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Abstract
The purpose of this paper is to present accelerations of the Mann and CQ algorithms.
We first apply the Picard algorithm to the smooth convex minimization problem and
point out that the Picard algorithm is the steepest descent method for solving the
minimization problem. Next, we provide the accelerated Picard algorithm by using
the ideas of conjugate gradient methods that accelerate the steepest descent
method. Then, based on the accelerated Picard algorithm, we present accelerations
of the Mann and CQ algorithms. Under certain assumptions, we show that the new
algorithms converge to a fixed point of a nonexpansive mapping. Finally, we show
the efficiency of the accelerated Mann algorithm by numerically comparing with the
Mann algorithm. A numerical example is provided to illustrate that the acceleration of
the CQ algorithm is ineffective.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ ·‖. Suppose that
C ⊂ H is nonempty, closed and convex. A mapping T : C → C is said to be nonexpansive
if

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ C. The set of fixed points of T is defined by Fix(T) := {x ∈ C : Tx = x}.
In this paper, we consider the following fixed point problem.

Problem . Suppose that T : C → C is nonexpansive with Fix(T) 	= ∅. Then

find x∗ ∈ C such that T
(
x∗) = x∗.

The fixed point problems for nonexpansive mappings [–] capture various applications
in diversified areas, such as convex feasibility problems, convex optimization problems,
problems of finding the zeros of monotone operators, and monotone variational inequal-
ities (see [, ] and the references therein). The Picard algorithm [], the Mann algorithm
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[, ], and the CQ method [] are useful fixed point algorithms to solve the fixed point
problems. Meanwhile, to guarantee practical systems and networks (see, e.g., [–]) are
stable and reliable, the fixed point has to be quickly found. Recently, Sakurai and Liduka
[] accelerated the Halpern algorithm and obtained a fast algorithm with strong conver-
gence. Inspired by their work, we focus on the Mann and the CQ algorithms and present
new algorithms to accelerate the approximation of a fixed point of a nonexpansive map-
ping.

We first apply the Picard algorithm to the smooth convex minimization problem and
illustrate that the Picard algorithm is the steepest descent method [] for solving the
minimization problem. Since conjugate gradient methods [] have been widely seen as
an efficient accelerated version of most gradient methods, we introduce an accelerated
Picard algorithm by combining the conjugate gradient methods and the Picard algorithm.
Finally, based on the accelerated Picard algorithm, we present accelerations of the Mann
and CQ algorithms.

In this paper, we propose two accelerated algorithms for finding a fixed point of a non-
expansive mapping and prove the convergence of the algorithms. Finally, the numerical
examples are presented to demonstrate the effectiveness and fast convergence of the ac-
celerated Mann algorithm and the ineffectiveness of the accelerated CQ algorithm.

2 Mathematical preliminaries
2.1 Picard algorithm and our algorithm
The Picard algorithm generates the sequence {xn}∞n= as follows: given x ∈ H ,

xn+ = Txn, n ≥ . ()

The Picard algorithm () converges to a fixed point of the mapping T if T : C → C is
contractive (see, e.g., []).

When Fix(T) is the set of all minimizers of a convex, continuously Fréchet differentiable
functional f over H , that algorithm () is the steepest descent method [] to minimize f
over H . Suppose that the gradient of f , denoted by ∇f , is Lipschitz continuous with a
constant L >  and define Tf : H → H by

Tf := I – λ∇f , ()

where λ ∈ (, /L) and I : H → H stands for the identity mapping. Accordingly, Tf satisfies
the contraction condition (see, e.g., []) and

Fix
(
Tf ) = arg min

x∈H
f (x) :=

{
x∗ ∈ H : f

(
x∗) = min

x∈H
f (x)

}
.

Therefore, algorithm () with T := Tf can be expressed as follows:

{
df

n+ := –∇f (xn),
xn+ := Tf (xn) = xn – λ∇f (xn) = xn + λdf

n+.
()

The conjugate gradient methods [] are popular acceleration methods of the steepest
descent method. The conjugate gradient direction of f at xn (n ≥ ) is df ,CGD

n+ := –∇f (xn) +
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βndf ,CGD
n , where df ,CGD

 := –∇f (x) and {βn}∞n= ⊂ (,∞), which, together with (), implies
that

df ,CGD
n+ =


λ

(
Tf (xn) – xn

)
+ βndf ,CGD

n . ()

By replacing df
n+ := –∇f (xn) in algorithm () with df ,CGD

n+ defined by (), we get the accel-
erated Picard algorithm as follows:

{
df ,CGD

n+ := 
λ

(
Tf (xn) – xn

)
+ βndf ,CGD

n ,
xn+ := xn + λdf ,CGD

n+ .
()

The convergence condition of Picard algorithm is very restrictive and it does not con-
verge for general nonexpansive mappings (see, e.g., []). So, in  Mann [] introduced
the Mann algorithm

xn+ = αnxn + ( – αn)Txn, n ≥ , ()

and showed that the sequence generated by it converges to a fixed point of a nonexpansive
mapping. In this paper we combine ()-() and the CQ algorithm to present two novel
algorithms.

2.2 Some lemmas
We will use the following notation:

() xn ⇀ x means that {xn} converges weakly to x and xn → x means that {xn} converges
strongly to x.

() ωw(xn) := {x : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn}.

Lemma . Let H be a real Hilbert space. There hold the following identities:
(i) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉, ∀x, y ∈ H ,

(ii) ‖tx + ( – t)y‖ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖, t ∈ [, ], ∀x, y ∈ H .

Lemma . Let K be a closed convex subset of a real Hilbert space H , and let PK be the
(metric or nearest point) projection from H onto K (i.e., for x ∈ H , PK x is the only point in
K such that ‖x – PK x‖ = inf{‖x – z‖ : z ∈ K}). Given x ∈ H and z ∈ K . Then z = PK x if and
only if there holds the relation

〈x – z, y – z〉 ≤  for all y ∈ K .

Lemma . (See []) Let K be a closed convex subset of H . Let {xn} be a sequence in H and
u ∈ H . Let q = PK u. Suppose that {xn} is such that ωw(xn) ⊂ K and satisfies the condition

‖xn – u‖ ≤ ‖u – q‖ for all n.

Then xn → q.

Lemma . (See []) Let C be a closed convex subset of a real Hilbert space H , and let
T : C → C be a nonexpansive mapping such that Fix(T) 	= ∅. If a sequence {xn} in C is such
that xn ⇀ z and xn – Txn → , then z = Tz.
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Lemma . (See []) Assume that {an} is a sequence of nonnegative real numbers satis-
fying the property

an+ ≤ an + un, n ≥ ,

where {un} is a sequence of nonnegative real numbers such that
∑∞

n= un < ∞. Then
limn→∞ an exists.

3 The accelerated Mann algorithm
In this section, we present the accelerated Mann algorithm and give its convergence.

Algorithm . Choose μ ∈ (, ], λ > , and x ∈ H arbitrarily, and set {αn}∞n= ⊂ (, ),
{βn}∞n= ⊂ [,∞). Set d := (T(x) – x)/λ. Compute dn+ and xn+ as follows:

⎧
⎪⎨

⎪⎩

dn+ := 
λ

(
T(xn) – xn

)
+ βndn,

yn := xn + λdn+,
xn+ := μαnxn + ( – μαn)yn.

()

We can check that Algorithm . coincides with the Mann algorithm () when βn :≡ 
and μ := .

In this section we make the following assumptions.

Assumption . The sequences {αn}∞n= and {βn}∞n= satisfy
(C)

∑∞
n= μαn( – μαn) = ∞,

(C)
∑∞

n= βn < ∞.
Moreover, {xn}∞n= satisfies

(C) {T(xn) – xn}∞n= is bounded.

Before doing the convergence analysis of Algorithm ., we first show the two lemmas.

Lemma . Suppose that T : H → H is nonexpansive with Fix(T) 	= ∅ and that Assump-
tion . holds. Then {dn}∞n= and {‖xn –p‖}∞n= are bounded for any p ∈ Fix(T). Furthermore,
limn→∞ ‖xn – p‖ exists.

Proof We have from (C) that limn→∞ βn = . Accordingly, there exists n ∈ N such that
βn ≤ / for all n ≥ n. Define M := max{max≤k≤n ‖dk‖, (/λ) supn∈N ‖T(xn) – xn‖}. Then
(C) implies that M < ∞. Assume that ‖dn‖ ≤ M for some n ≥ n. The triangle inequality
ensures that

‖dn+‖ =
∥∥
∥∥


λ

(
T(xn) – xn

)
+ βndn

∥∥
∥∥ ≤ 

λ

∥
∥T(xn) – xn

∥
∥ + βn‖dn‖ ≤ M, ()

which means that ‖dn‖ ≤ M for all n ≥ , i.e., {dn}∞n= is bounded.
The definition of {yn}∞n= implies that

yn = xn + λ

(

λ

(
T(xn) – xn

)
+ βndn

)

= T(xn) + λβndn. ()
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The nonexpansivity of T and () imply that, for any p ∈ Fix(T) and for all n ≥ n,

‖yn – p‖ =
∥∥T(xn) + λβndn – p

∥∥

≤ ∥
∥T(xn) – T(p)

∥
∥ + λβn‖dn‖

≤ ‖xn – p‖ + λMβn. ()

Therefore, we find

‖xn+ – p‖ =
∥∥μαn(xn – p) + ( – μαn)(yn – p)

∥∥

≤ μαn‖xn – p‖ + ( – μαn)‖yn – p‖
≤ μαn‖xn – p‖ + ( – μαn)

{‖xn – p‖ + λMβn
}

≤ ‖xn – p‖ + λMβn, ()

which implies

‖xn – p‖ ≤ ‖x – p‖ + λM

n–∑

k=

βk < ∞.

So, we get that {xn}∞n= is bounded. From () it follows that {yn}∞n= is bounded.
In addition, using Lemma ., (C), and (), we obtain limn→∞ ‖xn – p‖ exists. �

Lemma . Suppose that T : H → H is nonexpansive with Fix(T) 	= ∅ and that Assump-
tion . holds. Then

lim
n→∞

∥∥xn – T(xn)
∥∥ = .

Proof By ()-() and the nonexpansivity of T , we have

∥∥xn+ – T(xn+)
∥∥

=
∥
∥[

μαnxn + ( – μαn)
(
T(xn) + λβndn

)]
– T

(
μαnxn + ( – μαn)

(
T(xn) + λβndn

))∥∥

=
∥∥[

μαn
(
xn – T(xn)

)
+ ( – μαn)λβndn

]

+
[
T(xn) – T

(
μαnxn + ( – μαn)

(
T(xn) + λβndn

))]∥∥

≤ μαn
∥∥xn – T(xn)

∥∥ + ( – μαn)λβn‖dn‖
+

∥
∥xn –

[
μαnxn + ( – μαn)

(
T(xn) + λβndn

)]∥∥

≤ μαn
∥∥xn – T(xn)

∥∥ + ( – μαn)λβn‖dn‖
+ ( – μαn)

∥
∥xn – T(xn)

∥
∥ + ( – μαn)λβn‖dn‖

≤ ∥∥xn – T(xn)
∥∥ + λβn‖dn‖

≤ ∥∥xn – T(xn)
∥∥ + λβnM,

which, with (C) and Lemma ., yields that the limit of ‖xn – T(xn)‖ exists.
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On the other hand, for any p ∈ Fix(T) and for all n ≥ n, using the triangle inequality,
the Cauchy-Schwarz inequality, and Lemma .(ii), we obtain

‖xn+ – p‖ =
∥
∥μαnxn + ( – μαn)yn – p

∥
∥

=
∥∥μαnxn + ( – μαn)

(
T(xn) + λβndn

)
– p

∥∥

=
∥∥μαn(xn – p) + ( – μαn)

(
T(xn) – p

)
+ ( – μαn)λβndn

∥∥

≤ ∥∥μαn(xn – p) + ( – μαn)
(
T(xn) – p

)∥∥ +
∥∥( – μαn)λβndn

∥∥

+ 
∥
∥μαn(xn – p) + ( – μαn)

(
T(xn) – p

)∥∥
∥
∥( – μαn)λβndn

∥
∥

≤ μαn‖xn – p‖ + ( – μαn)
∥
∥T(xn) – p

∥
∥ – μαn( – μαn)

∥
∥T(xn) – xn

∥
∥

+ ( – μαn)λβ
nM

 + 
[
μαn‖xn – p‖ + ( – μαn)

∥
∥T(xn) – p

∥
∥]

× ( – μαn)λβnM

≤ ‖xn – p‖ – μαn( – μαn)
∥∥T(xn) – xn

∥∥

+ βn( – μαn)λ
{

M‖xn – p‖ + ( – μαn)λβnM

}

≤ ‖xn – p‖ – μαn( – μαn)
∥
∥T(xn) – xn

∥
∥ + βnM.

We have from Lemma . that M := supk≥( – μαk)λ{M‖xk – p‖ + ( – μαk)λβkM
 } is

bounded. Therefore, using (C), we obtain

n∑

k=

μαk( – μαk)
∥∥T(xk) – xk

∥∥ ≤ ‖x – p‖ – ‖xn+ – p‖ + M

n∑

k=

βk < ∞,

which, with (C), implies that

lim inf
n→∞

∥
∥T(xn) – xn

∥
∥ = .

Due to existence of the limit of ‖T(xn) – xn‖, we have

lim
n→∞

∥∥T(xn) – xn
∥∥ = ,

which with Lemma . implies that ωw(xn) ⊂ Fix(T). �

Theorem . Suppose that T : H → H is nonexpansive with Fix(T) 	= ∅ and that Assump-
tion . holds. Then the sequence {xn} generated by Algorithm . weakly converges to a
fixed point of T .

Proof To see that {xn} is actually weakly convergent, we need to show that ωω(xn) consists
of exactly one point. Take p, q ∈ ωw(xn) and let {xni} and {xmj} be two subsequences of {xn}
such that xni ⇀ p and xmj ⇀ q, respectively. Using Lemma . of [] and Lemma ., we
have p = q. Hence, the proof is complete. �
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4 The accelerated CQ algorithm
In general, the Mann algorithm () has only weak convergence (see [] for an exam-
ple). However, strong convergence is often much more desirable than weak convergence
in many problems that arise in infinite dimensional spaces (see [] and the references
therein). In , Nakajo and Takahashi [] introduced the following modification of the
Mann algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn := αnxn + ( – αn)Txn,

Cn = {z ∈ C : ‖yn – z‖ ≤ ‖xn – z‖},
Qn =

{
z ∈ C : 〈xn – z, x – xn〉 ≥ 

}
,

xn+ = PCn∩Qn x,

()

where C is a nonempty closed convex subset of a Hilbert space H and T : C → C is a
nonexpansive mapping, and PK denotes the metric projection from H onto a closed convex
subset K of H .

Here, we introduce an acceleration of CQ algorithm based on Algorithm . and show
its strong convergence.

Theorem . Let C be a bounded, closed and convex subset of a Hilbert space H and
T : C → C be nonexpansive with Fix(T) 	= ∅. Assume that {αn}∞n= is a sequence in (, a] for
some  < a <  and {βn}∞n= ⊂ [,∞) such that limn→∞ βn = . Define a sequence {xn}∞n= in
C by the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

dn+ := 
λ

(
T(xn) – xn

)
+ βndn,

yn := xn + λdn+,

zn := αnxn + ( – αn)yn,

Cn =
{

z ∈ C : ‖zn – z‖ ≤ ‖xn – z‖ + θn
}

,

Qn =
{

z ∈ C : 〈xn – z, x – xn〉 ≥ 
}

,

xn+ = PCn∩Qn x,

()

where

θn = λβnM[λβnM + M] →  as n → ∞,

M = diam C and M := max{max≤k≤n ‖dk‖, (/λ)M}, n is chosen such that βn ≤ / for
all n ≥ n. Then {xn}∞n= converges in norm to PFix(T)(x).

Proof First observe that Cn is convex. Indeed, the inequality defined in Cn can be rewritten
as

〈
(xn – zn), z

〉 ≤ ‖xn‖ – ‖zn‖ + θn
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which is affine (and hence convex ) in z. Next we show that Fix(T) ⊂ Cn for all n. Similar
to the proof of (), we get ‖dn‖ ≤ M. Due to xn ∈ C, we have, for all p ∈ Fix(T) ⊂ C,

‖xn – p‖ ≤ M, ()

and

‖yn – p‖ ≤ ‖xn – p‖ + λβnM,

which comes from (). Thus we get

‖zn – p‖ ≤ αn‖xn – p‖ + ( – αn)‖yn – p‖
≤ ‖xn – p‖ + λβnM,

and consequently,

‖zn – p‖ ≤ ‖xn – p‖ + λβnM‖xn – p‖ + (λβnM)

≤ ‖xn – p‖ + θn,

where θn = λβnM[λβnM + M]. So, p ∈ Cn for all n. Next we show that

Fix(T) ⊂ Qn for all n ≥ . ()

We prove this by induction. For n = , we have Fix(T) ⊂ C = Q. Assume that Fix(T) ⊂ Qn.
Since xn+ is the projection of x onto Cn ∩ Qn, we have

〈xn+ – z, x – xn+〉 ≥ , ∀z ∈ Cn ∩ Qn.

As Fix(T) ⊂ Cn ∩Qn, the last inequality holds, in particular, for all z ∈ Fix(T). This together
with the definition of Qn+ implies that Fix(T) ⊂ Qn+. Hence () holds for all n ≥ .

Notice that the definition of Qn actually implies xn = PQn (x). This together with the fact
that Fix(T) ⊂ Qn further implies

‖xn – x‖ ≤ ‖p – x‖, p ∈ Fix(T).

Due to q = PFix(T)(x) ∈ Fix(T), we have

‖xn – x‖ ≤ ‖q – x‖. ()

The fact that xn+ ∈ Qn asserts that 〈xn+ – xn, xn – x〉 ≥ . This together with Lemma .(i)
implies

‖xn+ – xn‖ =
∥∥(xn+ – x) – (xn – x)

∥∥

= ‖xn+ – x‖ – ‖xn – x‖ – 〈xn+ – xn, xn – x〉
≤ ‖xn+ – x‖ – ‖xn – x‖. ()
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This implies that the sequence {‖xn – x‖}∞n= is increasing. Recall (), we get that
limn→∞ ‖xn – x‖ exists. It turns out from () that

lim
n→∞‖xn+ – xn‖ = .

By the fact xn+ ∈ Cn we get

‖zn – xn+‖ ≤ ‖xn – xn+‖ + θn,

and thus

‖zn – xn+‖ ≤ ‖xn – xn+‖ +
√

θn. ()

On the other hand, since zn = αnxn + ( – αn)T(xn) + ( – αn)λβndn and αn ≤ a, we have

∥
∥T(xn) – xn

∥
∥ =


 – αn

∥
∥zn – xn – ( – αn)λβndn

∥
∥

≤ 
 – a

‖zn – xn‖ + λβn‖dn‖

≤ 
 – a

(‖zn – xn+‖ + ‖xn+ – xn‖
)

+ λβnM

≤ 
 – a

(
‖xn+ – xn‖ +

√
θn

)
+ λβnM → , ()

where the last inequality comes from ().
Lemma . and () then guarantee that every weak limit point of {xn}∞n= is a fixed point

of T . That is, ωw(xn) ⊂ Fix(T). This fact, with inequality () and Lemma ., ensures the
strong convergence of {xn}∞n= to q = PFix(T)x. �

5 Numerical examples and conclusion
In this section, we compare the original algorithms and the accelerated algorithms. The
codes were written in Matlab . and run on personal computer.

Firstly, we apply the Mann algorithm () and Algorithm . to the following convex fea-
sibility problem (see [, ]).

Problem . (From []) Given a nonempty, closed convex set Ci ⊂R
N (i = , , . . . , m),

find x∗ ∈ C :=
m⋂

i=

Ci,

where one assumes that C 	= ∅. Define a mapping T : RN →R
N by

T := P

(

m

m∑

i=

Pi

)

, ()

where Pi = PCi (i = , , . . . , m) stands for the metric projection onto Ci. Since Pi (i =
, , . . . , m) is nonexpansive, T defined by () is also nonexpansive. Moreover, we find
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Table 1 Computational results for Problem 5.1 with different dimensions

Initial point rand(N, 1) 200 × rand(N, 1) 5e 5,000e

N = 5
m = 5

Algorithm 3.1 Iter. 2 62 5 9
Sec. 0 0 0 0

Mann algorithm Iter. 64 68 73 74
Sec. 0 0 0 0

N = 1,000
m = 50

Algorithm 3.1 Iter. 4 448 7 425
Sec. 0.0156 1.0608 0.0312 1.0608

Mann algorithm Iter. 505 515 478 429
Sec. 1.2948 1.2480 1.2012 1.1076

N = 50
m = 1,000

Algorithm 3.1 Iter. 6,814 7 4 9
Sec. 38.9846 0.1092 0.0312 0.1248

Mann algorithm Iter. 8,438 7,771 8,692 6,913
Sec. 53.6799 43.4463 49.7799 38.7818

that

Fix(T) = Fix(P)
m⋂

i=

Fix(Pi) = C

m⋂

i=

Ci = C.

Set λ := , μ := ., αn := /(n + ) (n ≥ ), and βn := /(n + ) in Algorithm . and
αn := μ/(n + ) in the Mann algorithm (). In the experiment, we set Ci (i = , , . . . , m) as a
closed ball with center ci ∈ R

N and radius ri > . Thus, Pi (i = , , . . . , m) can be computed
with

Pi(x) :=

{
ci + ri

‖ci–x‖ (x – ci) if ‖ci – x‖ > ri,
x if ‖ci – x‖ ≤ ri.

We set ri :=  (i = , , . . . , m), c :=  and ci ∈ (–/
√

N , /
√

N)N (i = , . . . , m) were ran-
domly chosen. Set e := (, , . . . , ). In Table , ‘Iter.’ and ‘Sec.’ denote the number of iterations
and the cpu time in seconds, respectively. We took ‖T(xn) – xn‖ < ε = – as the stopping
criterion.

Table  illustrates that, with a few exceptions, Algorithm . significantly reduces the
running time and iterations needed to find a fixed point compared with the Mann algo-
rithm. The advantage is more obvious, as the parameters N and m become larger. It is
worth further research on the reason of emergence of a few exceptions.

Next, we apply the CQ algorithm () and the accelerated CQ algorithm () to the fol-
lowing problem.

Problem . (From []) Let C be the unit closed ball S(, ) = {x ∈ R
|‖x‖ ≤ } and T :

S(, ) → S(, ) be defined by T : (x, x, x)T �→ ( √
 sin(x + z), √

 sin(x + z), √
 (x + y))T .

Then

find x∗ ∈ S(, ) such that T
(
x∗) = x∗.

He and Yang [] showed that T is nonexpansive and has at least a fixed point in S(, ).
Take the sequence αn = 

n in () and (), and βn = 
×n , λ = .. in (). We tested four

different initial points and the numerical results are listed in Table .
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Table 2 Computational results for Problem 5.2 with different initial points

Initial point (1, 0, 0) (0, 1, 0) (0, 0.5, 0.5) (0.5, 0.5, 0.5)

CQ algorithm Iter. 652 167 1,441 38
Sec. 0.1092 0.0312 0.2652 0

Accelerated CQ algorithm Iter. 577 273 1,430 84
Sec. 0.0936 0.0468 0.2496 0.0156

Table  shows that the acceleration of the CQ algorithm is ineffective, that is, the accel-
erated CQ algorithm does not in fact accelerate the CQ algorithm from running time or
the number of iterations. The acceleration may be eliminated by the projection onto the
sets Cn and Qn.

6 Concluding remarks
In this paper, we accelerate the Mann and CQ algorithms to obtain the accelerated Mann
and CQ algorithms, respectively. Then we present the weak convergence of the accelerated
Mann algorithm and the strong convergence of the accelerated CQ algorithm under some
conditions. The numerical examples illustrate that the acceleration of the Mann algorithm
is effective, however, the acceleration of the CQ algorithm is ineffective.
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