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Abstract
The aim of this paper is to prove a more generalized contraction mapping principle.
By using this more generalized contraction mapping principle, a further generalized
best proximity theorem was established. Some concrete results have been derived by
using the above two theorems. The results of this paper improve many important
results published recently in the literature.
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1 Introduction
The Banach contraction mapping principle is a classical and powerful tool in nonlinear
analysis. Weak contractions are generalizations of Banach contraction mapping which
have been studied by several authors, and in particular some types of weak contractions
in complete metric spaces were introduced in []. Let T be a self-map of a metric space
(X, d) and φ : [, +∞) → [, +∞) be a function. We say that T is a φ-contraction if

d(Tx, Ty) ≤ φ
(
d(x, y)

)
, ∀x, y ∈ X.

In , Browder [] proved that if φ is nondecreasing and right continuous, and (X, d) is
complete, then T has a unique fixed point x∗ and limn→+∞ Tnx = x∗ for any given x ∈ X.
Subsequently, his result was extended in  by Boyd and Wong [] by weakening the
hypothesis on φ where it suffices to assume that φ is right upper semi-continuous (not
necessarily monotonic). For a comprehensive study of relations between several contrac-
tive conditions, see [, ].

In , Geraghty [] introduced the Geraghty-contraction and obtained the fixed point
theorem.

Definition . Let (X, d) be a metric space. A mapping T : X → X is said to be a Geraghty-
contraction if there exists β ∈ Γ such that for any x, y ∈ X,

d(Tx, Ty) ≤ β
(
d(x, y)

)
d(x, y),
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where the class Γ denotes those functions β : [, +∞) → [, +∞) satisfying the following
condition: β(tn) →  ⇒ tn → .

Theorem . ([]) Let (X, d) be a complete metric space and T : X → X be a Geraghty-
contraction. Then T has a unique fixed point x∗ and for any given x ∈ X, the iterative
sequence Tnx converges to x∗.

In , Samet et al. [] defined the notion of α-admissible mappings as follows.

Definition . ([]) Let α : X × X → [, +∞) be a function. We say that a self-mapping
T : X → X is α-admissible if

x, y ∈ X, α(x, y) ≥  ⇒ α(Tx, Ty) ≥ .

By using this concept, they proved some fixed point results.

Theorem . ([]) Let (X, d) be a complete metric space and T : X → X be an α-admissible
mapping. Assume that the following conditions hold:

(i) for all x, y ∈ X , we have

α(x, y)d(Tx, Ty) ≤ ψ(x, y),

where ψ : [, +∞) → [, +∞) is a nondecreasing function such that

+∞∑

n=

ψn(t) < +∞, ∀t > ;

(ii) there exists x ∈ X such that α(x, Tx) ≥ ;
(iii) either T is continuous or for any sequence {xn} in X with α(xn, xn+) ≥  for all n ≥ 

and xn → x as n → +∞, then α(xn, x) ≥ .
Then T has a fixed point.

In particular, existence of a fixed point for weak contractions and generalized contrac-
tions was extended to partially ordered metric spaces in [, –]. Among them, some
involve altering distance functions. Such functions were introduced by Khan et al. in [],
where they presented some fixed point theorems with the help of such functions. We recall
the definition of altering distance function.

Definition . An altering distance function is a function ψ : [,∞) → [,∞) which sat-
isfies

(a) ψ is continuous and nondecreasing;
(b) ψ =  if and only if t = .

Recently, Harjani and Sadarangani proved some fixed point theorems for weak contrac-
tion and generalized contractions in partially ordered metric spaces by using the altering
distance function in [, ] respectively. Their results improve the theorems of [].

Theorem . ([]) Let (X,≤) be a partially ordered set and suppose that there exists a
metric d ∈ X such that (X, d) is a complete metric space. Let f : X → X be a continuous and
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nondecreasing mapping such that

d
(
f (x), f (y)

) ≤ d(x, y) – ψ
(
d(x, y)

)
for x ≥ y,

where ψ : [,∞) → [,∞) is a continuous and nondecreasing function such that ψ is pos-
itive in (,∞), ψ() =  and limt→∞ ψ(t) = ∞. If there exists x ∈ X with x ≤ f (x), then
f has a fixed point.

Theorem . ([]) Let (X,≤) be a partially ordered set and suppose that there exists a
metric d ∈ X such that (X, d) is a complete metric space. Let f : X → X be a continuous and
nondecreasing mapping such that

ψd
(
f (x), f (y)

) ≤ ψ
(
d(x, y)

)
– φ

(
d(x, y)

)
for x ≥ y,

where ψ and φ are altering distance functions. If there exists x ∈ X with x ≤ f (x), then
f has a fixed point.

Subsequently, Amini-Harandi and Emami proved another fixed point theorem for con-
traction type maps in partially ordered metric spaces in []. The following class of func-
tions is used in [].

Theorem . ([]) Let (X,≤) be a partially ordered set and suppose that there exists a
metric d such that (X, d) is a complete metric space. Let f : X → X be an increasing mapping
such that there exists an element x ∈ X with x ≤ f (x). Suppose that there exists β ∈ Γ

such that

d
(
f (x), f (y)

) ≤ β
(
d(x, y)

)
d(x, y) for each x, y ∈ X with x ≥ y.

Assume that either f is continuous or X is such that if an increasing sequence xn → x ∈ X,
then xn ≤ x, ∀n. Besides, if for each x, y ∈ X there exists z ∈ X which is comparable to x and
y, then f has a unique fixed point.

In , Yan et al. proved the following result.

Theorem . ([]) Let X be a partially ordered set and suppose that there exists a metric
d in x such that (X, d) is a complete metric space. Let T : X → X be a continuous and
nondecreasing mapping such that

ψ
(
d(Tx, Ty)

) ≤ φ
(
d(x, y)

)
, ∀x ≥ y,

where ψ is an altering distance function and φ : [,∞) → [,∞) is a continuous function
with the condition ψ(t) > φ(t) for all t > . If there exists x ∈ X such that x ≤ Tx, then T
has a fixed point.

Several problems can be changed as equations of the form Tx = x, where T is a given
self-mapping defined on a subset of a metric space, a normed linear space, a topological
vector space or some suitable space. However, if T is a non-self mapping from A to B,
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then the aforementioned equation does not necessarily admit a solution. In this case, it
is worth consideration to find an approximate solution x in A such that the error d(x, Tx)
is minimum, where d is the distance function. In view of the fact that d(x, Tx) is at least
d(A, B), a best proximity point theorem (for short BPPT) guarantees the global minimiza-
tion of d(x, Tx) by the requirement that an approximate solution x satisfies the condition
d(x, Tx) = d(A, B). Such optimal approximate solutions are called best proximity points of
the mapping T . Interestingly, best proximity point theorems also serve as a natural gen-
eralization of fixed point theorems since a best proximity point becomes a fixed point if
the mapping under consideration is a self mapping. Research on the best proximity point
is an important topic in the nonlinear functional analysis and applications (see [–]).

Let A, B be two nonempty subsets of a complete metric space and consider a mapping
T : A → B. The best proximity point problem is whether we can find an element x ∈ A
such that d(x, Tx) = min{d(x, Tx) : x ∈ A}. Since d(x, Tx) ≥ d(A, B) for any x ∈ A, in fact,
the optimal solution to this problem is the one for which the value d(A, B) is attained.

Let A, B be two nonempty subsets of a metric space (X, d). We denote by A and B the
following sets:

A =
{

x ∈ A : d(x, y) = d(A, B) for some y ∈ B
}

,

B =
{

y ∈ B : d(x, y) = d(A, B) for some x ∈ A
}

,

where d(A, B) = inf{d(x, y) : x ∈ A and y ∈ B}.
It is interesting to note that A and B are contained in the boundaries of A and B respec-

tively provided A and B are closed subsets of a normed linear space such that d(A, B) > 
[, ].

Definition . ([]) Let (A, B) be a pair of nonempty subsets of a metric space (X, d)
with A 
= ∅. Then the pair (A, B) is said to have the P-property if and only if for any x, x ∈
A and y, y ∈ B,

{
d(x, y) = d(A, B),
d(x, y) = d(A, B)

⇒ d(x, x) = d(y, y).

In [], the authors proved that any pair (A, B) of nonempty closed convex subsets of a
real Hilbert space H satisfies the P-property.

In [], P-property was weakened to weak P-property and an example satisfying
P-property but not weak P-property can be found there.

Definition . ([]) Let (A, B) be a pair of nonempty subsets of a metric space (X, d)
with A 
= ∅. Then the pair (A, B) is said to have the weak P-property if and only if for any
x, x ∈ A and y, y ∈ B,

{
d(x, y) = d(A, B),
d(x, y) = d(A, B)

⇒ d(x, x) ≤ d(y, y).

Example ([]) Consider (R, d), where d is the Euclidean distance and the subsets A =
{(, )} and B = {y =  +

√
 – x}.
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Obviously, A = {(, )}, B = {(–, ), (, )} and d(A, B) =
√

. Furthermore,

d
(
(, ), (–, )

)
= d

(
(, ), (, )

)
=

√
;

however,

 = d
(
(, ), (, )

)
< d

(
(–, ), (, )

)
= .

We can see that the pair (A, B) satisfies the weak P-property but not the P-property.

Definition . ([]) Let (A, B) be a pair of nonempty closed subsets of a complete metric
space (X, d). A mapping f : A → B is said to be weakly contractive provided that

d
(
f (x), f (y)

) ≤ ᾱ(x, y)d(x, y)

for all x, y ∈ A, where the function ᾱ : X × X → [, ) holds, for every  < a < b, that

θ (a, b) = sup
{
ᾱ(x, y) : a ≤ d(x, y) ≤ b

}
< .

Theorem . ([]) Let (A, B) be a pair of nonempty closed subsets of a complete metric
space (X, d) such that A 
= ∅. Let T : A → B be a weakly contractive mapping defined as in
Definition .. Suppose that T(A) ⊆ B and the pair (A, B) has the weak P-property. Then
T has a unique best proximity point x∗ ∈ A and the iteration sequence {xk}∞n= defined by

xk+ = Txk , d(xk+, xk+) = d(A, B), k = , , , . . .

converges, for every x ∈ A, to x∗.

The aim of this paper is to prove a further generalized contraction mapping principle. By
using this further generalized contraction mapping principle, the authors prove a further
generalized best proximity theorem. Some concrete results are derived by using the above
two theorems. The results of this paper modify and improve many other important recent
results.

2 Further generalized contraction mapping principle
In what follows, we prove the following theorem which generalizes many related results
in the literature.

Theorem . Let (X, d) be a complete metric space. Let T : X → X be a mapping such that

ψ
(
d(Tx, Ty)

) ≤ φ
(
d(x, y)

)
, ∀x, y ∈ X, (.)

where ψ ,φ : [, +∞) → [, +∞) are two functions with the conditions:

() ψ(a) ≤ φ(b) ⇒ a ≤ b;

()

{
ψ(an) ≤ φ(bn),
an → ε, bn → ε

⇒ ε = .
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Then T has a unique fixed point and for any given x ∈ X, the iterative sequence Tnx

converges to this fixed point.

Proof For any given x ∈ X, we define an iterative sequence as follows:

x = Tx, x = Tx, . . . , xn+ = Txn, . . . . (.)

Then, for each integer n ≥ , from (.) and (.) we get

ψ
(
d(xn+, xn)

)
= ψ

(
d(Txn, Txn–)

) ≤ φ
(
d(xn, xn–)

)
. (.)

Using condition () we have

d(xn+, xn) ≤ d(xn, xn–)

for all n ≥ . Hence the sequence d(xn+, xn) is nonincreasing and, consequently, there ex-
ists r ≥  such that

d(xn+, xn) → r

as n → ∞. By using condition () we know r = .
In what follows, we show that {xn} is a Cauchy sequence. Suppose that {xn} is not a

Cauchy sequence. Then there exists ε >  for which we can find subsequences {xnk }, {xmk }
with nk > mk > k such that

d(xnk , xmk ) ≥ ε (.)

for all k ≥ . Further, corresponding to mk we can choose nk in such a way that it is the
smallest integer with nk > mk satisfying (.). Then

d(xnk –, xmk ) < ε. (.)

From (.) and (.), we have

ε ≤ d(xnk , xmk ) ≤ d(xnk , xnk –) + d(xnk –, xmk ) < d(xnk , xnk –) + ε.

Letting k → ∞, we get

lim
k→∞

d(xnk , xmk ) = ε. (.)

By using the triangular inequality, we have

d(xnk , xmk ) ≤ d(xnk , xnk –) + d(xnk –, xmk –) + d(xmk –, xmk ),

d(xnk –, xmk –) ≤ d(xnk –, xnk ) + d(xnk , xmk ) + d(xmk , xmk –).
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Letting k → ∞ in the above two inequalities and applying (.), we have

lim
k→∞

d(xnk –, xmk –) = ε.

Since

ψ
(
d(xnk , xmk )

) ≤ φ
(
d(xnk –, xmk –)

)
.

By using condition () we know ε = , which is a contradiction. This shows that {xn} is
a Cauchy sequence and, since X is a complete metric space, there exists z ∈ X such that
xn → z as n → ∞. From (.) and (.) we have

ψ
(
d(xn, Tz)

) ≤ φ
(
d(xn–, z)

)
.

By using condition () we get

d(xn, Tz) ≤ d(xn–, z),

so that d(xn, Tz) → , as n → +∞. Therefore

d(z, Tz) ≤ d(xn, z) + d(xn, Tz) → 

as n → +∞. This implies z = Tz and proves that z is a fixed point. Next we prove the
uniqueness of the fixed point. Assume that there exist two fixed points z and w. Then
from (.) we have that

ψ
(
d(z, w)

)
= ψ

(
d(Tz, Tw)

) ≤ φ
(
d(z, w)

)
,

by using condition () we know d(z, w) =  and hence z = w. This completes the proof. �

Example . The following functions satisfy conditions () and () of Theorem .:

(a)

⎧
⎨

⎩
ψ(t) = t,

φ(t) = αt,

where  < α <  is a constant;

(b)

⎧
⎨

⎩
ψ(t) = t,

φ(t) = ln(t + );

(c)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ(t) = t,

φ(t) =

⎧
⎨

⎩
t,  ≤ t ≤ 

 ,

t – 
 , 

 < t < +∞;

(d)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψ(t) =

⎧
⎨

⎩
t,  ≤ t ≤ ,

t – 
 ,  < t < +∞,

φ(t) =

⎧
⎨

⎩

t
 ,  ≤ t ≤ ,

t – 
 ,  < t < +∞;
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(e)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψ(t) =

⎧
⎨

⎩
t,  ≤ t < ,

αt,  ≤ t < +∞,

φ(t) =

⎧
⎨

⎩
t,  ≤ t < ,

βt,  ≤ t < +∞,

where  < β < α are constants.

If we choose ψ(t), φ(t) in Theorem ., then we can get the following result.

Theorem . Let (X, d) be a complete metric space. Let T : X → X be a mapping such that

 ≤ d(Tx, Ty) <  ⇒ d(Tx, Ty) ≤ (
d(x, y)

),

d(Tx, Ty) ≥  ⇒ α
(
d(Tx, Ty)

) ≤ βd(x, y)

for any x, y ∈ X. Then T has a unique fixed point and for any given x ∈ X, the iterative
sequence Tnx converges to this fixed point.

If we choose ψ(t), φ(t) in Theorem ., then we can get the following result.

Theorem . Let (X, d) be a complete metric space. Let T : X → X be a mapping such that

 ≤ d(Tx, Ty) ≤  ⇒ d(Tx, Ty) ≤ 


d(x, y),

 < d(Tx, Ty) ⇒ d(Tx, Ty) ≤ d(x, y) –



for any x, y ∈ X. Then T has a unique fixed point and for any given x ∈ X, the iterative
sequence Tnx converges to this fixed point.

If we choose ψ(t), φ(t) in Theorem ., then we can get the following result.

Theorem . Let (X, d) be a complete metric space. Let T : X → X be a mapping such that

 ≤ d(x, y) ≤ 


⇒ d(Tx, Ty) ≤ (
d(x, y)

),




< d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y) –



for any x, y ∈ X. Then T has a unique fixed point and for any given x ∈ X, the iterative
sequence Tnx converges to this fixed point.

It is easy to prove the following conclusion and corollary.

Corollary . Let ψ ,φ : [, +∞) → [, +∞) be two functions with the conditions:
(i) ψ() = φ();

(ii) ψ(t) > φ(t), ∀t > ;
(iii) ψ is lower semi-continuous, φ is upper semi-continuous.

Then ψ(t), φ(t) satisfy conditions () and ().
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Corollary . Let (X, d) be a complete metric space. Let T : X → X be a mapping such
that

ψ
(
d(Tx, Ty)

) ≤ φ
(
d(x, y)

)
, ∀x, y ∈ X,

where ψ ,φ : [, +∞) → [, +∞) are two functions with the conditions (i), (ii) and (iii). Then
T has a unique fixed point, and for any given x ∈ X, the iterative sequence Tnx converges
to this fixed point.

3 Further generalized best proximity point theorems
Before giving our main results, we first introduce the notion of (ϕ,ψ)-P-property.

Definition . Let (A, B) be a pair of nonempty subsets of a metric space (X, d) with
A 
= ∅. Then the pair (A, B) is said to have the (ψ ,ϕ)-P-property if and only if for any
x, x ∈ A and y, y ∈ B,

{
d(x, y) = d(A, B)
d(x, y) = d(A, B)

⇒ ψ
(
d(x, x)

) ≤ ϕ
(
d(y, y)

)
,

where ψ ,ϕ : [, +∞) → [, +∞) are two functions.

Theorem . Let (A, B) be a pair of nonempty closed subsets of a complete metric space
(X, d) such that A 
= ∅. Let ψ ,ϕ,φ : [, +∞) → [, +∞) be three functions with the condi-
tions:

() ψ(a) ≤ φ(b) ⇒ a ≤ b;

()

{
ψ(an) ≤ φ(bn),
an → ε, bn → ε

⇒ ε = ;

() ψ(tn) →  ⇒ tn → ;

() tn →  ⇒ ϕ(tn) → ;

() ϕ(a) ≤ φ(b) ⇒ a ≤ b.

Let T : A → B be a mapping such that

ϕ
(
d(Tx, Ty)

) ≤ φ
(
d(x, y)

)
, ∀x, y ∈ A. (.)

Suppose that the pair (A, B) has the (ψ ,ϕ)-P-property and T(A) ⊆ B. Then there exists a
unique x∗ in A such that d(x∗, Tx∗) = d(A, B).

Proof We first prove that B is closed. Let {yn} ⊆ B be a sequence such that yn → q ∈ B.
It follows from the (ψ ,ϕ)-P-property that

ϕ
(
d(yn, ym)

) →  ⇒ ψ
(
d(xn, xm)

) → 

as n, m → ∞, where xn, xm ∈ A and d(xn, yn) = d(A, B), d(xm, ym) = d(A, B). This together
with conditions () and () implies that {xn} is a Cauchy sequence so that {xn} converges
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strongly to a point p ∈ A. By the continuity of metric d we have d(p, q) = d(A, B), that is,
q ∈ B, and hence B is closed.

Let A be the closure of A. We claim that T(A) ⊆ B. In fact, if x ∈ A \ A, then there
exists a sequence {xn} ⊆ A such that xn → x. From (.) and condition () we have

d(Tx, Ty) ≤ d(x, y), ∀x, y ∈ A.

This together with the closedness of B implies that Tx = limn→∞ Txn ∈ B. That is,
T(A) ⊆ B.

Define an operator PA : T(A) → A by PA y = {x ∈ A : d(x, y) = d(A, B)}. Since the pair
(A, B) has the (ψ ,ϕ)-P-property and T satisfies condition (.), we have

ψ
(
d(PA Tx, PA Tx)

) ≤ ϕ
(
d(Tx, Tx)

) ≤ φ
(
d(x, x)

)

for any x, x ∈ A. This shows that PA T : A → A is a mapping from a complete met-
ric subspace A into itself, and it satisfies the conditions of Theorem .. By using The-
orem ., we can get that PA T has a unique fixed point x∗. That is, PA Tx∗ = x∗ ∈ A. It
implies that

d
(
x∗, Tx∗) = d(A, B).

Therefore, x∗ is the unique element in A such that d(x∗, Tx∗) = d(A, B). It is easy to see
that x∗ is also the unique one in A such that d(x∗, Tx∗) = d(A, B). �

Theorem . Let (A, B) be a pair of nonempty closed subsets of a complete metric space
(X, d) such that A 
= ∅. Let ψ ,φ : [, +∞) → [, +∞) be two functions with the conditions:

() ψ(a) ≤ φ(b) ⇒ a ≤ b;

()

{
ψ(an) ≤ φ(bn),
an → ε, bn → ε

⇒ ε = ;

() ψ(tn) →  ⇔ tn → 

and ψ(t) is nondecreasing. Let T : A → B be a mapping such that

ψ
(
d(Tx, Ty)

) ≤ φ
(
d(x, y)

)
, ∀x, y ∈ A. (.)

Suppose that the pair (A, B) has the weak P-property and T(A) ⊆ B. Then there exists a
unique x∗ in A such that d(x∗, Tx∗) = d(A, B).

Proof Let ϕ(t) = ψ(t) for all t ∈ [, +∞). Then the pair (A, B) having the weak P-property
implies that the pair (A, B) has the (ψ ,ϕ)-P-property. Condition () of Theorem . implies
conditions (), () of Theorem . and (.) implies (.). By using Theorem . we get the
conclusion of Theorem .. �

If we choose ψ(t), φ(t) in Theorem ., then we can get the following result.



Su and Yao Fixed Point Theory and Applications  (2015) 2015:120 Page 11 of 13

Theorem . Let (A, B) be a pair of nonempty closed subsets of a complete metric space
(X, d) such that A 
= ∅. Let T : A → B be a mapping such that

 ≤ d(x, y) ≤ 


⇒ d(Tx, Ty) ≤ (
d(x, y)

),




< d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y) –



for any x, y ∈ A. Suppose that the pair (A, B) has the weak P-property and T(A) ⊆ B. Then
there exists a unique x∗ in A such that d(x∗, Tx∗) = d(A, B).

If we choose ψ(t), φ(t) in Theorem ., then we can get the following result.

Theorem . Let (A, B) be a pair of nonempty closed subsets of a complete metric space
(X, d) such that A 
= ∅. Let T : A → B be a mapping such that

 ≤ d(Tx, Ty) ≤  ⇒ d(Tx, Ty) ≤ 


d(x, y),

 < d(Tx, Ty) ⇒ d(Tx, Ty) ≤ d(x, y) –



for any x, y ∈ X. Suppose that the pair (A, B) has the weak P-property and T(A) ⊆ B. Then
there exists a unique x∗ in A such that d(x∗, Tx∗) = d(A, B).

Example . Let X = R and

A =
{

(, y) ∈ R :  ≤ y ≤  or y = –n, n = , , . . .
}

,

B =
{

(, y) ∈ R :  ≤ y ≤  or – ∞ < y ≤ – +



}
.

It is easy to see that

A =
{

(, y) ∈ R :  ≤ y ≤ 
}

,

B =
{

(, y) ∈ R :  ≤ y ≤ 
}

.

Let T : A → B be defined by

T(, y) =

⎧
⎨

⎩
(, y

 ) if  ≤ y ≤ ,

(, –n + n
 ) if y = –n, n = , , . . . .

It is obvious that A, B are closed sets of R, A 
= ∅, the pair (A, B) has the weak P-property
and T(A) ⊂ B. On the other hand, from the definition of T , it is not hard to see that

 ≤ ∣
∣T(, x) – T(, y)

∣
∣ ≤  ⇒ ∣

∣T(, x) – T(, y)
∣
∣ =



∣
∣(, x) – (, y)

∣
∣,

 <
∣∣T(, x) – T(, y)

∣∣ ⇒ ∣∣T(, x) – T(, y)
∣∣ ≤ ∣∣(, x) – (, y)

∣∣ –
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for all (, x), (, y) ∈ A. Therefore, by using Theorem ., there exists a unique x∗ = (, ) in
A such that d(x∗, Tx∗) = d(A, B) = , where Tx∗ = (, ). Note that the above mapping T is a
further generalized contraction, but not a contraction. In fact, for any (, –n), (, –m) ∈
A, m > n, we have

∣
∣T

(
, –n) – T

(
, –m)∣∣ = m –

m


– n +
n


,

hence

|T(, –n) – T(, –m)|
|(, –n) – (, m)| =  +




m – n
(m + n)(m – n)

→ 

as m, n → +∞.
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