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Abstract
In this paper, our aim is to introduce a viscosity type algorithm for solving proximal
split feasibility problems and prove the strong convergence of the sequences
generated by our iterative schemes in Hilbert spaces. First, we prove strong
convergence result for a problem of finding a point which minimizes a convex
function f such that its image under a bounded linear operator Aminimizes another
convex function g. Secondly, we prove another strong convergence result for the case
where one of the two involved functions is prox-regular. In all our results in this work,
our iterative schemes are proposed by way of selecting the step sizes such that their
implementation does not need any prior information about the operator norm
because the calculation or at least an estimate of the operator norm ‖A‖ is not an
easy task. Finally, we give a numerical example to study the efficiency and
implementation of our iterative schemes. Our results complement the recent results
of Moudafi and Thakur (Optim. Lett. 8:2099-2110, 2014, doi:10.1007/s11590-013-
0708-4) and other recent important results in this direction.
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1 Introduction
In this paper, we shall assume that H is a real Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖. Let I denote the identity operator on H . Let C and Q be nonempty, closed, and
convex subsets of real Hilbert spaces H and H, respectively. The split feasibility problem
(SFP) is to find a point

x ∈ C such that Ax ∈ Q, (.)

where A : H → H is a bounded linear operator. The SFP in finite-dimensional Hilbert
spaces was first introduced by Censor and Elfving [] for modeling inverse problems which
arise from phase retrievals and in medical image reconstruction []. The SFP attracts the
attention of many authors due to its application in signal processing. Various algorithms
have been invented to solve it (see, for example, [–] and references therein). For a more
current and up-to-date survey on split feasibility problems, please see [].
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Note that the split feasibility problem (.) can be formulated as a fixed point equation
by using the fact

PC
(
I – γ A∗(I – PQ)A

)
x∗ = x∗; (.)

that is, x∗ solves the SFP (.) if and only if x∗ solves the fixed point equation (.) (see
[] for the details). This implies that we can use fixed point algorithms (see [–]) to
solve SFP. A popular algorithm that solves the SFP (.) is due to Byrne’s CQ algorithm
[] which is found to be a gradient-projection method (GPM) in convex minimization.
Subsequently, Byrne [] applied Krasnoselskii-Mann iteration to the CQ algorithm, and
Zhao and Yang [] applied Krasnoselskii-Mann iteration to the perturbed CQ algorithm
to solve the SFP. It is well known that the CQ algorithm and the Krasnoselskii-Mann al-
gorithm for a split feasibility problem do not necessarily converge strongly in the infinite-
dimensional Hilbert spaces.

Our goal in this paper is to study the more general case of proximal split minimization
problems and to investigate the strong convergence properties of the associated numerical
solutions. To begin with, let us consider the following problem: Find a solution x∗ ∈ H

such that

min
x∈H

{
f (x) + gλ(Ax)

}
, (.)

where H, H are two real Hilbert spaces, f : H → R ∪ {+∞}, g : H → R ∪ {+∞} two
proper, convex, lower-semicontinuous functions and A : H → H a bounded linear oper-
ator, gλ(y) = minu∈H{g(u) + 

λ
‖u – y‖} stands for the Moreau-Yosida approximate of the

function g of parameter λ.
Observe that by taking f = δC (defined as δC(x) =  if x ∈ C and +∞ otherwise), g =

δQ the indicator functions of two nonempty, closed, and convex sets C, Q of H and H,
respectively, problem (.) reduces to

min
x∈H

{
δC(x) + (δQ)λ(Ax)

} ⇔ min
x∈C

{


λ

∥
∥(I – PQ)(Ax)

∥
∥

}
(.)

which, when C ∩ A–(Q) �= ∅, is equivalent to (.).
By the differentiability of the Yosida approximate gλ, see for instance [], we have the

additivity of the subdifferentials and thus we can write

∂
(
f (x) + gλ(Ax)

)
= ∂f (x) + A∗∇gλ(Ax) = ∂f (x) + A∗

( I – proxλg

λ

)
(Ax).

This implies that the optimality condition of (.) can then be written as

 ∈ λ∂f (x) + A∗(I – proxλg)(Ax), (.)

where proxλg = argminu∈H{g(u) + 
λ

‖u – y‖} stands for the proximal mapping of g and
the subdifferential of f at x is the set

∂f (x) :=
{

u ∈ H : f (y) ≥ f (x) + 〈u, y – x〉,∀y ∈ H
}

.
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The inclusion (.) in turn yields the following equivalent fixed point formulation:

proxμλf
(
x∗ – μA∗(I – proxλg)

)
Ax∗ = x∗. (.)

To solve (.), (.) suggests us to consider the following split proximal algorithm:

xn+ = proxμnλf
(
xn – μnA∗(I – proxλg)

)
Axn. (.)

Based on an idea introduced in work of Lopez et al. [], Moudafi and Thakur
[] recently proved weak convergence results for solving (.) in the case argmin f ∩
A–(argmin g) �= ∅, or in other words: in finding a minimizer x∗ of f such that Ax∗ min-
imizes g , namely

x∗ ∈ argmin f such that Ax∗ ∈ argmin g, (.)

f , g being two proper, lower-semicontinuous convex functions, argmin f := {x̄ ∈ H : f (x̄) ≤
f (x),∀x ∈ H} and argmin g := {ȳ ∈ H : g(ȳ) ≤ g(y),∀y ∈ H}. We will denote the solu-
tion set of (.) by �. Concerning problem (.), Moudafi and Thakur [] introduced
a new way of selecting the step sizes: Set θ (xn) :=

√‖∇h(x)‖ + ‖∇l(x)‖ with h(x) =

‖(I – proxλg)Ax‖, l(x) = 

‖(I – proxλμnf )x‖ and introduced the following split proximal
algorithm.

Split proximal algorithm  Given an initial point x ∈ H. Assume that xn has been con-
structed and θ (xn) �= , then compute xn+ via the rule

xn+ = proxλμnf
(
xn – μnA∗(I – proxλg)Axn

)
, n ≥ , (.)

where the step size μn := ρn
h(xn)+l(xn)

θ(xn) with  < ρn < . If θ (xn) = , then xn+ = xn is a solution
of (.) and the iterative process stops, otherwise, we set n := n +  and go to (.).

Using the split proximal algorithm (.), Moudafi and Thakur [] proved the following
weak convergence theorem for approximating a solution of (.).

Theorem . Assume that f and g are two proper convex lower-semicontinuous functions
and that (.) is consistent (i.e., � �= ∅). If the parameters satisfy the conditions ε ≤ ρn ≤

h(xn)
h(xn)+l(xn) –ε (for some ε >  small enough), then the sequence {xn} generated by (.) weakly
converges to a solution of (.).

Furthermore, Moudafi and Thakur [] assumed f to be convex and allowed the function
g to be nonconvex. In the case of indicator functions of subsets with A = I , such a situation
is encountered in a numerical solution to phase retrieval problem in inverse scattering []
and is therefore of great practical interest. They considered the more general problem of
finding a minimizer x̄ of f such that Ax̄ is a critical point of g , namely

 ∈ ∂f (x̄) such that  ∈ ∂pg(Ax̄), (.)

where ∂pg stands for the proximal subdifferential of g (see Definition . for definition of
a proximal subdifferential). In particular, they studied the convergence properties of the
following algorithm.
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Split proximal algorithm  Given an initial point x ∈ H. Assume that xn has been con-
structed and θ (xn) �= , then compute xn+ via the rule

xn+ = proxλnμnf
(
xn – μnA∗(I – proxλng)Axn

)
, n ≥ , (.)

where the step size μn := ρn
h(xn)+l(xn)

θ(xn) with  < ρn < . If θ (xn) = , then xn+ = xn is a solution
of (.) and the iterative process stops, otherwise, we set n := n +  and go to (.).

Using (.), Moudafi and Thakur [] proved the following weak convergence theorem
for the approximation of the solution of (.).

Theorem . Assume that f is a proper convex lower-semicontinuous function, g is lo-
cally lower-semicontinuous at Ax̄, prox-bounded, and prox-regular at Ax̄ for v̄ =  with
x̄ a point which solves (.) and A a bounded linear operator which is surjective with
a dense domain. If the parameters satisfy the following conditions:

∑∞
n= λn < ∞ and

infn ρn( h(xn)
h(xn)+l(xn) – ρn) >  and if ‖x – x̄‖ is small enough, then the sequence {xn} gener-

ated by (.) weakly converges to a solution of (.).

Remark . We comment here that the split proximal algorithm (.) introduced Moudafi
and Thakur [] for approximating a solution of (.) has, in general, weak convergence
only, unless the underlying Hilbert space is finite-dimensional. Indeed, based on the results
of Hundal [], we can construct a counterexample as follows.

Example . In the real Hilbert space H = 
, Hundal [] constructed two closed and
convex subsets C and Q such that (see also [–])

(i) C ∩ Q �= ∅;
(ii) the sequence {xn}∞n= generated by alternating projections,

xn = (PC ◦ PQ)nx, n ≥  (.)

with x ∈ C, converges weakly, but not strongly.
(Hundal’s counterexample settles in the negative the question whether alternating projec-
tions onto closed convex subsets of a Hilbert space can have strong convergence, which
remained open for nearly  years.) Now in problem (.), let us take f = δC and g = δQ the
indicator functions of two nonempty, closed, and convex sets C, Q of H and H, respec-
tively, where H = 
 = H. Then proxλμnf (x) = PC(x) and proxλg(x) = PQ(x). Furthermore,
take A = I = A∗, where I is an identity mapping on 
. Taking an initial guess x ∈ C and
μn = , ∀n ≥ , we see that the split proximal algorithm (.) generates a sequence {xn}∞n=

which coincides with the sequence {xn}∞n= given in (.). Therefore, the split proximal al-
gorithm (.) generates weakly (not strongly) convergent sequences to a solution of problem
(.), in general, in infinite-dimensional real Hilbert spaces.

Example . naturally gives rise to this question.

Question Can we appropriately modify the split proximal algorithm (.) so as to have
strong convergence?
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It is our aim in this paper to answer the above question in the affirmative. Thus, moti-
vated by the results of Lopez et al. [] and Moudafi and Thakur [], our aim in this paper
is to introduce new iterative schemes for solving problems (.) and (.) and prove strong
convergence of the sequences generated by our schemes in real Hilbert spaces. Our results
complement the results of Moudafi and Thakur [] and Shehu [–].

2 Preliminaries
We state the following well-known lemmas which will be used in the sequel.

Lemma . Let H be a real Hilbert space. Then we have the following well-known results:

(i) ‖x + y‖ = ‖x‖ + 〈x, y〉 + ‖y‖, ∀x, y ∈ H ,

(ii) ‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉, ∀x, y ∈ H .

Lemma . (Xu []) Let {an} be a sequence of nonnegative real numbers satisfying the
following relation:

an+ ≤ ( – αn)an + αnσn + γn, n ≥ ,

where
(i) {an} ⊂ [, ],

∑
αn = ∞;

(ii) lim supσn ≤ ;
(iii) γn ≥  (n ≥ ),

∑
γn < ∞.

Then an →  as n → ∞.

3 Strong convergence for convex minimization feasibility problem
In this section, we modify algorithm (.) above so as to have strong convergence. Below
we include such modification. Let r : H → H be a contraction mapping with constant
α ∈ (, ). Set θ (x) :=

√‖∇h(x)‖ + ‖∇l(x)‖ with h(x) = 
‖(I – proxλg)Ax‖, l(x) = 

‖(I –
proxλμnf )x‖ and introduce the following modified split proximal algorithm.

Modified split proximal algorithm  Given an initial point x ∈ H. Assume that xn has
been constructed and θ (xn) �= , then compute xn+ via the rule

{
yn = xn – μnA∗(I – proxλg)Axn,
xn+ = αnr(xn) + ( – αn) proxλμnf yn, n ≥ ,

(.)

where the step size μn := ρn
h(xn)+l(xn)

θ(xn) with  < ρn < . If θ (xn) = , then xn+ = xn is a solution
of (.) and the iterative process stops, otherwise, we set n := n +  and go to (.).

Using (.), we prove the following strong convergence theorem for approximation of
solutions of problem (.).

Theorem . Assume that f and g are two proper convex lower-semicontinuous functions
and that (.) is consistent (i.e., � �= ∅). If the parameters satisfy the following conditions:

(a) limn→∞ αn = ;
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(b)
∑∞

n= αn = ∞;
(c) ε ≤ ρn ≤ h(xn)

h(xn)+l(xn) – ε for some ε > ,
the sequence {xn} generated by (.) strongly converges to a solution of (.) which is also
the unique solution of the variational inequality (VI),

x∗ ∈ �,
〈
(I – r)x∗, x – x∗〉 ≥ , x ∈ �. (.)

In other words, x∗ is the unique fixed point of the contraction Proj� r, x∗ = (Proj� r)x∗.

Proof Let x∗ ∈ �. Observe that ∇h(x) = A∗(I – proxμng)Ax, ∇l(x) = (I – proxμnλf )x. Using
the fact that proxμnλf is nonexpansive, x∗ verifies (.) (since minimizers of any function
are exactly fixed points of its proximal mapping) and having in hand

〈∇h(xn), xn – x∗〉 =
〈
(I – proxμng)Axn, Axn – Ax∗〉 ≥ ∥∥(I – proxμng)Axn

∥∥ = h(xn),

thanks to the fact that I – proxμng is firmly nonexpansive, we can write

∥∥yn – x∗∥∥ =
∥∥xn – x∗∥∥ + μ

n
∥∥∇h(xn)

∥∥ – μn
〈∇h(xn), xn – x∗〉

≤ ∥∥xn – x∗∥∥ + μ
n
∥∥∇h(xn)

∥∥ – μnh(xn)

=
∥
∥xn – x∗∥∥ + ρ

n
(h(xn) + l(xn))

(θ(xn))

∥
∥∇h(xn)

∥
∥ – ρn

h(xn) + l(xn)
θ(xn)

h(xn)

≤ ∥
∥xn – x∗∥∥ + ρ

n
(h(xn) + l(xn))

θ(xn)
– ρn

(h(xn) + l(xn))

θ(xn)
h(xn)

h(xn) + l(xn)

=
∥
∥xn – x∗∥∥ – ρn

(
h(xn)

h(xn) + l(xn)
– ρn

)
(h(xn) + l(xn))

θ(xn)
. (.)

From (.) and (.), we obtain

∥∥xn+ – x∗∥∥ =
∥∥αnr(xn) + ( – αn) proxλμnf yn – x∗∥∥

≤ αn
∥∥r(xn) – x∗∥∥ + ( – αn)

∥∥yn – x∗∥∥

≤ αn
[∥∥r(xn) – r

(
x∗)∥∥ +

∥∥r
(
x∗) – x∗∥∥]

+ ( – αn)
∥∥yn – x∗∥∥

≤ αnα
∥
∥xn – x∗∥∥ + αn

∥
∥r

(
x∗) – x∗∥∥ + ( – αn)

∥
∥xn – x∗∥∥

=
[
 – αn( – α)

]∥∥xn – x∗∥∥ + αn
∥
∥r

(
x∗) – x∗∥∥

≤ max

{∥
∥xn – x∗∥∥,

‖r(x∗) – x∗‖
 – α

}

...

≤ max

{∥
∥x – x∗∥∥,

‖r(x∗) – x∗‖
 – α

}
. (.)

Therefore, {xn} and {yn} are bounded.
The rest of the proof will be divided into two parts.
Case . Suppose that there exists n ∈N such that {‖yn – x∗‖}∞n=n is nonincreasing. Then

{‖yn – x∗‖}∞n= converges and ‖yn – x∗‖ – ‖yn+ – x∗‖ → , n → ∞. From (.) and (.),
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we have

ρn

(
h(xn)

h(xn) + l(xn)
– ρn

)
(h(xn) + l(xn))

θ(xn)

≤ ∥
∥xn – x∗∥∥ –

∥
∥yn – x∗∥∥

≤ (
αn–

∥
∥r(xn–) – x∗∥∥ + ( – αn–)

∥
∥yn– – x∗∥∥) –

∥
∥yn – x∗∥∥

≤ ∥
∥yn– – x∗∥∥ –

∥
∥yn – x∗∥∥ + αn–

∥
∥r(xn–) – x∗∥∥∥

∥yn– – x∗∥∥ + α
n–

∥
∥r(xn–) – x∗∥∥.

Condition (a) above implies that

ρn

(
h(xn)

h(xn) + l(xn)
– ρn

)
(h(xn) + l(xn))

θ(xn)
→ , n → ∞.

Hence, we obtain

(h(xn) + l(xn))

θ(xn)
→ , n → ∞. (.)

Consequently, we have

lim
n→∞

(
h(xn) + l(xn)

)
=  ⇔ lim

n→∞ h(xn) =  and lim
n→∞ l(xn) = ,

because θ(xn) = ‖∇h(xn)‖ + ‖∇l(xn)‖ is bounded. This follows from the fact that ∇h is
Lipschitz continuous with constant ‖A‖, ∇l is nonexpansive and {xn} is bounded. More
precisely, for any x∗ which solves (.), we have

∥
∥∇h(xn)

∥
∥ =

∥
∥∇h(xn) – ∇x∗∥∥ ≤ ‖A‖∥∥xn – x∗∥∥ and

∥∥∇l(xn)
∥∥ =

∥∥∇l(xn) – ∇x∗∥∥ ≤ ∥∥xn – x∗∥∥.

We observe that

 < μn < 
h(xn) + l(xn)

θ(xn)
→ , n → ∞,

implies that μn → , n → ∞. Hence, we have from (.) that

‖yn – xn‖ = μn
∥∥A∗(I – proxλg)Axn

∥∥ ≤ μnM → , n → ∞,

for some M > .
From limn→∞ 

‖(I –proxλμnf )xn‖ = limn→∞ l(xn) =  and limn→∞ ‖yn –xn‖ = , we have

‖yn – proxλμnf xn‖ ≤ ‖yn – xn‖ +
∥∥(I – proxλμnf )xn

∥∥ → , n → ∞.

So,

‖yn – proxλμnf yn‖ ≤ ‖yn – proxλμnf xn‖ + ‖proxλμnf xn – proxλμnf yn‖
≤ ‖yn – proxλμnf xn‖ + ‖xn – yn‖ → , n → ∞
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and

‖xn – proxλμnf yn‖ ≤ ‖xn – yn‖ + ‖yn – proxλμnf yn‖ → , n → ∞.

Also, observe that from (.), we obtain ‖xn+ – proxλμnf yn‖ → , n → ∞. We then have

‖xn+ – xn‖ ≤ ‖xn+ – proxλμnf yn‖ + ‖xn – proxλμnf yn‖ → , n → ∞.

Now, let z be a weak cluster point of {xn}, there exists a subsequence {xnj} which weakly
converges to z. The lower-semicontinuity of h then implies that

 ≤ h(z) ≤ lim inf
j→∞ h(xnj ) = lim

n→∞ h(xn) = .

That is h(z) = 
‖(I – proxλg)Az‖ = , i.e., Az is a fixed point of the proximal mapping of g

or equivalently  ∈ ∂g(Az). In other words, Az is a minimizer of g .
Likewise, the lower-semicontinuity of l implies that

 ≤ l(z) ≤ lim inf
j→∞ l(xnj ) = lim

n→∞ l(xn) = .

That is, l(z) = 
‖(I – proxμnλf )z‖ = , i.e., z is a fixed point of the proximal mapping of f or

equivalently  ∈ ∂f (z). In other words, z is a minimizer of f . Hence, z ∈ �.
Next, we prove that {xn} converges strongly to x∗, where x∗ is the unique solution of the

VI (.). First observe that there is some z ∈ ωw(xn) ⊂ � (where ωw(xn) := {x : ∃xnj ⇀ x} is
the weak w-limit set of the sequence {xn}∞n=) such that

lim sup
n→∞

〈
r
(
x∗) – x∗, xn – x∗〉 =

〈
r
(
x∗) – x∗, z – x∗〉 ≤ . (.)

Applying Lemma .(ii) to (.), we have

∥∥yn+ – x∗∥∥ ≤ ∥∥xn+ – x∗∥∥ =
∥∥αn

(
r(xn) – x∗) + ( – αn)

(
proxλμnf yn – x∗)∥∥

=
∥∥αn

(
r(xn) – r

(
x∗)) + ( – αn)

(
proxλμnf yn – x∗) + αn

(
r
(
x∗) – x∗)∥∥

≤ ∥∥αn
(
r(xn) – r

(
x∗)) + ( – αn)

(
proxλμnf yn – x∗)∥∥

+ αn
〈
r
(
x∗) – x∗, xn+ – x∗〉

≤ αn
∥
∥r(xn) – r

(
x∗)∥∥ + ( – αn)

∥
∥yn – x∗∥∥ + αn

〈
r
(
x∗) – x∗, xn+ – x∗〉

≤ αn
∥
∥r(xn) – r

(
x∗)∥∥ + ( – αn)

∥
∥xn – x∗∥∥ + αn

〈
r
(
x∗) – x∗, xn+ – x∗〉

≤ αnα
∥∥xn – x∗∥∥ + ( – αn)

∥
∥xn – x∗∥∥ + αn

〈
r
(
x∗) – x∗, xn+ – x∗〉

=
[
 –

(
 – α)αn

]∥∥xn – x∗∥∥ + αn
〈
r
(
x∗) – x∗, xn+ – x∗〉. (.)

Now, using Lemma . in (.), we have ‖xn – x∗‖ → . That is, xn → x∗, n → ∞.
Case . Assume that {‖yn – x∗‖} is not a monotonically decreasing sequence. Set �n =

‖yn – x∗‖ and let τ : N →N be a mapping for all n ≥ n (for some n large enough) by

τ (n) := max{k ∈ N : k ≤ n,�k ≤ �k+}.
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Clearly, τ is a nondecreasing sequence such that τ (n) → ∞ as n → ∞ and

 ≤ �τ (n) ≤ �τ (n)+, ∀n ≥ n.

This implies that ‖yτ (n) – x∗‖ ≤ ‖yτ (n)+ – x∗‖, ∀n ≥ n. Thus limn→∞ ‖yτ (n) – x∗‖ exists.
By (.) and (.), we obtain

ρτ (n)

(
h(xτ (n))

h(xτ (n)) + l(xτ (n))
– ρτ (n)

)
(h(xτ (n)) + l(xτ (n)))

θ(xτ (n))

≤ ∥∥xτ (n) – x∗∥∥ –
∥∥yτ (n) – x∗∥∥

≤ (
ατ (n)–

∥∥r(xτ (n)–) – x∗∥∥ + ( – ατ (n)–)
∥∥yτ (n)– – x∗∥∥) –

∥∥yτ (n) – x∗∥∥

≤ ∥
∥yτ (n)– – x∗∥∥ –

∥
∥yτ (n) – x∗∥∥ + ατ (n)–

∥
∥r(xτ (n)–) – x∗∥∥∥

∥yτ (n)– – x∗∥∥

+ α
τ (n)–

∥
∥r(xτ (n)–) – x∗∥∥.

Using condition (a) in the last inequality above, we have

ρτ (n)

(
h(xτ (n))

h(xτ (n)) + l(xτ (n))
– ρτ (n)

)
(h(xτ (n)) + l(xτ (n)))

θ(xτ (n))
→ , n → ∞.

Hence, we obtain

(h(xτ (n)) + l(xτ (n)))

θ(xτ (n))
→ , n → ∞. (.)

Consequently, we have

lim
n→∞

(
h(xτ (n)) + l(xτ (n))

)
=  ⇔ lim

n→∞ h(xτ (n)) =  and lim
n→∞ l(xτ (n)) = .

Furthermore, we observe that

 < μτ (n) < 
h(xτ (n)) + l(xτ (n))

θ(xτ (n))
→ , n → ∞,

implies that μτ (n) → , n → ∞. This implies from (.) that

‖yτ (n) – xτ (n)‖ = μτ (n)
∥∥A∗(I – proxλg)Axτ (n)

∥∥ ≤ μτ (n)M∗ → , n → ∞,

for some M∗ > . Since {xτ (n)} is bounded, there exists a subsequence of {xτ (n)}, still de-
noted by {xτ (n)}, which converges weakly to z. Observe that since limn→∞ ‖xτ (n) –yτ (n)‖ = ,
we also have yτ (n) ⇀ z. By similar argument as above in Case , we can show that z ∈ � and
limn→∞ ‖xτ (n)+ – xτ (n)‖ = . Using (.) and (.), we obtain

∥
∥yτ (n)+ – x∗∥∥ ≤ ∥

∥xτ (n)+ – x∗∥∥

=
∥∥ατ (n)

(
r(xτ (n)) – x∗) + ( – ατ (n))

(
proxλμτ (n)f yτ (n) – x∗)∥∥

=
∥∥ατ (n)

(
r(xτ (n)) – r

(
x∗)) + ( – ατ (n))

(
proxλμτ (n)f yτ (n) – x∗)
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+ ατ (n)
(
r
(
x∗) – x∗)∥∥

≤ ∥∥ατ (n)
(
r(xτ (n)) – r

(
x∗)) + ( – ατ (n))

(
proxλμτ (n)f yτ (n) – x∗)∥∥

+ ατ (n)
〈
r
(
x∗) – x∗, xn+ – x∗〉

≤ ατ (n)
∥
∥r(xτ (n)) – r

(
x∗)∥∥ + ( – ατ (n))

∥
∥yτ (n) – x∗∥∥

+ ατ (n)
〈
r
(
x∗) – x∗, xn+ – x∗〉

≤ ατ (n)α
∥∥xτ (n) – x∗∥∥ + ( – ατ (n))

∥
∥yτ (n) – x∗∥∥

+ ατ (n)
〈
r
(
x∗) – x∗, xn+ – x∗〉

≤ ατ (n)α
[∥∥yτ (n) – x∗∥∥ + ‖xτ (n) – yτ (n)‖

] + ( – ατ (n))
∥
∥yτ (n) – x∗∥∥

+ ατ (n)
〈
r
(
x∗) – x∗, xn+ – x∗〉

= ατ (n)α
[∥∥yτ (n) – x∗∥∥ + 

∥∥yτ (n) – x∗∥∥‖xτ (n) – yτ (n)‖ + ‖xτ (n) – yτ (n)‖]

+ ( – ατ (n))
∥∥yτ (n) – x∗∥∥ + ατ (n)

〈
r
(
x∗) – x∗, xn+ – x∗〉

=
(
 –

(
 – α)ατ (n)

)∥∥yτ (n) – x∗∥∥

+ ατ (n)α
[

∥∥yτ (n) – x∗∥∥‖xτ (n) – yτ (n)‖ + ‖xτ (n) – yτ (n)‖]

+ ατ (n)
〈
r
(
x∗) – x∗, xn+ – x∗〉,

which implies that, for all n ≥ n,

 ≤ ∥
∥yτ (n)+ – x∗∥∥ –

∥
∥yτ (n) – x∗∥∥

≤ ατ (n)
[

〈
r
(
x∗) – x∗, xτ (n)+ – x∗〉 –

(
 – α)∥∥yτ (n) – x∗∥∥]

+ ατ (n)α
[

∥
∥yτ (n) – x∗∥∥‖xτ (n) – yτ (n)‖ + ‖xτ (n) – yτ (n)‖].

Thus, we have

∥∥yτ (n) – x∗∥∥ ≤ 
 – α

〈
r
(
x∗) – x∗, xτ (n)+ – x∗〉

+
α

 – α

[

∥∥yτ (n) – x∗∥∥‖xτ (n) – yτ (n)‖ + ‖xτ (n) – yτ (n)‖].

Hence, we obtain (noting that x∗ is the unique solution of the VI (.))

lim sup
n→∞

∥∥yτ (n) – x∗∥∥ ≤ 
 – α

〈
r
(
x∗) – x∗, z – x∗〉

+
α

 – α lim sup
n→∞

∥∥yτ (n) – x∗∥∥‖xτ (n) – yτ (n)‖

+
α

 – α lim sup
n→∞

‖xτ (n) – yτ (n)‖ ≤ ,

which implies that

lim
n→∞

∥∥yτ (n) – x∗∥∥ = .
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Therefore,

lim
n→∞�τ (n) = lim

n→∞�τ (n)+ = .

Furthermore, for n ≥ n, it is easy to see that �τ (n) ≤ �τ (n)+ if n �= τ (n) (that is, τ (n) < n),
because �j ≥ �j+ for τ (n) +  ≤ j ≤ n. As a consequence, we obtain for all n ≥ n,

 ≤ �n ≤ max{�τ (n),�τ (n)+} = �τ (n)+.

Hence, lim�n = , that is, {yn} converges strongly to x∗. Hence, {xn} converges strongly
to x∗. This completes the proof. �

Taking r(x) = u in (.), we have the following algorithm.
Given an initial point x ∈ H. Assume that xn has been constructed and θ (xn) �= , then

compute xn+ via the rule

{
yn = xn – μnA∗(I – proxλg)Axn,
xn+ = αnu + ( – αn) proxλμnf yn, n ≥ ,

(.)

where the step size μn := ρn
h(xn)+l(xn)

θ(xn) with  < ρn < . If θ (xn) = , then xn+ = xn is a solution
of (.) and the iterative process stops, otherwise, we set n := n +  and go to (.).

Corollary . Assume that f and g are two proper convex lower-semicontinuous functions
and that (.) is consistent (i.e., � �= ∅). If the parameters satisfy the following conditions:

(a) limn→∞ αn = ;
(b)

∑∞
n= αn = ∞;

(c) ε ≤ ρn ≤ h(xn)
h(xn)+l(xn) – ε for some ε > ,

the sequence {xn} generated by (.) strongly converges to a solution of (.) which is closest
to u from the solution set �. In other words, x∗ is the unique fixed point of the contraction
Proj� r, x∗ = (Proj�)u.

4 Strong convergence for nonconvex minimization feasibility problem
Throughout this section g is assumed to be prox-regular. The following problem:

 ∈ ∂f (x̄) such that  ∈ ∂pg(Ax̄), (.)

is very general in the sense that it includes, as special cases, g is convex and g is a lower-C

function which is of great importance in optimization and can be locally expressed as a
difference g – r

‖ · ‖, where g is a finite convex function, hence a large core of problems
of interest in variational analysis and optimization. It should be noticed that examples
abound of practitioners needing algorithms for solving nonconvex problems, for instance,
in crystallography, astronomy, and, more recently in inverse scattering; see, for example,
[]. In what follows, we shall represent the set of solutions of (.) by �.

Definition . Let g : H → R ∪ {+∞} be a function and let x̄ ∈ dom g , i.e., g(x̄) < +∞.
A vector v is in proximal subdifferential ∂pg(x̄) if there exist some r >  and ε >  such that
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for all x ∈ B(x̄, ε),

〈v, x – x̄〉 ≤ g(x) – g(x̄) +
r

‖x – x̄‖.

When g(x̄) = +∞, one puts ∂pg(x̄) = ∅.

Before stating the definition of prox-regularity of g and properties of its proximal map-
ping, we recall that g is locally l.s.c. at x̄ if its epigraph is closed relative to a neighborhood
of (x̄, g(x̄)), prox-bounded if g is minorized by a quadratic function, and recall that for ε > ,
the g-attentive ε-localization of ∂pg(x̄) around (x̄, v̄), is the mapping Tε : H → H defined
by

{
{v ∈ ∂pg(x),‖v – v̄‖ < ε} if ‖x – x̄‖ < ε and |g(x) – g(x̄)| < ε,
∅ otherwise.

Definition . A function g is said to be prox-regular at x̄ for v̄ ∈ ∂pg(x̄) if there exist some
r >  and ε >  such that for all x, x′ ∈ B(x̄, ε) with |g(x) – g(x′)| < ε and all v ∈ B(v̄, ε) with
v ∈ ∂pg(x̄) one has

g
(
x′) ≥ g(x) +

〈
v, x′ – x

〉
–

r

∥
∥x′ – x

∥
∥.

If the property holds for all vectors v̄ ∈ ∂pg(x̄), the function is said to be prox-regular at x̄.
Fundamental insights into the properties of a function g come from the study of its

Moreau-Yosida regularization gλ and the associated proximal mapping proxλg defined for
λ > , respectively, by

gλ(x) = inf
u∈H

{
g(u) +


λ

‖u – x‖
}

and proxλg := argmin
u∈H

{
g(u) +


λ

‖u – x‖
}

.

The latter is a fundamental tool in optimization and it was shown that a fixed point itera-
tion on the proximal mapping could be used to develop a simple optimization algorithm,
namely, the proximal point algorithm.

Note also, see, for example, Section  in [], that local minima are zeros of the proximal
subdifferential and that the proximal subdifferential and the convex one coincide in the
convex case.

Now, let us state the following key property of the proximal mapping complement, which
was proved in Remark . of Moudafi and Thakur [].

Lemma . (Moudafi and Thakur []) Suppose that g is locally lower-semicontinuous
at x̄ and prox-regular at x̄ for v̄ =  with respect to r and ε. Let Tε be the g-attentive
ε-localization of ∂pg around (x̄, v̄). Then for each λ ∈ (, 

r ) and x, x in a neighborhood
Uλ of x̄, one has

〈
(I – proxλg)(x) – (I – proxλg)(x), x – x

〉

≥ ∥∥(I – proxλg)(x) – (I – proxλg)(x)
∥∥ –

λr
( – λr) ‖x – x‖.
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Observe that when r = , which amounts to saying that g is convex, we recover the fact
that the mapping I – proxλg is firmly nonexpansive.

Now, the regularization parameters λ are allowed to vary in algorithm (.), namely con-
sidering possibly variable parameters λ ∈ (, 

r – ε) (for some ε >  small enough) and
μn > , our interest is in studying the convergence properties of the following algorithm.

Modified split proximal algorithm  Let r : H → H be a contraction mapping with
constant α ∈ (, ). Given an initial point x ∈ H. Assume that xn has been constructed
and θ (xn) �= , then compute xn+ via the rule

{
yn = xn – μnA∗(I – proxλng)Axn,
xn+ = αnr(xn) + ( – αn) proxλμnf yn, n ≥ ,

(.)

where the step size μn := ρn
h(xn)+l(xn)

θ(xn) with  < ρn < . If θ (xn) = , then xn+ = xn is a solution
of (.) and the iterative process stops, otherwise, we set n := n +  and go to (.).

Theorem . Assume that f is a proper convex lower-semicontinuous function, g is locally
lower-semicontinuous at Ax̄, prox-bounded and prox-regular at Ax̄ for v̄ =  with x̄ a point
which solves (.) and A a bounded linear operator which is surjective with a dense domain.
If the parameters satisfy the following conditions:

(a) limn→∞ αn = ;
(b)

∑∞
n= αn = ∞;

(c) ε ≤ ρn ≤ h(xn)
h(xn)+l(xn) – ε for some ε > ;

(d)
∑∞

n= λn < ∞;
and if ‖x – x̄‖ is small enough, then the sequence {xn} generated by (.) strongly converges
to a solution of (.) which is also the unique solution of the variational inequality (VI)

x̄ ∈ �,
〈
(I – r)x̄, x – x̄

〉 ≥ , x ∈ �. (.)

In other words, x̄ is the unique fixed point of the contraction Proj� r, x̄ = (Proj� r)x̄.

Proof Using the fact that proxλnμnf is nonexpansive, x̄ verifies (.) (critical points of any
function are exactly fixed points of its proximal mapping) and having in mind Lemma .,
we can write

‖yn – x̄‖ = ‖xn – x̄‖ + μ
n
∥
∥∇h(xn)

∥
∥ – μn

〈∇h(xn), xn – x̄
〉

≤ ‖xn – x̄‖ + μ
n
∥∥∇h(xn)

∥∥ – μn

(
h(xn) –

λnr‖A‖

( – λnr) ‖xn – x̄‖
)

= ‖xn – x̄‖ + μn
λnr‖A‖

( – λnr) ‖xn – x̄‖ – μnh(xn) + μ
n
∥
∥∇h(xn)

∥
∥

≤ ‖xn – x̄‖ + ρn
h(xn) + l(xn)

‖∇h(xn)‖ + ‖∇l(xn)‖
λnr‖A‖

( – λnr) ‖xn – x̄‖

– ρn

(
h(xn)

h(xn) + l(xn)
– ρn

)
(h(xn) + l(xn))

θ(xn)

≤
(

 + λnρn

(
h(xn)

‖∇h(xn)‖ +
l(xn)

‖∇l(xn)‖

)
r‖A‖

( – λnr) ‖xn – x̄‖
)
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– ρn

(
h(xn)

h(xn) + l(xn)
– ρn

)
(h(xn) + l(xn))

θ(xn)

=
(

 + λnρn

(
 +

h(xn)
‖∇h(xn)‖

)
r‖A‖

( – λnr) ‖xn – x̄‖
)

– ρn

(
h(xn)

h(xn) + l(xn)
– ρn

)
(h(xn) + l(xn))

θ(xn)
. (.)

Recall that A is surjective with a dense domain ⇔ ∃γ >  such that ‖A∗x‖ ≥ γ ‖x‖ (see, for
example, Theorem II. of Brézis []). This ensures that

h(xn)
‖∇h(xn)‖ =

‖(I – proxλng)(Axn)‖

‖A∗(I – proxλng)(Axn)‖ ≤ 
γ  .

The conditions on the parameters λn and ρn assure the existence of a positive constant M
such that

‖yn – x̄‖ ≤ ( + Mλn)‖xn – x̄‖ – ρn

(
h(xn)

h(xn) + l(xn)
– ρn

)
(h(xn) + l(xn))

θ(xn)
. (.)

Using (.) in (.) (taking into account that  + x ≤ ex, x ≥ ), we obtain

‖xn+ – x̄‖ ≤ ∥
∥αnr(xn) + ( – αn) proxλμnf yn – x̄

∥
∥

≤ αn
∥
∥r(xn) – x̄

∥
∥ + ( – αn)‖yn – x̄‖

≤ αn
(∥∥r(xn) – r(x̄)

∥
∥ +

∥
∥r(x̄) – x̄

∥
∥)

+ ( – αn)‖yn – x̄‖
≤ αnα‖xn – x̄‖ + αn

∥
∥r(x̄) – x̄

∥
∥ + ( – αn)( + Mλn)


 ‖xn – x̄‖

≤ (
eMλn

) 

([

 – αn( – α)
]‖xn – x̄‖ + αn

∥∥r(x̄) – x̄
∥∥)

≤ (
eMλn

) 


(
max

{
‖xn – x̄‖,

‖r(x̄) – x̄‖
 – α

})

= e
M
 λn

(
max

{
‖xn – x̄‖,

‖r(x̄) – x̄‖
 – α

})

...

≤ e
M


∑∞
n= λn

(
max

{
‖x – x̄‖,

‖r(x̄) – x̄‖
 – α

})
.

Therefore, {xn} and {yn} are bounded.
Following the method of proof of Theorem ., we can show that

lim
n→∞

(
h(xn) + l(xn)

)
=  ⇔ lim

n→∞ h(xn) =  and lim
n→∞ l(xn) = .

If z is a weak cluster point of {xn}, then there exists a subsequence {xnj} which weakly
converges to z. From the proof of Theorem ., we can show that  ∈ ∂f (z) such that  ∈
∂pg(Az).

Finally, from (.), we have

‖xn+ – x̄‖ =
∥∥αn

(
r(xn) – x̄

)
+ ( – αn)(proxλμnf yn – x̄)

∥∥

=
∥∥αn

(
r(xn) – r(x̄)

)
+ ( – αn)(proxλμnf yn – x̄) + αn

(
r(x̄) – x̄

)∥∥
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≤ ∥∥αn
(
r(xn) – r(x̄)

)
+ ( – αn)(proxλμnf yn – x̄)

∥∥ + αn
〈
r(x̄) – x̄, xn+ – x̄

〉

≤ αn
∥
∥r(xn) – r(x̄)

∥
∥ + ( – αn)‖yn – x̄‖ + αn

〈
r(x̄) – x̄, xn+ – x̄

〉

≤ αn
∥∥r(xn) – r(x̄)

∥∥ + ( – αn)( + Mλn)‖xn – x̄‖ + αn
〈
r(x̄) – x̄, xn+ – x̄

〉

≤ αnα
‖xn – x̄‖ + ( – αn)‖xn – x̄‖

+ αn
〈
r(x̄) – x̄, xn+ – x̄

〉
+ Mλn‖xn – x̄‖

=
[
 –

(
 – α)αn

]‖xn – x̄‖ + αn
〈
r(x̄) – x̄, xn+ – x̄

〉
+ λnM, (.)

for some M > , from which one concludes that the sequence {xn} strongly converges to
a solution of (.) using Lemma .. �

Remark . From Example ., we recall that if f = δC and g = δQ the indicator functions
of two nonempty, closed, and convex sets C, Q of H and H, respectively, where H = 
 =
H, then proxλμnf (x) = PC(x) and proxλg(x) = PQ(x). Furthermore, if A = I = A∗, where I is
an identity mapping on 
, μn = , ∀n ≥ , then our modified split proximal algorithm (.)
for approximation of solutions of problem (.) becomes x ∈ C,

xn+ = αnr(xn) + ( – αn)(PC ◦ PQ)xn, n ≥ . (.)

Noting that yn = PQxn in (.) and following the same method of proof as in Theorem .,
we see that our algorithm (.) converges strongly to a solution of problem (.).

We see from Example . and the above remark that the split proximal algorithm (.)
generates weakly (not strongly) convergent sequences in general in infinite-dimensional
spaces, while our modified split proximal algorithm (.) generates strongly convergent
sequences in infinite-dimensional real Hilbert spaces.

5 Numerical results
In this section, we provide some concrete example including numerical results of the prob-
lem considered in Section  of this paper. All codes were written in Matlab b and run
on HP i Dual Core . GB (. GB usable) RAM laptop.

Example . Let C = Q = {x ∈R
 : ‖x‖ ≤ } and take

A =  ×
⎛

⎜
⎝

  
  
  

⎞

⎟
⎠ .

In problem (.), let f = δC and g = δQ be the indicator functions of two nonempty, closed,
and convex sets C, Q of R = H = H. Then

proxλμnf (x) = PC(x) = proxλg(x) = PQ(x) =

{
x, ‖x‖ ≤ ,

x
‖x‖

, ‖x‖ > , x ∈R
.

Hence problem (.) becomes: Find some point x in C such that Ax ∈ Q. Now, take
ρn = , αn = 

n+ . Also, h(xn) = 
‖(I – PQ)Axn‖

, l(xn) = 
‖(I – PC)xn‖

 and θ (xn) :=√‖∇h(xn)‖
 + ‖∇l(xn)‖

 with ‖∇h(xn)‖
 = ‖AT (I – PQ)Axn‖

, ‖∇l(xn)‖
 = ‖(I – PC)xn‖

.
In the implementation, we took ‖AT (I – PQ)Axn‖

 + ‖(I – PC)xn‖
 < 

 as the stopping
criterion.
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Table 1 Example 5.1, Case I

Time taken No. of iterations ‖xn+1 – xn‖2

1.8966e–04 1 0.1295
2 0.0359
3 0.0064
4 0.0011
5 0.0005
6 0.0004
7 0.0002

Figure 1 Example 5.1, Case I.

Table 2 Example 5.1, Case II

Time taken No. of iterations ‖xn+1 – xn‖2

4.2706e–04 1 0.5187
2 0.1441
3 0.0256
4 0.0050
5 0.0067
6 0.0045
7 0.0054
8 0.0030
9 0.0014
10 0.0010
11 0.0018
12 0.0008
13 0.0004
14 0.0004
15 0.0002
16 0.0001

Our iterative scheme (.) then becomes

{
yn = xn – μnAT (I – PQ)Axn,
xn+ = αnr(xn) + ( – αn)PCyn, n ≥ .

(.)

Let r(x) = 
 (x, x, x), x = (x, x, x). We consider initial values for the problem considered

in this example.
Case I: Take x = (., ., .). The numerical result of this problem using our algorithm

(.) with this initial value is listed in Table  and the graph is given in Figure .
Case II: Take x = (., ., .). The numerical result of this problem using our algo-

rithm (.) with this initial value is listed in Table  and the graph is given in Figure .
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Figure 2 Example 5.1, Case II.

Table 3 Example 5.1, Case III

Time taken No. of iterations ‖xn+1 – xn‖2

3.2844e–04 1 0.7133
2 0.1982
3 0.0352
4 0.0069
5 0.0082
6 0.0060
7 0.0123
8 0.0025
9 0.0007
10 0.0010
11 0.0003
12 0.0002

Figure 3 Example 5.1, Case III.

Case III: Take x = (., ., .). The numerical result of this problem using our al-
gorithm (.) with this initial value is listed in Table  and the graph is given in Figure .
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