=
m–∑

k=n

p(xk , xk+)

≤
m–∑

k=n

ϕk–((I – ϕ)–(a(x)
))

≤
m∑

k=n–

ϕk((I – ϕ)–(a(x)
))

. (.)

Combining (.) and (.), we get

lim
n→∞ sup

{
p(xn, xm) : m > n

}
= . (.)

By means of Lemma . and (.),

{xn} is a Cauchy sequence, i.e.,
{

Tnx
}

is a Cauchy sequence

for each x ∈ X. This is the proof of ().
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To prove (), let x, y ∈ X and define xn = Tnx and yn = Tny for every n ∈ N . By the same
method as in (.)∼(.), we get

p(xn, yn) ≤ ϕ
(
max

{
p(xi, xj), p(xi, yj), p(yi, xj), p(yi, yj) | n –  ≤ i, j ≤ n

})

≤ ϕ(max
{

p(xi, xj), p(xi, yj), p(yi, xj), p(yi, yj) | n –  ≤ i, j ≤ n
})

...

≤ ϕn–(max
{

p(xi, xj), p(xi, yj), p(yi, xj), p(yi, yj) |  ≤ i, j ≤ n
})

≤ ϕn–(δ
(
O(x, y, n)

))

≤ ϕn–((I – ϕ)–(b(x, y)
))

, (.)

which proves ().
By virtue of (.) and (.), we deduce that

lim
n→∞ p

(
Tnx, Tny

)
=  (.)

for each x, y ∈ X. This is the proof of (). �

Definition . Let (X, d) be a metric space, a mapping T : X → X is called Ćirić type
ϕ-generalized single-valued p-contractive if it satisfies the following:

(c) There exist a u-distance p on X and ϕ : [,∞) → [,∞) such that

p(Tx, Ty) ≤ ϕ
(
max

[
p(x, y), p(x, Tx), p(y, Ty), p(x, Ty), p(y, Tx),

p(y, x), p(Tx, x), p(Ty, y), p(Ty, x), p(Tx, y)
])

for all x, y ∈ X .
(c) For each x ∈ X with limn→∞ Tnx = cx ∈ X , there exists y ∈ X such that

limn→∞ Tny = Tcx.

Theorem . Let (X, d) be a complete metric space with a u-distance p. Let T : X → X
be Ćirić type ϕ-generalized single-valued p-contractive satisfying (ii)∼(iv) of Lemma ..
Then:

() limn→∞ Tnx = z for each x ∈ X .
() p(Tnx, z) ≤ ∑∞

k=n– ϕk((I – ϕ)–(a(x))) for each x ∈ X , where
a(x) = [p(x, x) + p(x, Tx) + p(Tx, x)] × .

() T has a unique fixed point z in X and p(z, z) = .

Proof Let x, y ∈ X and let xn = Tnx and yn = Tny for every n ∈ N . Then, by () of
Lemma ., {xn} is a Cauchy sequence.

Since X is complete, {xn} converges to some z ∈ X. This is the proof of (). Due to (.),
(iv) of Lemma ., Lemma ., Definition ., and (u), we have

p(xn, z) ≤ lim
m→∞ inf p(xn, xm) ≤

∞∑

k=n–

ϕk((I – ϕ)–(a(x)
))

,

which proves ().
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By () and (c) of Definition ., there exists y ∈ X such that

lim
n→∞ Tny = Tz. (.)

In view of (.) and (.), we get

lim
n→∞ sup

{
sup

[
p
(
Tnx, Tmy

)
: m > n

]}

≤ lim
n→∞ sup

{
sup

[
p
(
Tnx, Tmx

)
+ p

(
Tmx, Tmy

)
: m > n

]}

≤ lim
n→∞ sup

{
sup

[
p
(
Tnx, Tmx

)
: m > n

]}
+ lim

n→∞ sup
{
sup

[
p
(
Tmx, Tmy

)
: m > n

]}

= . (.)

Due to (.), we obtain

lim
n→∞ sup

{
p
(
Tnx, Tmy

)
: m > n

}
= . (.)

In terms of (.), (.), and Lemma ., there exist a subsequence {xkn} of {xn} and a
subsequence {ykn} of {yn} such that

lim
n→∞ d(xkn , ykn ) = . (.)

From (), (.), and (.), we have

d(z, Tz) = .

Thus z is a fixed point of T .
To prove the unique fixed point of T , let z = Tz and w = Tw.
Then, by hypothesis, we obtain

p(w, z) = p(Tw, Tz) ≤ ϕ
(
max

{
p(w, z), p(w, w), p(z, z), p(z, w)

})
,

p(z, w) = p(Tz, Tw) ≤ ϕ
(
max

{
p(w, z), p(w, w), p(z, z), p(z, w)

})
,

p(z, z) = p(Tz, Tz) ≤ ϕ
(
max

{
p(w, z), p(w, w), p(z, z), p(z, w)

})
,

p(w, w) = p(Tw, Tw) ≤ ϕ
(
max

{
p(w, z), p(w, w), p(z, z), p(z, w)

})
.

(.)

By (.) and the hypothesis

max
{

p(w, z), p(w, w), p(z, z), p(z, w)
}

= . (.)

From Lemma . and (.), we have

w = z. �

From Theorem ., we have the following corollary.
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Corollary . Let (X, d) be a complete metric space with a u-distance p on X. Let T : X →
X be a mapping that satisfies the following conditions:

() p(Tx, Ty) ≤ k
(
max

[
p(x, y), p(x, Tx), p(y, Ty), p(x, Ty), p(y, Tx),

p(y, x), p(Tx, x), p(Ty, y), p(Ty, x), p(Tx, y)
])

(.)

for all x, y ∈ X and for some k ∈ (, );

() for each x ∈ X with lim
n→∞ Tnx = cx ∈ X, there exists y ∈ X,

such that lim
n→∞ Tny = Tcx.

Then T has a unique fixed point z in X and p(z, z) = .

Proof Let ϕ : R+ → R+ be defined by

ϕ(t) = kt,  < k < . (.)

Then, by (.), all the conditions of Theorem . are satisfied.
Thus T has a unique fixed point z in X and p(z, z) = . �

Lemma . Let (X, d) be a complete metric space with a u-distance p on X and let T : X →
X be a mapping satisfying (.) and

inf
{

p(x, y) + p(x, Tx) : x ∈ X
}

>  (.)

for every y ∈ X with y �= Ty.
Then, for each x ∈ X with limn→∞ Tnx = cx ∈ X, there exists y ∈ X such that limn→∞ Tny =

Tcx.

Proof Suppose that there exists some x ∈ X with limn→∞ Tnx = cx ∈ X such that

lim
n→∞ Tny �= Tcx for all y ∈ X. (.)

From (.) we get

lim
n→∞ Tnx = cx ∈ X and lim

n→∞ Tn(Tx) = lim
n→∞ Tn+x �= Tcx. (.)

Then, by (.), the same method as in Theorem . and simple calculations, we have

cx �= Tcx, lim
n→∞ p

(
Tnx, cx

)
=  and lim

n→∞ p
(
Tnx, Tn+x

)
= . (.)

On account of (.) and the hypotheses of Lemma ., we obtain

 < inf
{

p(x, cx) + p(x, Tx) : x ∈ X
}

≤ inf
{

p
(
Tnx, cx

)
+ p

(
Tnx, Tn+x

)
: n ∈ N

}
= .

This is a contradiction. �
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From Corollary . and Lemma . we have the following corollary.

Corollary . ([]) Let (X, d) be a complete metric space with a u-distance p on X. Let
T : X → X be a mapping satisfying (.) and (.). Then T has a unique fixed point z in
X and p(z, z) = .

Proof Since all the conditions of Corollary . satisfy all the conditions of Corollary .,
we obtain result of Corollary .. �

In the next example we shall show that all the conditions of Theorem . are satisfied,
but condition (.) in Corollary . and condition (.) in Lemma . are not satis-
fied.

Example . Let k ∈ (, ) and let X = [, ] be closed interval with the usual metric, and
p : X × X → R+, T : X → X and ϕ : R+ → R+ be mappings defined as follows:

p(x, y) =
(

 – k
 + k

)
x, (.)

Tx =
(

 + k


)
x, (.)

ϕ(t) =

{
( +k

 )t,  ≤ t ≤ –k
+k ,

t
+t , –k

+k < t.
(.)

Define θ : X × X × R+ × R+ → R+ by

θ (x, y, s, t) = s (.)

for all x, y ∈ X and s, t ∈ R+.
Then, by (.)∼(.) and simple calculations, we know that p is a u-distance on X

and ϕ satisfies (ii) and (iii) in Lemma .. We now show that ϕ satisfies (iv) in Lem-
ma ..

On account of (.), if  ≤ t ≤ –k
+k , then ϕn(t) = ( +k

 )nt for all n ∈ N and so (iv) holds
for all t ∈ [, –k

+k ].
If t > –k

+k , then there exists M ∈ N such that

ϕM(t) ≤  – k
 + k

. (.)

Suppose that ϕn(t) > –k
+k for all n ∈ N and t ∈ ( –k

+k ,∞).
Then, by (.), –k

+k < ϕn(t) = t
+nt for all n ∈ N and t ∈ ( –k

+k ,∞). Thus  < –k
+k ≤

limn→∞ ϕn(t) = limn→∞ t
+nt = , a contradiction.

Hence (.) holds.
By virtue of (.) and (.), we get

ϕn(t) = ϕn–M(
ϕM(t)

)
=

(
 + k



)n–M

· ϕM(t)
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for all n ∈ N with n > M. Thus ϕ satisfies (iv) in Lemma . for t ∈ ( –k
+k ,∞). Therefore (iv)

in Lemma . holds. Using (.)∼(.), we have

ϕ
(
max

[
p(x, y), p(x, Tx), p(y, Ty), p(x, Ty), p(y, Tx),

p(y, x), p(Tx, x), p(Ty, y), p(Ty, x), p(Tx, y)
])

= ϕ

(
max

[(
 – k
 + k

)
x,

(
 – k
 + k

)
y
])

, (.)

p(Tx, Ty) =
(

 – k
 + k

)
Tx =

(
 – k
 + k

)(
 + k



)
x =

(
 – k



)
x and

ϕ

((
 – k
 + k

)
x
)

=
(

 + k


)(
 – k
 + k

)
x =

(
 – k



)
x

for all x, y ∈ X.
By (.), (c) of Definition . is satisfied.
Due to (.), since limn→∞ Tnx = limn→∞( +k

 )nx =  for each x ∈ X, there exists
y = x

 ∈ X such that limn→∞ Tny = limn→∞( +k
 )n · x

 =  = T.
This implies (c) of Definition ..
Therefore all the conditions of Theorem . are satisfied.
By means of (.) and (.), there exist a =  ∈ X and b =  ∈ X such that

k · max
{

p(a, b), p(a, Ta), p(b, Tb), p(a, Tb), p(b, Ta),

p(b, a), p(Ta, a), p(Tb, b), p(Tb, a), p(Ta, b)
}

= k ·
(

 – k
 + k

)
and (.)

p(Ta, Tb) =
(

 – k
 + k

)
Ta =

(
 – k
 + k

)(
 + k



)
=

(
 – k



)
and

 – k


> k
(

 – k
 + k

)
for k ∈ (, ).

On account of (.), (.) in Corollary . is not satisfied.
In terms of (.) and (.) we obtain

 ≤ inf
{

p(x, y) + p(x, Tx) : x ∈ X
}

≤ inf
{

p
(
Tnx, y

)
+ p

(
Tnx, Tn+x

)
: n ∈ N

}

= inf

{(
 – k
 + k

)
Tnx +

(
 – k
 + k

)
Tnx : n ∈ N

}

= inf

{

(

 – k
 + k

)
·
(

 + k


)n

x : n ∈ N
}

= 

for all y ∈ X with y �= Ty. This means that (.) in Lemma . is not satisfied.

Remark . It follows from Lemma . and Example . that Theorem . is a proper
extension of Corollary . and Corollary ., the results of Ćirić [], Kannan [] and Ume
[].



Ume Fixed Point Theory and Applications  (2015) 2015:117 Page 14 of 17

The following theorem is a generalization of Suzuki’s fixed point theorem [].

Theorem . Let (X, d) be a complete metric space with a u-distance p on X. Let ϕ : R+ →
R+ be a mapping satisfying conditions (ii)∼(iv) of Lemma ..

Let T : X → X be a mapping that satisfies the following conditions:

(i) p
(
Tx, Tx

) ≤ ϕ
(
p(x, Tx)

)
for all x ∈ X;

(ii) If lim
n→∞ sup

{
p(xn, xm) : m > n

}
= , lim

n→∞ p(xn, Txn) =  and

lim
n→∞ p(xn, y) = , then Ty = y.

(.)

Then there exists z ∈ X such that Tz = z and p(z, z) = .

Proof By (.), the same methods in Theorem . and simple calculations, we deduce
that

lim
n→∞ sup

{
p
(
Tnx, Tmx

)
: m > n

}
= , lim

n→∞ Tnx = z,

lim
n→∞ p

(
Tnx, z

)
=  and lim

n→∞ p
(
Tnx, Tn+x

)
= .

(.)

By means of (.) and hypotheses (i), (ii), we obtain

Tz = z and p(z, z) =  and z is a unique fixed point of T . �

Corollary . ([]) Let (X, d) be a complete metric space with a τ -distance p on X. Let
T : X → X be a mapping satisfying (ii) of Theorem . and

p
(
Tx, Tx

) ≤ kp(x, Tx)

for all x ∈ X and some k ∈ (, ).
Then T has a unique fixed point z in X and p(z, z) = .

Proof Let ϕ : R+ → R+ be defined by

ϕ(t) = kt,  < k < .

Since p is a τ -distance, p is a u-distance. Thus all the conditions of Theorem . are
satisfied.

Therefore T has a unique fixed point z in X and p(z, z) = . �

4 Existence of a solution for an integral equation
In what follows, we assume that X = C([, ]) is the set of all continuous functions defined
on [, ] and ϕ : R+ → R+ satisfy conditions (ii), (iii), and (iv) of Lemma .. Let d, p : X ×
X → R+ and θ : X × X × R+ × R+ → R+ be mappings defined as follows:

d(x, y) = sup
t∈[,]

∣∣x(t) – y(t)
∣∣, p(x, y) = sup

t∈[,]

∣∣x(t)
∣∣
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and

θ (x, y, s, t) = s

for all x, y ∈ X and s, t ∈ R+. Then clearly (X, d) is a complete metric space and p is a
u-distance on X. Now we prove the existence theorem for a solution of the following in-
tegral equation by using Theorem .:

x(t) = r(x, t) +
∫ 


G(t, s)f

(
s, x(s)

)
ds, (.)

where x ∈ X, r : X ×R → R, G : [, ]× [, ] → R and f : [, ]×R → R are given mappings.

Theorem . Suppose that the following hypotheses hold:

(I) r : X × R → R is a continuous mapping such that

∣∣r(x, t)
∣∣ ≤ 


ϕ
(∣∣x(t)

∣∣) for all x ∈ X and t ∈ R.

(I) G : [, ] × [, ] → R is a continuous mapping such that

∣∣G(t, s)
∣∣ ≤ 


for all t, s ∈ [, ].

(I) f : [, ] × R → R is a continuous mapping such that

∣∣f
(
s, x(s)

)∣∣ ≤ ϕ
(∣∣x(s)

∣∣) for all x ∈ X and s ∈ [, ].

(I) For each x ∈ X with limn→∞ Tnx = cx ∈ X , there exists y ∈ X such that limn→∞ Tny =
Tcx.

Then the integral equation (.) has a solution x ∈ X.

Proof Let T : X → X be a mapping defined by

(Tx)(t) = r(x, t) +
∫ 


G(t, s)f

(
s, x(s)

)
ds

for all x ∈ X and t ∈ [, ]. By conditions (I), (I), and (I), we have

∣∣(Tx)(t)
∣∣ =

∣∣∣∣r(x, t) +
∫ 


G(t, s)f

(
s, x(s)

)
ds

∣∣∣∣

≤ ∣∣r(x, t)
∣∣ +

∣∣∣∣

∫ 


G(t, s)f

(
s, x(s)

)
ds

∣∣∣∣

≤ ∣∣r(x, t)
∣∣ +

∫ 



∣∣G(t, s)
∣∣∣∣f

(
s, x(s)

)∣∣ds

≤ ∣∣r(x, t)
∣∣ +




∫ 



∣∣f
(
s, x(s)

)∣∣ds

≤ ∣∣r(x, t)
∣∣ +




∫ 


ϕ
(∣∣x(s)

∣∣)ds
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≤ 

ϕ
(∣∣x(t)

∣∣) +



∫ 


ϕ
(

sup
t∈[,]

∣∣x(t)
∣∣
)

ds

≤ 

ϕ
(∣∣x(t)

∣∣) +


ϕ
(

sup
t∈[,]

∣∣x(t)
∣∣
)

for all x ∈ X and t ∈ [, ]. Then

p(Tx, Ty) = sup
t∈[,]

∣∣(Tx)(t)
∣∣ ≤ sup

t∈[,]

{


ϕ
(∣∣x(t)

∣∣) +


ϕ
(

sup
t∈[,]

∣∣x(t)
∣∣
)}

≤ 

ϕ
(

sup
t∈[,]

∣∣x(t)
∣∣
)

+


ϕ
(

sup
t∈[,]

∣∣x(t)
∣∣
)

= ϕ
(

sup
t∈[,]

∣∣x(t)
∣∣
)

≤ ϕ
(

max
{

sup
t∈[,]

(∣∣x(t)
∣∣), sup

t∈[,]

∣∣y(t)
∣∣, sup

t∈[,]

∣∣(Tx)(t)
∣∣, sup

t∈[,]

∣∣(Ty)(t)
∣∣
})

= ϕ
(
max

{
p(x, y), p(x, Tx), p(y, Ty), p(x, Ty), p(y, Tx),

p(y, x), p(Tx, x), p(Ty, y), p(Ty, x), p(Tx, y)
})

for all x, y ∈ X.
Thus all of the hypotheses of Theorem . are satisfied. Hence the mapping T has a fixed

point that is a solution in X = C([, ]) of the integral equation (.). �
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