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Abstract
In this paper, a semi-local convergence analysis of the Gauss-Newton method for
convex composite optimization is presented using the concept of quasi-regularity in
order to approximate fixed points in optimization. Our convergence analysis is
presented first under the L-average Lipschitz and then under generalized convex
majorant conditions. The results extend the applicability of the Gauss-Newton
method under the same computational cost as in earlier studies such as Li and Ng
(SIAM J. Optim. 18:613-642, 2007), Moldovan and Pellegrini (J. Optim. Theory Appl.
142:147-163, 2009), Moldovan and Pellegrini (J. Optim. Theory Appl. 142:165-183,
2009), Wang (Math. Comput. 68:169-186, 1999) and Wang (IMA J. Numer. Anal.
20:123-134, 2000).
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1 Introduction
In this paper, we are concerned with the convex composite optimizations problem. Many
problems in mathematical programming such as convex inclusion problems, minimax
problems, penalization methods, goal programming problems, constrained optimization
problems, and other problems can be formulated like composite optimization problems
(see, for example, [–]).

Recently, in the elegant study by Li and Ng [], the notion of quasi-regularity for x ∈
R

l with respect to inclusion the problem was used. This notion generalizes the case of
regularity studied in the seminal paper by Burke and Ferris [] as well as the case when
d −→ F ′(x)d – C is surjective. This condition was inaugurated by Robinson in [, ] (see,
also, [, , ]).

In this paper, we present a convergence analysis of the Gauss-Newton method (GNM)
(see the method (GNA) in Section ). In [], the convergence of the method (GNA) is based
on the generalized Lipschitz conditions inaugurated by Wang [, ] (to be precise in
Section ). In [], we presented a finer convergence analysis in the setting of Banach spaces
than in [–] for the method (GNM) with the advantages (A): tighter error estimates
on the distances involved and the information on the location of the solution is at least as
precise. These advantages were obtained (under the same computational cost) using the
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same or weaker hypotheses. Here, we provide the same advantages (A) but for the method
(GNA).

The rest of the study is organized as follows: Section  contains the notions of general-
ized Lipschitz conditions and the majorizing sequences for the method (GNA). In order
for us to make the paper as self-contained as possible, the notion of quasi-regularity is
re-introduced (see, for example, []) in Section . Semi-local convergence analysis of the
method (GNA) using L-average conditions is presented in Section . In Section , some
convex majorant conditions are used for the semi-local convergence of the method (GNA).

2 Generalized Lipschitz conditions and majorizing sequences
The purpose of this paper is to study the convex composite optimization problem:

min
x∈Rl

φ(x) := h
(
F(x)

)
, (.)

where h : Rm → R is a convex operator, F : Rl → R
m is a Fréchet-differentiable operator

and m, l ∈ N
�.

The study of the problem (.) is very important. On the other hand, the study of the
problem (.) provides a unified framework for the development and analysis of algorith-
mic method and on the other hand it is a powerful tool for the study of first- and second-
order optimality conditions in constrained optimality (see, for example, [–]).

We assume that the minimum hmin of the function h is attained. The problem (.) is
related to the following:

F(x) ∈ C, (.)

where

C = argmin h (.)

is the set of all minimum points of h.
A semi-local convergence analysis for the Gauss-Newton method (GNM) was presented

using the popular algorithm (see, for example, [, , ]):

Algorithm (GNA): (ξ ,�, x)
Let ξ ∈ [,∞[, � ∈ ],∞] and, for each x ∈R

l , define D�(x) by

D�(x) =
{

d ∈R
l : ‖d‖ ≤ �, h

(
F(x) + F ′(x)d

) ≤ h
(
F(x) + F ′(x)d′)

for all d′ ∈R
l with

∥∥d′∥∥ ≤ �
}

. (.)

Let also x ∈ R
l be given. Having x, x, . . . , xk (k ≥ ), determine xk+ by the following.

If  ∈D�(xk), then STOP;
If  /∈D�(xk), choose dk such that dk ∈D�(xk) and

‖dk‖ ≤ ξd
(
,D�(xk)

)
. (.)

Then set xk+ = xk + dk .
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Here, d(x, W ) denotes the distance from x to W in the finite dimensional Banach space
containing W . Note that the set D�(x) (x ∈ R

l) is nonempty and is the solution of the
following convex optimization problem:

min
d∈Rl ,‖d‖≤�

h
(
F(x) + F ′(x)d

)
, (.)

which can be solved by the well known methods such as the subgradient or cutting plane
or bundle methods (see, for example, [, ]).

Notice that, in the special case when l = m and F(x) = H(x) – x, the results obtained
in this paper can be used to iteratively compute fixed points of the operator H : Rm →
R

m. Therefore, the results obtained in this paper are useful in fixed point theory and its
applications in optimization.

Let U(x, r) denote the open ball in R
l (or Rm) centered at x and of radius r > . By U(x, r)

we denote its closure. Let W be a closed convex subset of Rl (or Rm). The negative polar
of W denoted by W� is defined as

W� = {z :< z, w >≤  for each w ∈ W }. (.)

We need the following notion of the generalized Lipschitz condition due to Wang in [,
] (see also []). From now on, L : [,∞[−→ ],∞[ (or L) denotes a nondecreasing and
absolutely continuous function. Moreover, η and α denote given positive numbers.

Definition . Let Y be a Banach space and let x ∈R
l . Let G : Rl −→ Y . Then, G is said

to satisfy:
() the center L-average condition on U(x, r) if

∥∥G(x) – G(x)
∥∥ ≤

∫ ‖x–x‖


L(u) du (.)

for all x ∈ U(x, r);
() the L-average Lipschitz condition on U(x, r) if

∥∥G(x) – G(y)
∥∥ ≤

∫ ‖x–y‖+‖y–x‖

‖y–x‖
L(u) du (.)

for all x, y ∈ U(x, r) with ‖x – y‖ + ‖y – x‖ ≤ r.

Remark . It follows from (.) and (.) that, if G satisfies the L-average condition, then
it satisfies the center L-Lipschitz condition, but not necessarily vice versa. We have

L(u) ≤ L(u) (.)

for each u ∈ [, r] holds in general and L/L can be arbitrarily large (see [, , ]).

Definition . Define a majorizing function ψα on [, +∞) by

ψα(t) = η – t + α

∫ t


L(u)(t – u) du (.)
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for each t ≥  and a majorizing sequence {tα,n} by

tα, = , tα,n+ = tα,n –
ψα(tα,n)
ψ ′

α(tα,n)
(.)

for each n ≥ . The sequence {tα,n} was used in [] as a majorizing sequence for {xn} gen-
erated by the algorithm (GNA).

The sequence {tα,n} can also be written, equivalently, for each n ≥  and tα, =  as

tα,n+ = tα,n –
γα,n

ψ ′
α(tα,n)

, (.)

where

γα,n =
∫ 



∫ tα,n–+θ (tα,n–tα,n–)

tα,n–

L(u) du dθ (tα,n – tα,n–)

=
∫ tα,n–tα,n–


L(tα,n– + u)(tα,n – tα,n– – u) du (.)

since (see (.) in [])

ψα(tα,n) =
γα,n

α
(.)

for each n ≥ .
From now on, we show how our convergence analysis for the algorithm (GNA) is finer

than the one in []. Define a supplementary majorizing function ψα, on [, +∞) by

ψα,(t) = η – t + α

∫ t


L(u)(t – u) du (.)

for each t ≥  and the corresponding majorizing sequence {sα,n} by

sα, = , sα, = η, sα,n+ = sα,n –
βα,n

ψ ′
α,(sα,n)

(.)

for each ≥ , where βα,n is defined as αα,n with sα,n–, sα,n replacing tα,n–, tα,n, respectively.
The results concerning {tα,n} are already in the literature (see, for example, [, , ]),

whereas the corresponding ones for the sequence {sα,n} can be derived in an analogous
way by simply using ψ ′

α, instead of ψ ′
α .

First, we need some auxiliary results for the properties of functions ψα , ψα, and the
relationship between sequences {sα,n} and {tα,n}. The proofs of the next four lemmas in-
volving the ψα function can be found in [], whereas the proofs for the function ψα, are
analogously obtained by simply replacing L by L.

Let rα > , bα > , rα, > , and bα, >  be such that

α

∫ rα


L(u) du = , bα = α

∫ rα


L(u)u du, (.)
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and

α

∫ rα,


L(u) du = , bα, = α

∫ rα,


L(u)u du. (.)

Clearly, we have

bα < rα (.)

and

bα, < rα,. (.)

In view of (.), (.), and (.), we get

rα ≤ rα, (.)

and

bα ≤ bα,. (.)

Lemma . Suppose that  < η ≤ bα . Then bα < rα and the following assertions hold:
() ψα is strictly decreasing on [, rα] and strictly increasing on [rα ,∞) with ψα(η) > ,

ψα(rα) = η – bα ≤ , ψα(+∞) ≥ η > ;
() ψα, is strictly decreasing on [, rα,] and strictly increasing on [rα,,∞) with

ψα,(η) > , ψα,(rα,) = η – bα, ≤ , ψα,(+∞) ≥ η > .
Moreover, if η < bα , then ψα has two zeros, denoted by r�

α and r��
α , such that

η < r�
α <

rα

bα

η < rα < r��
α (.)

and, if η = bα , then ψα has an unique zero r�
α = rα in (η,∞);

ψα, has two zeros, denoted by r�
α, and r��

α,, such that

η < r�
α, <

rα,

bα,
η < rα, < r��

α,,

r�
α, ≤ r�

α , (.)

r��
α, ≤ r��

α , (.)

and, if η = bα,, then ψα, has an unique zero r�
α, = rα, in (η,∞);

() {tα,n} is strictly monotonically increasing and converges to r�
α ;

() {sα,n} is strictly monotonically increasing and converges to its unique least upper
bound s�

α ≤ r�
α,;

() The convergence of {tα,n} is quadratic if η < bα and linear if η = bα .

Lemma . Let rα , rα,, bα , bα,, ψα , ψα, be as defined above. Let α > α. Then the following
assertions hold:

() The functions α → rα , α → rα,, α → bα , α → bα, are strictly decreasing on [,∞);
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() ψα < ψα and ψα, < ψα, on [,∞);
() The function α → r�

α is strictly increasing on I(η), where

I(η) = {α >  : η ≤ bα};

() The function α → r�
α, is strictly increasing on I(η).

Lemma . Let  ≤ λ < ∞. Define the functions

χ (t) =

t

∫ t


L(λ + u)(t – u) du (.)

for all t ≥  and

χ(t) =

t

∫ t


L(λ + u)(t – u) du (.)

for all t ≥ . Then the functions χ and χ are increasing on [,∞).

Lemma . Define the function

gα(t) =
ψα(t)
ψ ′

α(t)

for all t ∈ [, r�
α). Suppose that  < η ≤ bα . Then the function gα is increasing on [, r�

α).

Next, we show that the sequence {sα,n} is tighter than {tα,n}.

Lemma . Suppose that the hypotheses of Lemma . hold and the sequences {sα,n}, {tα,n}
are well defined for each n ≥ . Then the following assertions hold: for all n ≥ ,

sα,n ≤ tα,n, (.)

sα,n+ – sα,n ≤ tα,n+ – tα,n, (.)

and

s�
α = lim

n→∞ sα,n ≤ r�
α = t�

α = lim
n→∞ tα,n. (.)

Moreover, if the strict inequality holds in (.), so does in (.) and (.) for all n > .
Furthermore, the convergence of {sα,n} is quadratic if η < bα and linear if L = L and η = bα .

Proof First, we show, using induction, that (.) and (.) are satisfied for each n ≥ .
These estimates hold true for n = ,  since sα, = tα, =  and sα, = tα, = η. Using (.),
(.), and (.) for n = , we have

sα, = sα, –
βα,

ψ ′
α,(sα,)

≤ tα, –
γα,

ψ ′
α(tα,)

= tα,
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and

sα, – sα, = –
βα,

ψ ′
α,(sα,)

≤ –
γα,

ψ ′
α(tα,)

= tα, – tα,

since

–ψ ′
α,(s) ≤ –ψ ′

α(t) (.)

for each s ≤ t. Hence the estimate (.) holds true for n = , ,  and (.) holds true for
n = , . Suppose that

sα,m ≤ tα,m

for each m = , , , . . . , k +  and

sα,m+ – sα,m ≤ tα,m+ – tα,m

for each m = , , , . . . , k. Then we have

sα,m+ = sα,m+ –
βα,m+

ψ ′
α,(sα,m+)

≤ tα,m+ –
γα,m+

ψ ′
α(tα,m+)

= tα,m+

and

sα,m+ – sα,m+ = –
βα,m+

ψ ′
α,(sα,m+)

≤ –
γα,m+

ψ ′
α(tα,m+)

= tα,m+ – tα,m+.

The induction for (.) and (.) is complete.
Finally, the estimate (.) follows from (.) by letting n → ∞. The convergence order

part for the sequence {sα,n} follows from (.) and Lemma .(v). This completes the
proof. �

Remark . If L = L, the results in Lemmas .-. reduce to the corresponding ones
in []. Otherwise (i.e., if L < L), our results constitute an improvement (see also (.)-
(.)).

3 Background on regularities
In order for us to make the study as self-contained as possible, we mention some concepts
and results on regularities which can be found in [] (see, also, [, , , , –]).

For a set-valued mapping T : Rl ⇒R
m and for a set A in R

l or Rm, we denote by

D(T) =
{

x ∈R
l : Tx 	= ∅}

, R(T) =
⋃

x∈D(T)

Tx,

T–y =
{

x ∈ R
l : y ∈ Tx

}
, ‖A‖ = inf

a∈A
‖a‖.

Consider the inclusion

F(x) ∈ C, (.)
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where C is a closed convex set in R
m. Let x ∈R

l and

D(x) =
{

d ∈R
l : F(x) + F ′(x)d ∈ C

}
. (.)

Definition . Let x ∈R
l .

() x is called a quasi-regular point of the inclusion (.) if there exist R ∈ ], +∞[ and
an increasing positive function β on [, R[ such that

D(x) 	= ∅, d
(
,D(x)

) ≤ β
(‖x – x‖

)
d
(
F(x), C

)
(.)

for all x ∈ U(x, R), β(‖x – x‖) is an ‘error bound’ in determining how for the origin is
away from the solution set of the inclusion (.).

() x is called a regular point of the inclusion (.) if

ker
(
F ′(x)T) ∩ (

C – F(x)
)� = {}. (.)

Proposition . (see []) Let x be a regular point of (.). Then there are constants R > 
and β >  such that (.) holds for R and β(·) = β . Therefore, x is a quasi-regular point
with the quasi-regular radius Rx ≥ R and the quasi-regular bound function βx ≤ β on
[, R].

Remark . () D(x) can be considered as the solution set of the linearized problem as-
sociated to (.)

F(x) + F ′(x)d ∈ C. (.)

() If C defined in (.) is the set of all minimum points of h and there exists d ∈ D(x)
with ‖d‖ ≤ �, then d ∈D�(x) and, for each d ∈ R

l , we have the following equivalence:

d ∈D�(x) ⇐⇒ d ∈D(x) ⇐⇒ d ∈D∞(x). (.)

() Let Rx denote the supremum of R such that (.) holds for some function β defined
in Definition .. Let R ∈ [, Rx ] and BR(x) denotes the set of function β defined on [, R)
such that (.) holds. Define

βx (t) = inf
{
β(t) : β ∈ BRx

(x)
}

(.)

for each t ∈ [, Rx ). All the function β ∈ BR(x) with limt→R– β(t) < +∞ can be extended
to an element of BRx

(x) and we have

βx (t) = inf
{
β(t) : β ∈ BR(x)

}
(.)

for each t ∈ [, R). Here, Rx and βx are called the quasi-regular radius and the quasi-
regular function of the quasi-regular point x, respectively.

Definition . () A set-valued mapping T : Rl ⇒R
m is said to be convex if the following

items hold:
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(a) Tx + Ty ⊆ T(x + y) for all x, y ∈R
l ;

(b) Tλx = λTx for all λ >  and x ∈R
l ;

(c)  ∈ T.
() Let T : Rl ⇒R

m be a convex set-valued mapping. The norm of T be defined by

‖T‖ = sup
x∈D(T)

{‖Tx‖ : ‖x‖ ≤ 
}

.

If ‖T‖ < ∞, we say that T is normed.
() For two convex set-valued mappings T and S : Rl ⇒R

m, addition and multiplication
are defined by

(T + S)x = Tx + Sx, (λT)x = λ(Tx)

for all x ∈R
l and λ ∈R, respectively.

() Let T : Rl ⇒ R
m be a mapping, C be closed convex in R

m and x ∈ R
l . We define Tx

by

Txd = F ′(x)d – C (.)

for all d ∈ R
l and its inverse by

T–
x y =

{
d ∈R

l : F ′(x)d ∈ y + C
}

(.)

for all y ∈R
m.

Note that, if C is a cone, then Tx is convex. For any x ∈ R
l , if the Robinson condition

(see [, ]),

Tx carries Rl onto R
m, (.)

is satisfied, then D(Tx) = R
l for each x ∈R

l and D(T–
x ) = R

m.

Remark . Let T : Rl ⇒R
m be a mapping.

() T is convex ⇐⇒ the graph Gr(T) is a convex cone in R
l ×R

m.
() T is convex �⇒ T– is convex from R

m to R
l .

Lemma . (see []) Let C be a closed convex cone in R
m. Suppose that x ∈ R

l satisfies
the Robinson condition (.). Then we have the following assertions:

() T–
x is normed.

() If S is a linear operator from R
l to R

m such that ‖T–
x ‖‖S‖ < , then the convex set-

valued mapping T̄ = Tx + S carries Rl onto R
m. Furthermore, T̄– is normed and

∥∥T̄–∥∥ ≤ ‖T–
x ‖

 – ‖T–
x ‖‖S‖ .
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The following proposition shows that the condition (.) implies that x is regular point
of (.). Using the center L-average Lipschitz condition, we also estimate in Proposi-
tion . the quasi-regular bound function. The proof is given in an analogous way to the
corresponding result in [] by simply using L instead of L.

Proposition . Let C be a closed convex cone in R
m, x ∈ R

l , and define Tx as in (.).
Suppose that x satisfies the Robinson condition (.). Then we have the following asser-
tions:

() x is a regular point of (.).
() If F ′ satisfies the center L-average Lipschitz condition (.) on U(x, R) for some R > .

Let β = ‖T–
x ‖ and let Rβ such that

β

∫ Rβ


L(u) du = . (.)

Then the quasi-regular radius Rx , the quasi-regular bound function βx satisfy Rx ≥
min{R, Rβ} and

βx (t) ≤ β

 – β
∫ t

 L(u) du
(.)

for each  ≤ t < min{R, Rβ}.

Remark . If L = L, Proposition . reduces to the corresponding one in []. Otherwise,
it constitutes an improvement (see (.)-(.)).

4 Semi-local convergence analysis for (GNA)
Assume that the set C satisfies (.). Let x ∈ R

l be a quasi-regular point of (.) with
the quasi-regular radius Rx and the quasi-regular bound function βx (i.e., see (.)). Let
ξ ∈ [, +∞) and let

η = ξβx ()d
(
F(x),C

)
. (.)

For all R ∈ (, Rx ], we define

α(R) = sup

{
ξβx (t)

ξβx (t)
∫ t

 L(s) ds + 
: η ≤ t < R

}
. (.)

Theorem . Let ξ ∈ [, +∞) and � ∈ (, +∞]. Let x ∈ R
l be a quasi-regular point of

(.) with the quasi-regular radius Rx and the quasi-regular bound function βx . Let η > 
and α(R) be given in (.) and (.), respectively. Let  < R < Rx , α ≥ α(R) be a positive
constant, and let bα , rα be as defined in (.). Let {sα,n} (n ≥ ) and s�

α be given by (.)
and (.), respectively. Suppose that F ′ satisfies the L-average Lipschitz and the center L-
average Lipschitz conditions on U(x, s�

α). Suppose that

η ≤ min{bα ,�}, s�
α ≤ R. (.)
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Then the sequence {xn} generated by (GNA) is well defined, remains in U(x, s�
α) for all

n ≥  and converges to some x� such that F(x�) ∈ C . Moreover, the following estimates hold:
for each n ≥ ,

‖xn – xn–‖ ≤ sα,n – sα,n–, (.)

‖xn+ – xn‖ ≤ (sα,n+ – sα,n)
(‖xn – xn–‖

sα,n – sα,n–

)

, (.)

F(xn) + F ′(xn)(xn+ – xn) ∈ C, (.)

and

∥
∥xn– – x�

∥
∥ ≤ s�

α – sα,n–. (.)

Proof By (.), (.), and Lemma ., we have

η ≤ sα,n < s�
α ≤ R ≤ Rx . (.)

Using the quasi-regularity property of x, we have

D(x) 	= ∅, d
(
,D(x)

) ≤ βx

(‖x – x‖
)
d
(
F(x),C

)
(.)

for all x ∈ U(x, R).
First, we prove that the following assertion holds.

(T ) (.) holds for all n ≤ k –  �⇒ (.) and (.) hold for all n ≤ k.

Denote by xθ
k = θxk + ( – θ )xk– for all θ ∈ [, ]. Using (.), we have

xθ
k ∈ U

(
x, s�

α

) ⊆ U(x, R)

for all θ ∈ [, ]. Hence, for x = xk , (.) holds, i.e.,

D(xk) 	= ∅, d
(
,D(xk)

) ≤ βx

(‖xk – x‖
)
d
(
F(xk),C

)
. (.)

We have also

‖xk – x‖ ≤
k∑

i=

‖xi – xi–‖ ≤
k∑

i=

sα,i – sα,i– = sα,k (.)

and

‖xk– – x‖ ≤ sα,k– ≤ sα,k . (.)

Now, we prove that

ξd
(
,D(xk)

) ≤ (sα,k+ – sα,k)
(‖xk – xk–‖

sα,k – sα,k–

)

≤ sα,k+ – sα,k . (.)
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We show the first inequality in (.). We denote by Ak = ‖xk– –x‖ and Bk = ‖xk –xk–‖.
We have the following identity:

∫ 



∫ Ak +θBk

Ak

L(u) du dθ =
∫ Bk


L(Ak + u)

(
 –

u
Bk

)
du. (.)

Then, by the L-average condition on U(x, s�
α), (.) for n = k –  and (.)-(.), we get

ξd
(
,D(xk)

)

≤ ξβx

(‖xk – x‖
)
d
(
F(xk),C

)

≤ ξβx

(‖xk – x‖
)∥∥F(xk) – F(xk–) – F ′(xk–)(xk – xk–)

∥∥

≤ ξβx

(‖xk – x‖
)∫ 



∥∥(
F ′(xθ

k
)

– F ′(xk–)
)
(xk – xk–) dθ

∥∥

≤ ξβx

(‖xk – x‖
)∫ 



∫ Ak +θBk

Ak

L(u) duBk dθ

≤ ξβx

(‖xk – x‖
)∫ Bk


L(Ak + u)(Bk – u) du

≤ ξβx (sα,k)
∫ Bk


L(sα,k– + u)(Bk – u) du. (.)

For simplicity, we denote �α,k := sα,k – sα,k–. By (.) for n = k and Lemma ., we have in
turn

∫ Bk
 L(sα,k– + u)(Bk – u) du

B
k

≤
∫ �α,k

 L(sα,k– + u)(�α,k – u) du
�

α,k
. (.)

Thus we deduce that

ξd
(
,D(xk)

) ≤ ξβx (sα,k)
(∫ �α,k


L(sα,k– + u)(�α,k – u) du

)(
Bk

�α,k

)

. (.)

Using (.) and (.), we obtain

ξβx (sα,k)
α(R)

≤
(

 – α(R)
∫ sα,k


L(u) du

)–

. (.)

Note that α ≥ α(R). By (.), we have

ξβx (sα,k)
α

≤
(

 – α

∫ sα,k


L(u) du

)–

= –
(
ψ ′

α,(sα,k)
)–. (.)

By (.), (.)-(.), we deduce that the first inequality in (.) holds. The second in-
equality of (.) follows from (.). Moreover, by (.) and Lemma ., we have

�α,k+ = –ψ ′
α,(sα,k)–βα,k ≤ –ψ ′

α,(tα,)γα,

= –ψ ′
α,(tα,)ψα(tα,) = η ≤ �.
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Hence (.) implies that d(,D(xk)) ≤ � and there exists d ∈ R
l with ‖d‖ ≤ � such

that F(xk) + F ′(xk)d ∈ C . By Remark ., we have

D�(xk) =
{

d ∈R
l : ‖d‖ ≤ � and F(xk) + F ′(xk) d ∈ C

}

and

d
(
,D�(xk)

)
= d

(
,D(xk)

)
.

We deduce that (.) holds for n = k since dk = xk+ – xk ∈D(xk). We also have

‖xk+ – xk‖ ≤ ξd
(
,D�(xk)

)
= ξd

(
,D(xk)

)
.

Hence (.) holds for n = k and the assertion (T ) holds. It follows from (.) that {xk} is a
Cauchy sequence in a Banach space and as such it converges to some x� ∈ U(x, s�

α) (since
U(x, s�

α) is a closed set).
Now, we use now mathematical induction to prove that (.), (.), and (.) hold. By

(.), (.), and (.), it follows that D(x) 	= ∅ and

ξd
(
,D(x)

) ≤ ξβx ()d
(
F(x),C

)
= η ≤ �.

We also have

‖x – x‖ = ‖d‖ ≤ ξd
(
,D�(x)

) ≤ ξβx ()d
(
F(x),C

)
= η = �α,

and (.) holds for n = . By an induction argument, we get

‖xk+ – xk‖ ≤ �α,k+

(‖xk – xk–‖
�α,k

)

≤ �α,k+.

The induction is completed. This completes the proof. �

Remark . () If L = L, then Theorem . reduces to the corresponding ones in [].
Otherwise, in view of (.)-(.), our results constitute an improvement. The rest of []
is improved since those results are corollaries of Theorem .. For more details, we leave
this part to the motivated reader.

() In view of the proof of our Theorem ., we see that the sequence {rα,n} given by

rα, = , rα, = η,

rα, = rα, –
α

∫ rα,–rα,
 L(rα, + u)(rα, – rα, – u) du

ψ ′
α,(rα,)

, (.)

rα,n+ = rα,n –
α

∫ rα,n–rα,n–
 L(rα,n– + u)(rα,n – rα,n– – u) du

ψ ′
α,(rα,n)

for each n ≥  is also a majorizing sequence for the method (GNA). Following the proof
of Lemma . and under the hypotheses of Theorem ., we get

rα,n ≤ sα,n ≤ tα,n, (.)



Argyros et al. Fixed Point Theory and Applications  (2015) 2015:128 Page 14 of 19

rα,n+ – rα,n ≤ sα,n+ – sα,n ≤ tα,n+ – tα,n, (.)

and

r�
α = lim

n−→∞ rα,n ≤ s�
α ≤ r�

α . (.)

Hence {rα,n} and {sα,n} are the tighter majorizing sequences for {xn} than {tα,n} used by
Li and Ng in []. The sequences {rα,n} and {sα,n} can converge under hypotheses weaker
than the ones given in Theorem .. Such conditions have already given by us for more
general functions ψ and in the more general setting of Banach spaces as in [, , , , ].
Therefore, here, we only refer to the popular Kantorovich case as an illustration. Choose
α = , L(u) = L, and L(u) = L for all u ≥ . Then the sequence {tα,n} converges under the
Newton-Kantorovich hypothesis, famous for its simplicity and clarity (see [, ]),

h = Lη ≤ 


. (.)

The sequence {rα,n} converges provided that (see, for example, [])

h = Lη ≤ 


, (.)

where

L =


(
L + L +

(
L + LL

)/)

and the sequence {rα,n} converges if (see, for example, [])

h = Lη ≤ 


, (.)

where

L =


(
L +

(
LL + L


)/ + (LL)/).

It follows from (.)-(.) that

h ≤ 


�⇒ h ≤ 


�⇒ h ≤ 


, (.)

but not vice versa unless L = L. Moreover, we get

h

h
−→ 


,

h

h
−→ ,

h

h
−→ 

as L
L −→ .

() There are cases when the sufficient convergence conditions developed in the pre-
ceding work are not satisfied. Then one can use the modified Gauss-Newton method
(MGNM). In this case, the majorizing sequence proposed in [] is given by

qα, = , qα,n+ = qα,n –
ψα(qα,n)
ψ ′

α()
(.)
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for each n ≥ . This sequence clearly converges under the hypotheses of Theorem ., so
that the estimates (.)-(.) hold with the sequence {qα,n} replacing {sα,n}. However, ac-
cording to the proof of Theorem ., the hypotheses on ψα, can replace the corresponding
ones on ψα . Moreover, the majorizing sequence is given by

pα, = , pα,n+ = pα,n –
ψα(pα,n)
ψ ′

α,()
(.)

for each ≥ . Furthermore, we have

ψα,(s) ≤ ψα(s) (.)

for each s ≥ . Hence clearly it follows that, for each n ≥ ,

pα,n ≤ qα,n, (.)

pα,n+ – pα,n ≤ qα,n+ – qα,n, (.)

and

p�
α = lim

n−→∞ pα,n ≤ q�
α = lim

n−→∞ qα,n. (.)

(Notice also the advantages of (.)-(.).)
In the special case when functions L and L are constants and α = , we find that the

conditions on the function ψα reduce to (.), whereas using ψα,

h = Lη ≤ 


. (.)

Notice that

h

h
−→  (.)

as L
L −→ . Therefore, one can use (MGNM) as a predictor until a certain iterate xN for

which the sufficient conditions for (GNM) are satisfied. Then we use xN as the starting
iterate for faster than (MGNM) method (GNM). Such an approach was used by the author
in [].

5 General majorant conditions
In this section, we provide a semilocal convergence analysis for (GNA) using more general
majorant conditions than (.) and (.).

Definition . Let Y be a Banach space, x ∈ R
l and α > . Let G : Rl −→ Y and fα :

[, r[−→ ]–∞, +∞[ be continuously differentiable. Then G is said to satisfy:
() the center-majorant condition on U(x, r) if

∥∥G(x) – G(x)
∥∥ ≤ α–(f ′

α

(‖x – x‖
)

– f ′
α()

)
(.)

for all x ∈ U(x, r);
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() the majorant condition on U(x, r) if

∥
∥G(x) – G(y)

∥
∥ ≤ α–(f ′

α

(‖x – y‖ + ‖y – x‖
)

– f ′
α

(‖y – x‖
))

(.)

for all x, y ∈ U(x, r) with ‖x – y‖ + ‖y – x‖ ≤ r.

Clearly, the conditions (.) and (.) generalize (.) and (.), respectively, in [] (see
also [, , , , , ]) (for G = F ′ and α = ). Define the majorizing sequence {tα,n} by

tα, = , tα,n+ = tα,n –
fα(tα,n)
f ′
α(tα,n)

. (.)

Moreover, as in (.) and for R > , define (implicitly):

α(R) := sup
ξ≤t<R

–
ηβx (t)
f ′
α(R)(t)

. (.)

Next, we provide sufficient conditions for the convergence of the sequence {tα,n} corre-
sponding to the ones given in Lemma ..

Lemma . (see, for example, [, , ]) Let r > , α > , and fα : [, r) −→ (–∞, +∞) be
continuously differentiable. Suppose that:

() fα() > , f ′
α() = –;

() f ′
α is convex and strictly increasing;

() the equation fα(t) =  has positive zeros. Denote by r�
α the smallest zero. Define r��

α by

r��
α = sup

{
t ∈ [

r�
α , r

)
: fα(t) ≤ 

}
. (.)

Then the sequence {tα,n} is strictly increasing and converges to r�
α . Moreover, the following

estimates hold:

r�
α – tα,n ≤ D–f ′

α(r�
α)

–f ′
α(r�

α)
(
r�
α – tα,n–

) (.)

for each n ≥ , where D–f ′ is the left directional derivative of f (see, for example, [, , ,
]).

Now, we show the following semilocal convergence result for the method (GNA) using
the generalized majorant conditions (.) and (.).

Theorem . Let ξ ∈ [, +∞) and � ∈ (, +∞]. Let x ∈ R
l be a quasi-regular point of

(.) with the quasi-regular radius Rx and the quasi-regular bound function βx . Let η > 
and α(r) be given in (.) and (.). Let  < R < Rx , α ≥ α(R) be a positive constant, and
let r�

α , r��
α be as defined in Lemma .. Suppose that F ′ satisfies the majorant condition on

U(x, r�
α), and the conditions

η ≤ min
{

r�
α ,�

}
, r�

α ≤ R (.)
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hold. Then the sequence {xn} generated by (GNA) is well defined, remains in U(x, r�
α) for

all n ≥  and converges to some x� such that F(x�) ∈ C . Moreover, the following estimates
hold: for each n ≥ ,

‖xn – xn–‖ ≤ tα,n – tα,n–, (.)

‖xn+ – xn‖ ≤ (tα,n+ – tα,n)
(‖xn – xn–‖

tα,n – tα,n–

)

, (.)

F(xn) + F ′(xn)(xn+ – xn) ∈ C, (.)

and

∥∥xn– – x�
∥∥ ≤ r�

α – tα,n–, (.)

where the sequence {tα,n} is given by (.).

Proof We use the same notations as in Theorem .. We follow the proof of Theorem .
until (.). Then, using (.), (.) (for G = F ′), (.), (.), and the hypothesis α ≥ α(R),
we get in turn

ξd
(
,D(xk)

)

≤ ξβx

(‖xk – x‖
)
d
(
F(xk),C

)

≤ ξβx

(‖xk – x‖
)∥∥F(xk) – F(xk–) – F ′(xk–)(xk – xk–)

∥∥

≤ ξβx

(‖xk – x‖
)∫ 



∥∥(
F ′(xθ

k
)

– F ′(xk–)
)
(xk – xk–) dθ

∥∥

≤ ξ
βx (tα,k)
α(R)

∫ 



(
f ′
α

(
tθ
α,k

)
– f ′

α(tα,k–)
)
(tα,k – tα,k–) dθ

≤ ξ
βx (tα,k)

α

∫ 



(
f ′
α

(
tθ
α,k

)
– f ′

α(tα,k–)
)
(tα,k – tα,k–) dθ

≤ –f ′
α(tα,k)–(fα(tα,k) – fα(tα,k–) – f ′

α(tα,k–)(tα,k – tα,k–)
)

= –f ′
α(tα,k)fα(tα,k), (.)

where tθ
α,k = θ tα,k + ( – θ )(tα,k – tα,k–) for all θ ∈ [, ]. The rest follows as in the proof of

Theorem .. This completes the proof. �

Remark . In view of the condition (.), there exists fα, : [, r) −→ (–∞, +∞) continu-
ously differentiable such that

∥
∥G(x) – G(x)

∥
∥ ≤ α–(f ′

α,
(‖x – x‖

)
– f ′

α,()
)

(.)

for all x ∈ U(x, r) and r ≤ R. Moreover,

f ′
α,(t) ≤ f ′

α(t) (.)
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for all t ∈ [, r] holds in general and f ′
α

f ′
α,

can be arbitrarily large (see, for example, [, , ,
, , ]). These observations motivate us to introduce the tighter majorizing sequences
{rα,n}, {sα,n} by

rα, = , rα, = η = –
fα()
f ′
α()

,

rα, = rα, –
α(fα,(rα,) – fα,(rα,) – f ′

α,(rα,)(rα, – rα,))
f ′
α,(rα,)

, (.)

rα,n+ = rα,n –
∫ 

 (f ′
α(rθ

α,k) – f ′
α(rα,k–))(rα,k – rα,k–) dθ

f ′
α,(rα,n)

for each ≥  and

sα, = , sα, = rα,,

sα,n+ = sα,n –
∫ 

 (f ′
α(sθ

α,k) – f ′
α(sα,k–))(sα,k – sα,k–) dθ

f ′
α,(sα,n)

(.)

for each n ≥ .

6 Conclusion
Using a combination of average and center-average type conditions, we presented a
semilocal convergence analysis for the method (GNA) to approximate a solution or a fixed
point of a convex composite optimization problem in the setting of finite dimensional
spaces. Our analysis extends the applicability of the method (GNA) under the same com-
putational cost as in earlier studies, such as [, , , , , –].
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