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1 Introduction and preliminaries
Recently, Wardowski [] introduced the notion of a F-contraction mapping and investi-
gated the existence of fixed points for such mappings. The results of Wardowski [] extend
and unify several fixed point results in the literature including the celebrated Banach con-
traction mapping principle.

In this paper, we present the notion of conditionally F-contractions of various types and
we investigate the existence of a fixed point for such mappings in metric-like spaces. We
also present some criteria for the uniqueness of a fixed point.

Throughout the paper, N and N denote the set of positive integers and the set of non-
negative integers. Similarly, let R, R+ and R

+
 represent the set of reals, positive reals, and

the set of nonnegative reals, respectively.

Definition . [] Let F be the family of all functions F : (,∞) →R such that
(F) F is strictly increasing, i.e. for all x, y ∈R

+ such that x < y, F(x) < F(y);
(F) for each sequence {αn}∞n= of positive numbers, limn→∞ αn =  if and only if

limn→∞ F(αn) = –∞;
(F) there exists k ∈ (, ) such that limα→+ αkF(α) = .

Definition . [] Let (X, d) be a metric space. A mapping T : X → X is said to be a F-
contraction on (X, d) if there exist F ∈F and τ >  such that

∀x, y ∈ X,
[
d(Tx, Ty) >  ⇒ τ + F

(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)]
. ()

Remark . From (F) and () it is easy to conclude that every F-contraction is necessarily
continuous.
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Recently, Piri and Kumam [] extended the result of Wardowski [] by replacing the
condition (F) in Definition . with the following one:

(F′) F is continuous on (,∞).

Let F denote the family of all functions F : R+ →R which satisfy conditions (F), (F) and
(F′).

Under this new set-up, they proved a fixed point result that generalized the result of
Wardowski [].

Definition . [] Let (X, d) be a metric space and let F ∈ F. A mapping T : X → X is said
to be a F-Suzuki-contraction if there exist F ∈ F and τ >  such that for all x, y ∈ X with
Tx 	= Ty




d(x, Tx) < d(x, y) ⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
.

Wardowski and Van Dung [] introduced the notion of a F-weak contraction and proved
a fixed point theorem for F-weak contractions.

Definition . [] Let (X, d) be a metric space. A mapping T : X → X is said to be a F-
weak contraction on (X, d) if there exist F ∈F and τ >  such that, for all x, y ∈ X satisfying
d(Tx, Ty) > , the following holds:

τ + F
(
d(Tx, Ty)

) ≤ F
(

max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)


})
. ()

Wardowski and Van Dung [] gave an example to show that their result was a proper
extension of results in the literature.

There are many papers in the literature that generalize the notion of metric spaces as
well as the Banach contraction mapping principle (see [–] and the references therein).
The notion of a metric-like space was introduced by Hitzler [] and re-introduced by
Amini-Harandi in [].

Definition . (See []) Let X be a non-empty set. A mapping d : X × X → R
+
 is said to

be a metric-like (dislocated) on X, if for all x, y, z ∈ X the following conditions are satisfied:

(D) if d(x, y) =  then x = y.
(D) d(x, y) = d(y, x).
(D) d(x, y) ≤ d(x, z) + d(z, y).

The pair (X, d) is called a dislocated (metric-like) space.

Notice that if we replace the condition (D) with

(D∗) d(x, y) ≤ d(x, z) + d(z, y) – d(z, z)

in Definition . then, (X, d) turns to be a partial metric space (PMS). Fore more details
see e.g. [–].

Remark . (See []) Every partial metric is metric-like (dislocate).



Karapınar et al. Fixed Point Theory and Applications  (2015) 2015:126 Page 3 of 14

A sequence {xn}∞n=, in a metric-like space (X, d),
(a) converges to x ∈ X if limn→∞ d(xn, x) = d(x, x),
(b) is called Cauchy in (X, d), if limn,m→∞ d(xn, xm) exists and is finite.
A metric-like space (X, d) is said to be complete if and only if every Cauchy sequence

{xn}∞n= in X converges to x ∈ X so that

lim
n,m→∞ d(xn, xm) = lim

n→∞ d(xn, x) = d(x, x).

We recall some basic definitions and crucial results on the topic. In this paper, we follow
the notation of Amini-Harandi [].

Definition . (See []) Let (X, d) be a metric-like space and let U be a subset of X. We
say U is a d-open subset of X, if for all x ∈ X there exists r >  such that Bd(x, r) ⊆ U . Also,
V ⊆ X is a d-closed subset of X if (X\V ) is a d-open subset of X.

Lemma . (See []) Let (X, d) be a metric-like space. Then:
(A) if d(x, y) =  then d(x, x) = d(y, y) = ;
(B) if {xn} be a sequence such that limn→∞ d(xn, xn+) = , then we have,

lim
n→∞ d(xn, xn) = lim

n→∞ d(xn+, xn+) = ;

(C) if x 	= y then d(x, y) > ;
(D) d(x, x) ≤ 

n
∑i=n

i= d(x, xi) holds for all xi, x ∈ X where  ≤ i ≤ n;
(E) if {xn} is a sequence in a d-closed subset V of X with xn → x as n → ∞, then x ∈ V ;
(F) if {xn} is a sequence in X such that xn → x as n → ∞ and d(x, x) = , then

limn→∞ d(xn, y) = d(x, y) for all y ∈ X .

Definition . Let (X, d) and (Y ,ρ) be metric-like spaces and {xn}∞n= be a sequence in
X such that xn → x. A mapping f : X → Y is said to be continuous at a point x ∈ X if
f (xn) → f (x)

2 Main results
We begin this section with the following definition.

Definition . Let (X, d) be a metric-like space. A mapping T : X → X is said to be a
conditionally F-contraction of type (A) if there exist F ∈ F and τ >  such that, for all
x, y ∈ X with d(Tx, Ty) > ,




d(x, Tx) < d(x, y) ⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
MT (x, y)

)
, ()

where

MT (x, y) max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)


}
.

Theorem . Let (X, d) is a complete metric-like space. If T is a conditionally F-
contraction of type (A), then T has a fixed point x∗ ∈ X.
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Proof Take x ∈ X and construct a sequence {xn} as follows:

xn = Txn– = Tnx for all n ∈N where x = x. ()

If there exists n∗ ∈ N such that d(xn∗ , Txn∗ ) =  then x∗ = xn∗ becomes a fixed point which
completes the proof. Consequently, in the rest of the proof, we assume that, for every
n ∈N,

 < d(xn, Txn). ()

Hence, from (), we have




d(xn, Txn) < d(xn, Txn) for all n ∈N. ()

Since T is conditionally F-contraction (note d(Txn, T(Txn)) = d(xn+, Txn+) > ), from the
inequality (), we have

τ + F
(
d
(
Txn, Txn

)) ≤ F
(

max

{
d(xn, Txn), d(xn, Txn), d

(
Txn, Txn

)
,

d(xn, Txn) + d(Txn, Txn)


})

≤ F
(

max

{
d(xn, Txn), d

(
Txn, Txn

)
,

d(xn, Txn) + d(Txn, Txn) + d(Txn, xn) + d(xn, Txn)


})

= F
(

max

{
d(xn, Txn), d

(
Txn, Txn

)
,

d(xn, Txn) + d(Txn, Txn)


})

= F
(
max

{
d(xn, Txn), d

(
Txn, Txn

)})
. ()

If there exists n ∈ N such that max{d(xn, Txn), d(Txn, Txn)} = d(Txn, Txn), then () be-
comes

τ + F
(
d
(
Txn, Txn

)) ≤ F
(
d
(
Txn, Txn

))
,

which is a contradiction. Thus, we conclude that

max
{

d(xn, Txn), d
(
Txn, Txn

)}
= d(xn, Txn),

for all n ∈N. Hence, the inequality () turns into

F
(
d
(
Txn, Txn

)) ≤ F
(
d(xn, Txn)

)
– τ for all n ∈N, ()
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which is equivalent to

F
(
d(xn+, Txn+)

) ≤ F
(
d(xn, Txn)

)
– τ for all n ∈ N.

Iteratively, we find that

F
(
d(xn, Txn)

) ≤ F
(
d(xn–, Txn–)

)
– τ

≤ F
(
d(xn–, Txn–)

)
– τ

≤ F
(
d(xn–, Txn–)

)
– τ

...

≤ F
(
d(x, Tx)

)
– nτ . ()

From (), we obtain limm→∞ F(d(xn, Txn)) = –∞, which together with (F) gives

lim
n→∞ d(xn, Txn) = lim

m→∞ d(xn, xn+) = . ()

Now, we claim that

lim
n,m→∞ d(xn, xm) = . ()

Arguing by contradiction, we assume that there exist ε >  and sequences {p(n)}∞n= and
{q(n)}∞n= of natural numbers such that

p(n) > q(n) > n, d(xp(n), xq(n)) ≥ ε, d(xp(n)–, xq(n)) < ε for all n ∈ N. ()

From the triangle inequality, we get

ε ≤ d(xp(n), xq(n)) ≤ d(xp(n), xp(n)–) + d(xp(n)–, xq(n))

≤ d(xp(n), xp(n)–) + ε

= d(xp(n)–, Txp(n)–) + ε for all n ∈N. ()

Thus from (), (), and the sandwich theorem, we get

lim
n→∞ d(xp(n), xq(n)) = ε. ()

Again by the triangle inequality, for all n ∈N, we have the following two inequalities:

d(xp(n), xq(n)) ≤ d(xp(n), xp(n)+) + d(xp(n)+, xq(n)+) + d(xq(n)+, xq(n)) ()

and

d(xp(n)+, xq(n)+) ≤ d(xp(n)+, xp(n)) + d(xp(n), xq(n)) + d(xq(n), xq(n)+). ()
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Letting n → ∞ in the inequalities () and (), using () and (), we obtain

lim
n→∞ d(xp(n)+, xq(n)+) = ε. ()

From () and (), there exists N ∈N such that




d(xp(n), Txp(n)) <
ε


< d(xp(n), xq(n)), ∀n > N.

Note from () for n large enough (i.e. n ≥ N ≥ N say) we have d(Txp(n), Txq(n)) =
d(xp(n)+, xq(n)+) > . Since T is a conditionally F-contractive mapping of type (A), we have
(with n ≥ N)

τ + F
(
d(Txp(n), Txq(n))

)

≤ F
(

max

{
d(xp(n), xq(n)), d(xp(n), Txp(n)), d(xq(n), Txq(n)),

d(xp(n), Txq(n)) + d(xq(n), Txp(n))


})

≤ F
(

max

{
d(xp(n), xq(n)), d(xp(n), Txp(n)), d(xq(n), Txq(n)),

d(xp(n), Txp(n)) + d(xq(n), Txq(n)) + d(xq(n), xp(n))


})

≤ F
(
max{d(xp(n), xq(n)), d(xp(n), Txp(n)), d(xq(n), Txq(n)),

max
{

d(xp(n), xq(n)), d(xp(n), Txp(n)), d(xq(n), Txq(n))
})

= F(max
{

d(xp(n), xq(n)), d(xp(n), Txp(n)), d(xq(n), Txq(n))
}

. ()

Letting n → ∞ in the inequality above and using (), (), and (F′) we obtain

τ + F(ε) ≤ F(ε), ()

a contradiction since τ > . Hence

lim
m,n→∞ d(xn, xm) = .

Therefore, we conclude that {xn}∞n= is a Cauchy sequence in X. Now (X, d) is a complete
metric-like space, so there exists x∗ ∈ X such that

d
(
x∗, x∗) = lim

n→∞ d
(
xn, x∗) = lim

n,m→∞ d(xn, xm) = . ()

Now note

d
(
x∗, Tx∗) ≤ d

(
x∗, xn+

)
+ d

(
xn+, Tx∗)

≤ d
(
x∗, xn+

)
+ d

(
xn+, x∗) + d

(
x∗, Tx∗)

= d
(
x∗, xn+

)
+ d

(
x∗, Tx∗).
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Thus from () and the sandwich theorem, we get

lim
n→∞

[
d
(
x∗, xn+

)
+ d

(
xn+, Tx∗)] = d

(
x∗, Tx∗).

Now this and () yield

lim
n→∞ d

(
xn+, Tx∗) = d

(
x∗, Tx∗). ()

We now prove that, for every n ∈ N,




d(xn, Txn) < d
(
xn, x∗) or




d
(
Txn, Txn

)
< d

(
Txn, x∗), ∀n ∈N. ()

Arguing by contradiction, we assume that there exists m ∈N such that




d(xm, Txm) ≥ d
(
xm, x∗) and




d
(
Txm, Txm

) ≥ d
(
Txm, x∗). ()

Now from () and (F), we have

d
(
Txm, Txm

)
< d(xm, Txm). ()

It follows from () and () that

d(xm, Txm) ≤ d
(
xm, x∗) + d

(
x∗, Txm

)

≤ 


d(xm, Txm) +



d
(
Txm, Txm

)

<



d(xm, Txm) +



d(xm, Txm)

= d(xm, Txm),

which is a contradiction. Hence () holds.
Suppose, now, part (I) of () is satisfied and d(x∗, Tx∗) > . Note from () there exists

N ∈N such that d(Txn, Tx∗) = d(xn+, Tx∗) >  for n ≥ N. Then from our assumption (with
n ≥ N) we have

τ + F
(
d
(
xn+, Tx∗)) = τ + F

(
d
(
Txn, Tx∗))

≤ F
(

max

{
d
(
xn, x∗), d(xn, Txn), d

(
x∗, Tx∗),

d(xn, Tx∗) + d(x∗, Txn)


})

≤ F
(

max

{
d
(
xn, x∗), d(xn, Txn), d

(
x∗, Tx∗),

d(xn, x∗) + d(x∗, Tx∗) + d(xn, Txn)


})
. ()
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From () and (), there exists N ∈N (with N ≥ N) such that for all n ≥ N

max

{
d
(
xn, x∗), d(xn, Txn), d

(
x∗, Tx∗),

d(xn, x∗) + d(x∗, Tx∗) + d(xn, Txn)


}

= d
(
x∗, Tx∗).

Now from (), we get

τ + F
(
d
(
xn+, Tx∗)) ≤ F

(
d
(
x∗, Tx∗)), ∀n ≥ N. ()

From (F′) and (), by taking the limit as n → ∞ in (), we obtain

τ + F
(
d
(
x∗, Tx∗)) ≤ F

(
d
(
x∗, Tx∗)),

which is a contradiction.
Now suppose part (II) of () is true, and d(x∗, Tx∗) > . Note from () there exists

N ∈ N such that d(T(Txn), Tx∗) = d(xn+, Tx∗) >  for n ≥ N. Then from our assumption
(with n ≥ N) we have

τ + F
(
d
(
xn+, Tx∗)) = τ + F

(
d
(
Txn, Tx∗))

≤ F
(

max

{
d
(
Txn, x∗), d

(
Txn, Txn

)
, d

(
x∗, Tx∗),

d(Txn, Tx∗) + d(x∗, Txn)


})

≤ F
(

max

{
d
(
Txn, x∗), d

(
Txn, Txn

)
, d

(
x∗, Tx∗),

d(Txn, x∗) + d(x∗, Tx∗) + d(Txn, Txn)


})

= F
(

max

{
d
(
xn+, x∗), d(xn+, Txn+), d

(
x∗, Tx∗),

d(xn+, x∗) + d(x∗, Tx∗) + d(xn+, Txn+)


})
. ()

From () and (), there exists N ∈N (with N ≥ N) such that for all n ≥ N

max

{
d
(
xn+, x∗), d(xn+, Txn+), d

(
x∗, Tx∗),

d(xn+, x∗) + d(x∗, Tx∗) + d(xn+, Txn+)


}

= d
(
x∗, Tx∗).

From (), we get

τ + F
(
d
(
xn+, Tx∗)) ≤ F

(
d
(
x∗, Tx∗)), ∀n ≥ N. ()

From (F) and (), taking the limit as n → ∞ in (), we obtain

τ + F
(
d
(
x∗, Tx∗)) ≤ F

(
d
(
x∗, Tx∗)),

which is a contradiction. Hence, we conclude that x∗ is a fixed point of T . �
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Definition . Let (X, d) be a metric-like space. A mapping T : X → X is said to be a
conditionally F-contraction of type (B) if there exist F ∈ F and τ >  such that, for all
x, y ∈ X with d(Tx, Ty) > ,




d(x, Tx) < d(x, y) ⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
max

{
d(x, y), d(x, Tx), d(y, Ty)

})
. ()

Definition . Let (X, d) be a metric-like space. A mapping T : X → X is said to be a
conditionally F-contraction of type (C) if there exist F ∈ F and τ >  such that, for all
x, y ∈ X with d(Tx, Ty) > ,




d(x, Tx) < d(x, y) ⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
. ()

Theorem . Let (X, d) be a complete metric-like space. If T is a conditionally F-
contraction of type (B), then T has a fixed point x∗ ∈ X.

Proof Following the proof in Theorem ., we easily conclude the result. �

Theorem . Let (X, d) be a complete metric-like space. If T is a conditionally F-
contraction of type (C), then T has a fixed point x∗ ∈ X.

Proof It can easily be derived by following the proof in Theorem .. �

Next we consider an example to illustrate our main result. We consider a mapping T
which is not continuous, so not an F-contraction but it is a conditionally F-contraction of
type (C).

Example . Consider X = {, , }. Let d : X × X → [,∞) be a mapping defined by

d(, ) = d(, ) = , d(, ) = /,

d(, ) = d(, ) = , d(, ) = d(, ) = ,

d(, ) = d(, ) = /.

It is clear that d is a metric-like. Note that d(, ) 	= , so d is not a metric. Clearly, (X, d)
is a complete metric-like space. Let T : X → X be given by

T =  = T and T = .

Suppose that F(α) = –
α

+ α ∈ F and τ ∈ (, /). Since T is not continuous, T is not a
F-contraction by Remark ..

We will consider the inequality




d(x, Tx) < d(x, y), ()

where x, y ∈ X with d(Tx, Ty) >  and the inequality

τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
()

for those x, y ∈ X with d(Tx, Ty) >  which satisfy ().
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Case : Let x = . Now d(T, T) = d(T, T) = d(, ) =  so we need only consider
y =  in () and (). Now () is true since




d(, T) =  < d(, ) = .

Also note

d(T, T) = d(, ) =



<  = d(, ).

Now inequality () is satisfied since

τ + F
(
d(T, T)

)
= τ –


d(T, T)

+ d(T, T)

≤ τ –


d(, )
+




≤ 


–


d(, )
+




= –


d(, )
+  = –


d(, )

+ d(, ) = F
(
d(, )

)
.

Case : Let x = . Now d(T, T) = d(T, T) = d(, ) =  so we need only consider y = 
in () and (). Now () is true since




d(, T) =  < d(, ) = .

Also note

d(T, T) = d(, ) =



<  = d(, ).

Now inequality () is satisfied since

τ + F
(
d(T, T)

)
= τ –


d(T, T)

+ d(T, T)

≤ τ –


d(, )
+




≤ 


–


d(, )
+




= –


d(, )
+ 

≤ –


d(, )
+  = –


d(, )

+ d(, ) = F
(
d(, )

)
.

Case : Let x = . Now d(T, T) =  so we need only consider the case y ∈ {, }. Note
d(T, T) = d(, ) > , d(T, T) = d(, ) > , and also note




d(, T) =



d(, ) =



and

d(, ) = , d(, ) = ,

so () holds.



Karapınar et al. Fixed Point Theory and Applications  (2015) 2015:126 Page 11 of 14

Note

d(T, T) = d(, ) =



<  = d(, )

and

d(T, T) = d(, ) =



<  = d(, ),

so

τ + F
(
d(T, T)

) ≤ F
(
d(, )

)

follows as in Case  and

τ + F
(
d(T, T)

) ≤ F
(
d(, )

)

follows as in Case .
Hence T is a conditionally F-contraction of type (C). It is clear that  is the fixed point

of T .

3 Consequences
In [, ], Matthews introduced the notion of partial metric, a generalization of a metric,
as a part of the study of denotational semantics of dataflow networks.

Definition . (See []) Let X be a non-empty set. A mapping p : X × X →R
+
 is said to

be a partial metric on X if for all x, y, z ∈ X the following conditions are satisfied:

(p) x = y if and only if p(x, x) = p(x, y) = p(y, y);
(p) p(x, x) ≤ p(x, y);
(p) p(x, y) = p(y, x);
(p) p(x, z) ≤ p(x, y) + p(y, z) – p(y, y).

In this case, the pair (X, p) is called a partial metric space (PMS).

Notice that the function dp : X × X → R
+ defined by dp(x, y) = p(x, y) – p(x, x) – p(y, y)

satisfies the conditions of a metric on X. Each partial metric p on X generates a T topology
τp on X, whose base is a family of open p-balls {Bp(x, ε) : x ∈ X, ε > } where Bp(x, ε) =
{y ∈ X : p(x, y) ≤ p(x, x) + ε} for all x ∈ X and ε > . Consequently, it is easy to consider
several topological concepts. A sequence {xn} in the PMS (X, p) converges to the limit x
if p(x, x) = limn→∞ p(x, xn) and is said to be a Cauchy sequence if limn,m→∞ p(xn, xm) exists
and is finite. A PMS (X, p) is called complete if every Cauchy sequence {xn} in X converges
with respect to τp, to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm). For more details,
see e.g. [, –] and the related references therein.

Lemma . (See e.g. [, ]) Let (X, p) be a complete PMS. Then
(A) If p(x, y) =  then x = y.
(B) If x 	= y, then p(x, y) > .
(C) A sequence {xn} is a Cauchy sequence in the PMS (X, p) if and only if it is a Cauchy

sequence in the metric space (X, dp).
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(D) A PMS (X, p) is complete if and only if the metric space (X, dp) is complete. Moreover,

lim
n→∞ dp(x, xn) =  ⇔ p(x, x) = lim

n→∞ p(x, xn) = lim
n,m→∞ p(xn, xm). ()

(E) Assume xn → z as n → ∞ in a PMS (X, p) such that p(z, z) = . Then
limn→∞ p(xn, y) = p(z, y) for every y ∈ X .

Now we derive the analog of Theorem . in the context of partial metric spaces. In fact,
in the following theorem we conclude not only the existence of a fixed point of the given
mapping but also the uniqueness.

Theorem . Let (X, p) be a complete partial metric space and let T : X → X be a
self-mapping. Suppose that there exist F ∈ F and τ >  such that, for all x, y ∈ X with
p(Tx, Ty) > ,




p(x, Tx) < p(x, y)

⇒ τ + F
(
p(Tx, Ty)

) ≤ F
(

max

{
p(x, y), p(x, Tx), p(y, Ty),

p(x, Ty) + p(y, Tx)


})
.

()

Then T has a unique fixed point x∗ ∈ X.

Proof Since every partial metric space is a metric-like space, we obtain the proof by fol-
lowing the proof in Theorem .. Note that the expression p(x,Ty)+p(y,Tx)

 in the inequality ()
is replaced by p(x,Ty)+p(y,Tx)

 in the inequality (). This difference arises due to assumptions
(p) and (p) of partial metric spaces. Hence, taking (p) and (p) into account, following
the proof in Theorem . yields the existence of a fixed point (x∗ ∈ X) of T .

We now show the uniqueness of the fixed point of T . Suppose there is another fixed
point y∗ ∈ X of T , such that x∗ 	= y∗. Thus from Lemma ., we have p(x∗, y∗) > . From
(p), we have




p
(
x∗, Tx∗) =




p
(
x∗, x∗) < p

(
x∗, x∗) ≤ p

(
x∗, y∗).

Thus, from (p), we obtain (note p(Tx∗, Ty∗) = p(x∗, y∗) > )

τ + F
(
p
(
x∗, y∗)) = τ + F

(
p
(
Tx∗, Ty∗))

≤ F
(

max

{
p
(
x∗, y∗), p

(
x∗, Tx∗), p

(
y∗, Ty∗),

p(x∗, Ty∗) + p(y∗, Tx∗)


})

= F
(

max

{
p
(
x∗, y∗), p

(
x∗, x∗), p

(
y∗, y∗),

p(x∗, y∗) + p(y∗, x∗)


})

≤ F
(

max

{
p
(
x∗, y∗), p

(
x∗, y∗), p

(
x∗, y∗)p(x∗, y∗) + p(y∗, x∗)



})

= F
(
p
(
x∗, y∗)).

This is a contradiction, and hence x∗ = y∗. �
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The following two theorems can be obtained easily by repeating the steps in the proof
of Theorem ..

Theorem . Let (X, p) be a complete partial metric space and let T : X → X be a
self-mapping. Suppose that there exist F ∈ F and τ >  such that, for all x, y ∈ X with
p(Tx, Ty) > ,




p(x, Tx) < p(x, y) ⇒ τ + F
(
p(Tx, Ty)

) ≤ F
(
max

{
p(x, y), p(x, Tx), p(y, Ty)

})
. ()

Then T has a unique fixed point x∗ ∈ X.

Theorem . Let (X, p) be a complete partial metric space and let T : X → X be a
self-mapping. Suppose that there exist F ∈ F and τ >  such that, for all x, y ∈ X with
p(Tx, Ty) > ,




p(x, Tx) < p(x, y) ⇒ τ + F
(
p(Tx, Ty)

) ≤ F
(
p(x, y)

)
. ()

Then T has a unique fixed point x∗ ∈ X.

Remark . On can also easily conclude that the analog of Theorem .-Theorem . in
the context of metric spaces since each metric space is a partial metric space.
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