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Abstract
In this paper, we introduce the concepts of weak g-graph-preserving for multi-valued
mappings and weak G-contractions in a metric space endowed with a directed
graph. We establish the coincidence point theorems for this type of mappings in a
complete metric space endowed with a directed graph. Examples illustrating our
main results are also presented. Our results extend and generalize various known
results in the literature.
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1 Introduction
Fixed point theorems for contraction mappings and their generalizations play an impor-
tant role in the study of theory of equations. The Banach contraction principle [] is a
fundamental result which can be applied widely for solving the existence of solutions of
various equations. Over the years, it has been widely extended and generalized in different
directions by many authors (see [–]).

Let (X, d) be a complete metric space. A mapping T : X → X is called a contraction if
there exists k ∈ [, ) such that

d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X. (.)

A mapping T : X → X is called a Kannan mapping if there exists a real number α ∈ [, 
 )

such that for every x, y ∈ X,

d(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty). (.)

In , Kannan [] established the fixed point theorem for the Kannan mapping T .
One year later, Chatterjea [] introduced the new concept of contraction mapping. Based

on the Kannan mapping, he changed some variables in (.) and obtained new condition,
that is,

d(Tx, Ty) ≤ αd(x, Ty) + αd(y, Tx). (.)
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It is easily seen that conditions (.) and (.) are independent from each other, (.) and
(.) as well.

Zamfirescu [] proved some fixed point theorems by combining (.), (.) and (.),
which is stated as follows.

Theorem . [] Let (X, d) be a complete metric space and T : X → X be a map for which
there exist the real numbers a, b and c satisfying  ≤ a < ,  < b, c < 

 such that for each
pair x, y ∈ X, at least one of the following is true:

(i) d(Tx, Ty) ≤ ad(x, y);
(ii) d(Tx, Ty) ≤ bd(x, Tx) + bd(y, Ty);

(iii) d(Tx, Ty) ≤ cd(x, Ty) + cd(y, Tx).
Then T is a Picard operator, that is, T has a unique fixed point x ∈ X and for each x ∈ X,
Tnx → x.

In [] Berinde introduced and studied a weak contraction mapping on a complete metric
space which is weaker than the Zamfirescu operators.

Definition . [] Let (X, d) be a metric space. A map T : X → X is called weak contrac-
tion if there exist a constant α ∈ (, ) and L ≥  such that

d(Tx, Ty) ≤ αd(x, y) + Ld(x, Ty) for all x, y ∈ X. (.)

The following results can be found in [].

Proposition . []
() Any Kannan mapping is a weak contraction.
() Any mapping T satisfying the contractive condition (.) is a weak contraction.
() Any Zamfirescu mapping, i.e., any mapping satisfying the assumptions in

Theorem ., is a weak contraction.

A partial ordering is a binary relation � over the set X which satisfies the following
conditions:

() x � x (reflexivity);
() x � y and y � x, then x = y (antisymmetry);
() x � y and y � z, then x � z (transitivity)

for all x, y, z ∈ X. A set with a partial ordering � is called a partially ordered set. We write
x ≺ y if x � y and x �= y.

Fixed point theorems for monotone single-valued mappings have been investigated and
studied in partially ordered metric spaces by many mathematicians (see [–, , ]).
Nieto and Rodriguez-Lopez [, ] were the first who studied some fixed point theorems
for monotone nondecreasing mappings in partially ordered metric spaces and applied the
obtained results to study an existence problem of ordinary differential equations.

The study of fixed point for multi-valued contraction mappings using the Pompeiu-
Hausdorff metric was first performed by Nadler [].

Let (X, d) be a metric space. For x ∈ X and A ⊆ X, we denote D(x, A) = inf{d(x, y) : y ∈ A}.
The class of all nonempty bounded and closed subsets of X is denoted by CB(X). Let H be
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a Pompeiu-Hausdorff metric induced by the metric d on X, that is,

H(A, B) = max
{

sup
x∈A

D(x, B), sup
y∈B

D(y, A)
}

for every A, B ∈ CB(X).
We let Comp(X) be the set of all nonempty compact subsets of X. It is clear that Comp(X)

is included in CB(X).
Let T : X → X (collection of all nonempty subsets of X) and g : X → X. An element

x ∈ X is called
(i) fixed point of T if x ∈ T(x),

(ii) coincidence point of a hybrid pair {T , g} if g(x) ∈ T(x).
In , Nadler [] introduced the concept of Banach contraction principle for a multi-

valued mapping and proved the existence of fixed point for multi-valued version of the
Banach contraction principle. The following theorem is the first well-known theorem of
multi-valued contractions studied by Nadler.

Theorem . [] Let (X, d) be a complete metric space and T : X → CB(X) be a multi-
valued mapping. If there exists k ∈ [, ) such that

H(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X,

then T has a fixed point in X.

In , Berinde and Berinde [] provided the new type of contraction which is a gen-
eralization of the contraction principle considered by Nadler.

Definition . [] Let (X, d) be a metric space and T : X → CB(X) be a multi-valued
mapping. T is said to be a multi-valued weak contraction or a multi-valued (θ , L)-weak
contraction if there exist two constants θ ∈ (, ) and L ≥  such that

H(Tx, Ty) ≤ θd(x, y) + Ld(y, Tx) for all x, y ∈ X.

We now recall some notions concerning a directed graph. Let (X, d) be a metric space
and � denote the diagonal of X ×X. Let G be a directed graph such that the set V (G) of its
vertices coincides with X and the set E(G) of its edges is a subset of X ×X. We assume that
the graph G has no parallel edges and, thus, one can identify G with the pair (V (G), E(G)).
We denote by G– the conversion of a graph G, i.e.,

G– =
{

(x, y) ∈ X × X : (y, x) ∈ E(G)
}

.

The next definition, G-contraction, was introduced by Jachymski [] in .

Definition . [] Let (X, d) be a metric space and G = (V (G), E(G)) be a directed graph
such that V (G) = X and E(G) contains all loops, i.e., � ⊆ E(G). We say that a mapping
T : X → X is a G-contraction if T preserves edges of G, i.e., for every x, y ∈ X,

(x, y) ∈ E(G) ⇒ (Tx, Ty) ∈ E(G) (.)
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and there exists α ∈ (, ) such that x, y ∈ X ,

(x, y) ∈ E(G) ⇒ d(Tx, Ty) ≤ αd(x, y).

The mapping T : X → X satisfying condition (.) is called a graph-preserving mapping.
Under some additional properties of a metric space X endowed with a directed graph,
Jachymski showed that a G-contraction T : X → X has a fixed point if and only if there
exists x ∈ X such that (x, T(x)) ∈ E(G).

Subsequently, Beg and Butt [] tried to introduce the concept of G-contraction for
multi-valued mappings, but their extension was not carried correctly (see [, ]).

In , Nicolae et al. [] extended the notion of multivalued contraction on a metric
space with a graph.

Recently, Dinevari and Frigon [] introduced a new concept of G-contraction multi-
valued mappings.

Definition . [] Let T : X → X be a map with nonempty values. We say that T is a
G-contraction (in the sense of Dinevari and Frigon) if there exists α ∈ (, ) such that for
all (x, y) ∈ E(G) and u ∈ Tx, there exists v ∈ Ty such that (u, v) ∈ E(G) and d(u, v) ≤ αd(x, y).

They showed that under some properties, weaker than Property (A), a multi-valued G-
contraction with the closed value has a fixed point. Recently, Tiammee and Suantai []
introduced the concept of graph-preserving for multi-valued mappings and proved their
fixed point theorem in a complete metric space endowed with a graph.

Definition . [] Let X be a nonempty set, G = (V (G), E(G)) be a directed graph such
that V (G) = X, and T : X → CB(X). Then T is said to be graph-preserving if (x, y) ∈ E(G) ⇒
(u, v) ∈ E(G) for all u ∈ Tx and v ∈ Ty.

Definition . [] Let X be a nonempty set, G = (V (G), E(G)) be a directed graph such
that V (G) = X, g : X → X, and T : X → CB(X). Then T is said to be g-graph-preserving if
for any x, y ∈ X such that

(
g(x), g(y)

) ∈ E(G) ⇒ (u, v) ∈ E(G)

for all u ∈ Tx and v ∈ Ty.

Recently, Phon-on et al. [] introduced a new type of weak G-contraction which is
weaker than that of Tiammee and Suantai [], and they proved some fixed point theorems
for this type of mappings with compact values which is a generalization of several known
results in a complete metric space endowed with a graph.

Definition . [] Let X be a nonempty set and G = (V (G), E(G)) be a directed graph
such that V (G) = X, and T : X → Comp(X). Then T is said to be weak graph-preserving
if it satisfies the following: for each x, y ∈ X, if (x, y) ∈ E(G), then for each u ∈ Tx there is
v ∈ PTy(u) such that (u, v) ∈ E(G), where PTy(u) = {a ∈ Ty | d(u, a) = D(u, Ty)}.

Motivated and inspired by all of those works mentioned above, we aim to introduce a
new type of multi-valued contractions which is more general than that of Berinde [].
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These classes of mappings are defined for multi-valued mappings in complete metric
spaces endowed with directed graphs. Fixed point theorems for this type of mappings are
established. We also apply our main results for proving the existence theorem of a fixed
point for a multi-valued mapping defined on a partially ordered metric space. Moreover,
we also apply the obtained results to prove the existence theorem of a coupled fixed point.
Some examples are given to illustrate our results.

2 Preliminaries
Let (X, d) be a metric space and let CB(X) be the class of all nonempty bounded and closed
subsets of X. For x ∈ X and A ⊆ X, we denote

D(x, A) = inf
{

d(x, y) | y ∈ A
}

.

Let H be a Pompeiu-Hausdorff metric induced by the metric d on X, that is,

H(A, B) = max
{

sup
x∈A

D(x, B), sup
y∈B

D(y, A)
}

for every A, B ∈ CB(X). An element y ∈ A is said to be a best approximation to x if

d(x, y) = D(x, A).

A nonempty subset A of X is a proximinal set if for each x ∈ X, there exists a point y ∈ A
such that d(x, y) = D(x, A). Let PB(X) be the family of all bounded proximinal subsets of X.
The set of all best approximations from x to A is denoted by

PA(x) =
{

y ∈ A | d(x, y) = D(x, A)
}

.

This defines a mapping PA : X → A and is called the metric projection into A. It is clear
that PB(X) is included in CB(X).

The following lemma is useful for our main results.

Lemma . [] Let A, B ∈ CB(X) and a ∈ A. Then, for ε > , there exists an element b ∈ B
such that d(a, b) ≤ H(A, B) + ε.

Definition . Let X be a nonempty set, G = (V (G), E(G)) be a directed graph such that
V (G) = X and let T : X → PB(X) and g : X → X. Then T is said to be weak g-graph-
preserving if for any x, y ∈ X such that (g(x), g(y)) ∈ E(G), then for each u ∈ Tx there exists
v ∈ PTy(u) such that (u, v) ∈ E(G).

Example . Let X = {, } ∪ { 
n | n ∈ N} and let d be a usual metric on X. Let G =

(V (G), E(G)) be a directed graph defined by V (G) = X and

E(G) =
{

(, ),
(

,



)
, (, )

}
∪

{(


n ,


n+

) ∣∣∣ n ∈N

}

∪
{(


n , 

)
,
(


n ,


n

) ∣∣∣ n ∈N

}
.
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Let T : X → PB(X) and g : X → X be defined by

Tx =

⎧⎪⎪⎨
⎪⎪⎩

{, } if x = ;

{ 
n+ , } if x = 

n , n ∈N;

{ 
 , } if x = ,

and g(x) = x.
Now we will show that T is weak g-graph-preserving. Let (g(x), g(y)) ∈ E(G).
If (g(x), g(y)) = (, ), then (x, y) = (, ), Tx = { 

 , }, and Ty = {, }, we have PTy( 
 ) = {, },

PTy() = {} and ( 
 , ), (, ) ∈ E(G).

If (g(x), g(y)) = ( 
n , 

n ), then (x, y) = ( 
n , 

n ) and Tx = { 
n+ , } = Ty, we have PTy() = {},

PTy( 
n+ ) = { 

n+ } and (, ), ( 
n+ , 

n+ ) ∈ E(G).
If (g(x), g(y)) = ( 

n , ), then (x, y) = ( 
n , ), Tx = { 

n+ , }, and Ty = {, }, we have
PTy( 

n+ ) = {}, PTy() = {} and ( 
n+ , ), (, ) ∈ E(G).

If (g(x), g(y)) = (, ), then (x, y) = (, ) and Tx = { 
 , } = Ty, we have PTy( 

 ) = { 
 }, PTy() =

{} and ( 
 , 

 ), (, ) ∈ E(G).
Hence T is weak g-graph-preserving.

Definition . Let X be a nonempty set, G = (V (G), E(G)) be a directed graph such that
V (G) = X and let T : X → X and g : X → X be self-mappings on X. Then T is said to be
G-edge-preserving with respect to g if for any x, y ∈ X,

(
g(x), g(y)

) ∈ E(G) implies (Tx, Ty) ∈ E(G).

3 Main results
We start with introducing a new type of weak G-contraction with respect to g .

Definition . Let (X, d) be a metric space, G = (V (G), E(G)) be a directed graph such
that V (G) = X, g : X → X and T : X → PB(X). T is said to be a (k, L, r) weak G-contraction
with respect to g if there exist L ≥  and k, r ∈ [, ) with  < k + r <  such that

H(Tx, Ty) ≤ kd
(
g(x), g(y)

)
+ LD

(
g(y), Tx

)
+ rD

(
g(x), Ty

)

for all x, y ∈ X with (g(x), g(y)) ∈ E(G).

Example . Let X = {, } ∪ { 
n | n ∈ N} and let d be a usual metric on X. Let G =

(V (G), E(G)) be a directed graph defined by V (G) = X and

E(G) =
{

(, ), (, ),
(

,



)}
∪

{(


n ,


n+

) ∣∣∣ n ∈ N

}

∪
{(


n , 

)
,
(


n ,


n

) ∣∣∣ n ∈N

}
.

Let T : X → PB(X) and g : X → X be defined by

Tx =

⎧⎪⎪⎨
⎪⎪⎩

{} if x = ;

{ 
n+ , } if x = 

n , n ∈N;

{ 
 } if x = ,
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and

g(x) =

⎧
⎨
⎩

 if x = , , 
 ;


n– if x = 

n , n ∈N\{}.

Now we prove that T is a (k, L, r) weak G-contraction with respect to g , where k = 
 ,


 ≤ r < 

 , and L ≥ . Let x, y ∈ X such that (x, y) ∈ E(G).
If (g(x), g(y)) = ( 

n– , 
n– ), n �= . Then H(Tx, Ty) = , so

H(Tx, Ty) ≤ kd
(
g(x), g(y)

)
+ LD

(
g(y), Tx

)
+ rD

(
g(x), Ty

)
.

If (g(x), g(y)) = (, 
 ), then (x, y) = (, 

 ), (, 
 ), ( 

 , 
 ).

Case (x, y) = (, 
 ), we have Tx = {} and Ty = { 

 , }. Thus

H(Tx, Ty) =



≤ 

(
g(x), g(y)

)
+ LD

(
g(y), Tx

)
+ rD

(
g(x), Ty

)
.

Case (x, y) = (, 
 ), we have Tx = { 

 } and Ty = { 
 , }. Thus

H(Tx, Ty) =



≤ 

(
g(x), g(y)

)
+ LD

(
g(y), Tx

)
+ rD

(
g(x), Ty

)
.

Case (x, y) = ( 
 , 

 ), we have Tx = { 
 , } and Ty = { 

 , }. Thus

H(Tx, Ty) =



≤ 

(
g(x), g(y)

)
+ LD

(
g(y), Tx

)
+ rD

(
g(x), Ty

)
.

If (g(x), g(y)) = ( 
n– , 

n ), n �= , then (x, y) = ( 
n , 

n+ ). We have Tx = { 
n+ , } and Ty =

{ 
n+ , }. Thus

H(Tx, Ty) =


n+ =



(


n+

)
≤ 


(
g(x), g(y)

)
+ LD

(
g(y), Tx

)
+ rD

(
g(x), Ty

)
.

Hence T is a (k, L, r) weak G-contraction with respect to g .

The following property is useful for our main results.

Property (A) [] For any sequence (xn)n∈N in X, if xn → x and (xn, xn+) ∈ E(G) for n ∈N,
then there is a subsequence (xkn )n∈N with (xkn , x) ∈ E(G) for n ∈N.

We first prove our main result.

Theorem . Let (X, d) be a complete metric space, G = (V (G), E(G)) be a directed graph
such that V (G) = X, and let g : X → X be a surjective mapping. If T : X → PB(X) is a
multi-valued mapping satisfying the following properties:

(i) T is a weak g-graph-preserving mapping;
(ii) there exists x ∈ X such that (g(x), y) ∈ E(G) for some y ∈ Tx;

(iii) X has Property (A);
(iv) T is a (k, L, r) weak G-contraction,

then there exists u ∈ X such that g(u) ∈ Tu.
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Proof Let x ∈ X be such that (g(x), y) ∈ E(G) for some y ∈ Tx. Since g is surjective, there
exists x ∈ X such that y = g(x) ∈ Tx. By (ii), we have (g(x), g(x)) ∈ E(G). Since T is weak
g-graph-preserving and g is surjective, there exists x ∈ X such that g(x) ∈ PTx (g(x)) and
(g(x), g(x)) ∈ E(G). By Lemma ., there exists y ∈ Tx such that

d
(
g(x), y

) ≤ H(Tx, Tx) +



.

It follows that

d
(
g(x), g(x)

)
= D

(
g(x), Tx

)

≤ d
(
g(x), y

)

≤ H(Tx, Tx) +



. (.)

Since (g(x), g(x)) ∈ E(G) and T is a (k, L, r) weak G-contraction, we have

H(Tx, Tx) ≤ kd(x), g(x) + LD
(
g(x), Tx

)
+ rD

(
g(x), Tx

)

= rD
(
g(x), Tx

)
+ kd

(
g(x), g(x)

)

≤ rd
(
g(x), g(x)

)
+ kd

(
g(x), g(x)

)

≤ r
[
d
(
g(x), g(x)

)
+ d

(
g(x), g(x)

)]
+ kd

(
g(x), g(x)

)

= (k + r)d
(
g(x), g(x)

)
+ rd

(
g(x), g(x)

)

= (k + r)d
(
g(x), g(x)

)
+ rD

(
g(x), Tx

)

≤ (k + r)d
(
g(x), g(x)

)
+ rH(Tx, Tx),

which implies

H(Tx, Tx) ≤ k + r
 – r

d
(
g(x), g(x)

)
.

From this together with (.), we obtain

d
(
g(x), g(x)

) ≤ k + r
 – r

d
(
g(x), g(x)

)
+




. (.)

Since T is weak g-graph-preserving and g is surjective, there exists x ∈ X such that g(x) ∈
PTx (g(x)) and (g(x), g(x)) ∈ E(G). By Lemma ., there exists y ∈ Tx such that

d
(
g(x), y

) ≤ H(Tx, Tx) +


 .

It follows that

d
(
g(x), g(x)

)
= D

(
g(x), Tx

)

≤ d
(
g(x), y

)

≤ H(Tx, Tx) +


 . (.)
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Since T is a (k, L, r) weak G-contraction, by (.), we get

H(Tx, Tx) ≤ kd
(
g(x), g(x)

)
+ LD

(
g(x), Tx

)
+ rD

(
g(x), Tx

)

= rD
(
g(x), Tx

)
+ kd

(
g(x), g(x)

)

≤ rd
(
g(x), g(x)

)
+ kd

(
g(x), g(x)

)

≤ r
[
d
(
g(x), g(x)

)
+ d

(
g(x), g(x)

)]
+ kd

(
g(x), g(x)

)

= (r + k)d
(
g(x), g(x)

)
+ rd

(
g(x), g(x)

)

≤ (k + r)d
(
g(x), g(x)

)
+ rD

(
g(x), Tx

)

≤ (k + r)d
(
g(x), g(x)

)
+ rH(Tx, Tx).

This implies

H(Tx, Tx) ≤ k + r
 – r

d
(
g(x), g(x)

)
.

From this together with (.), we obtain

d
(
g(x), g(x)

) ≤
(

k + r
 – r

)
d
(
g(x), g(x)

)
+




=
(

k + r
 – r

)
D

(
g(x), T(x)

)
+




≤
(

k + r
 – r

)
H

(
T(x), T(x)

)
+




≤
(

k + r
 – r

)

d
(
g(x), g(x)

)
+


 .

By induction, we obtain a sequence {g(xn)} in X such that for each n ∈ N, g(xn+) ∈ Txn,
(g(xn), g(xn+)) ∈ E(G) and

d
(
g(xn), g(xn+)

) ≤
(

k + r
 – r

)n

d
(
g(x), g(x)

)
+


n . (.)

Put q = k+r
–r . For any n, m ∈ N with m > n, by using (.), we have

d
(
g(xn), g(xm)

) ≤ d
(
g(xn), g(xn+)

)
+ d

(
g(xn+), g(xn+)

)
+ · · · + d

(
g(xm–), g(xm)

)

≤ qnd
(
g(x), g(x)

)
+


n + qn+d

(
g(x), g(x)

)
+


n+ + · · ·

+ qm–d
(
g(x), g(x)

)
+


m–

≤ d
(
g(x), g(x)

) m–∑
i=n

qi +
m–∑
i=n


i

≤ qn

 – q
d
(
g(x), g(x)

)
+


n ,
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which, in view of  < q < , implies that {g(xn)} is a Cauchy sequence. Since X is complete,
there exists u ∈ X such that limn→∞ g(xn) = g(u). By assumption (iii), there is a subse-
quence {g(xnk )} of {g(xn)} such that (g(xnk , g(u))) ∈ E(G) for all k ∈N. Since T is a weak-G-
contraction, we have

D
(
g(u), Tu

) ≤ d
(
g(u), g(xnk +)

)
+ D

(
g(xnk +), Tu

)

≤ d
(
g(u), g(xnk +)

)
+ H(Txnk , Tu)

≤ d
(
g(u), g(xnk +)

)
+ kd

(
g(xnk ), g(u)

)
+ LD

(
g(u), Txnk

)
+ rD

(
g(xnk ), Tu

)

≤ d
(
g(u), g(xnk +)

)
+ kd

(
g(xnk ), g(u)

)
+ Ld

(
g(u), g(xnk +)

)
+ rD

(
g(xnk ), Tu

)
.

Let y ∈ Tu. From the above inequality, we get

D
(
g(u), Tu

) ≤ d
(
g(u), g(xnk +)

)
+ kd

(
g(xnk ), g(u)

)

+ Ld
(
g(u), g(xnk +)

)
+ rd

(
g(xnk ), y

)
.

Letting n → ∞ in the above inequality, we obtain

D
(
g(u), Tu

) ≤ rd
(
g(u), y

)
.

Since y is arbitrary, it follows that D(g(u), Tu) ≤ rD(g(u), Tu), which implies D(g(u), Tu) = .
As Tu is closed, g(u) ∈ Tu. This completes the proof. �

The following result is obtained directly from Theorem . in case that T is a single-
valued mapping.

Theorem . Let (X, d) be a complete metric space and G = (V (G), E(G)) be a directed
graph such that V (G) = X, and let g : X → X be a surjective mapping. Let T : X → X be a
single-valued mapping satisfying the following properties:

(i) T is a G-edge-preserving mapping with respect to g ;
(ii) there exists x ∈ X such that (g(x), Tx) ∈ E(G);

(iii) X has Property (A);
(iv) there exist L ≥  and k, r ∈ [, ) with  < k + r <  such that

d(Tx, Ty) ≤ kd
(
g(x), g(y)

)
+ Ld

(
g(y), Tx

)
+ rd

(
g(x), Ty

)

for all x, y ∈ X with (g(x), g(y)) ∈ E(G),
then there exists u ∈ X such that g(u) ∈ Tu.

Example . Let X = {, } ∪ { 
n | n ∈ N} and let d be a usual metric on X. Let G =

(V (G), E(G)) be a directed graph defined by V (G) = X and

E(G) =
{

(, ), (, )
} ∪

{(


n ,


n+

) ∣∣∣ n ∈ N

}

∪
{(


n , 

)
,
(


n ,


n

)
,
(

,


n

) ∣∣∣ n ∈N

}
.
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Let T : X → PB(X) and g : X → X be defined by

Tx =

⎧⎪⎪⎨
⎪⎪⎩

{} if x = ;

{ 
n+ , } if x = 

n , n ∈N;

{} if x = ,

and

g(x) =

⎧⎪⎪⎨
⎪⎪⎩

 if x = ;


n if x = 
n , n ∈N;

 if x = .

Now we will show that T is weak g-graph-preserving. Let (g(x), g(y)) ∈ E(G).
If (g(x), g(y)) = (, ), then (x, y) = (, ) and so Tx = {} = Ty. We have PTy() = {} and

(, ) ∈ E(G).
If (g(x), g(y)) = (, ), then (x, y) = (, ) and so Tx = {}, Ty = {}. We have PTy() = {}

and (, ) ∈ E(G).
If (g(x), g(y)) = (, 

n ), then (x, y) = (, 
n ) and so Tx = {}, Ty = { 

n+ , }. We have PTy() =
{ 

n+ } and (, 
n+ ) ∈ E(G).

If (g(x), g(y)) = ( 
n , 

n ), then (x, y) = ( 
n , 

n ) and so Tx = { 
n+ , } = Ty. We have PTy() =

{}, PTy( 
n+ ) = { 

n+ } and (, ), ( 
n+ , 

n+ ) ∈ E(G).
If (g(x), g(y)) = ( 

n , ), then (x, y) = ( 
n , ) and so Tx = { 

n+ , }, Ty = {}. We have PTy() =
{} = PTy( 

n+ ) and (, ), ( 
n+ , ) ∈ E(G).

If (g(x), g(y)) = ( 
n , 

n+ ), then (x, y) = ( 
n , 

n+ ) and so Tx = { 
n+ , }, Ty = { 

n+ , }. We
have PTy() = {}, PTy( 

n+ ) = { 
n+ } and (, ), ( 

n+ , 
n+ ) ∈ E(G).

Hence T is weak g-graph-preserving.
Next we prove that T is a (k, L, r) weak G-contraction with respect to g , where k = 

 ,
r = 

 , and L ≥ . Let x, y ∈ X such that (g(x), g(y)) ∈ E(G).
If (g(x), g(y)) = (, ) and (g(x), g(y)) = ( 

n , 
n ), then H(Tx, Ty) = , so

H(Tx, Ty) ≤ kd
(
g(x), g(y)

)
+ LD

(
g(y), Tx

)
+ rD

(
g(x), Ty

)
.

If (g(x), g(y)) = (, ), then (x, y) = (, ) and so Tx = {}, Ty = {}. Thus

H(Tx, Ty) =  ≤ 


d
(
g(x), g(y)

)
+ LD

(
g(y), Tx

)
+ rD

(
g(x), Ty

)
.

If (g(x), g(y)) = (, 
n ), then (x, y) = (, 

n ) and so Tx = {}, Ty = { 
n+ , }. Thus

H(Tx, Ty) =  –


n+ ≤ 


d
(
g(x), g(y)

)
+ LD

(
g(y), Tx

)
+ rD

(
g(x), Ty

)
.

If (g(x), g(y)) = ( 
n , ), then (x, y) = ( 

n , ) and so Tx = { 
n+ , }, Ty = {}. Thus

H(Tx, Ty) =


n+ =



(


n

)
≤ 


d
(
g(x), g(y)

)
+ LD

(
g(y), Tx

)
+ rD

(
g(x), Ty

)
.
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If (g(x), g(y)) = ( 
n , 

n+ ), then (x, y) = ( 
n , 

n+ ) and so Tx = { 
n+ , }, Ty = { 

n+ , }. Thus

H(Tx, Ty) =


n+ ≤ 


d
(
g(x), g(y)

)
+ LD

(
g(y), Tx

)
+ rD

(
g(x), Ty

)
.

Hence T is a (k, L, r) weak G-contraction with respect to g . So conditions (i) and (iv) of
Theorem . are satisfied. Also, it is easy to check that condition (iii) of Theorem . is
satisfied. Then all the hypotheses in Theorem . are satisfied, and we see that  and  are
coincidence points of T and g .

We next apply Theorem . to obtain fixed point theorems for some contraction map-
pings in partially ordered metric spaces.

Definition . Let (X,d) be a metric space endowed with a partial ordering �. For each
A, B ∈ PB(X), we write A ≺ B if for each a ∈ A, there exists b ∈ PB(a) such that a ≺ b.

Definition . Let (X, d) be a metric space endowed with a partial ordering �, g : X → X
be a surjective map and T : X → PB(X). Then T is said to be g-increasing if for any x, y ∈ X,

g(x) ≺ g(y) ⇒ Tx ≺ Ty.

If g is the identity map and T : X → PB(X) is g-increasing, we simply say that T is in-
creasing.

Example . Let X = [,∞) and let ≤ be a usual partial ordering on X, that is, x ≤ y if and
only if y – x ≥ . Suppose that d is a usual metric on X. Let T : X → PB(X) and g : X → X
be defined by

Tx =

⎧⎨
⎩

[, ] if x = ;

{ + 
 x} otherwise,

and g(x) = x. It can be shown easily that T is g-increasing.
Moreover, we take g(x) = x, then it is easy to see that T is increasing.

Corollary . Let (X, d) be a complete metric space endowed with a partial ordering �,
g : X → X be a surjective and T : X → PB(X) be a multi-valued mapping. Suppose that

() T is g-increasing;
() there exist x ∈ X and u ∈ Tx such that g(x) ≺ u;
() for each sequence {xn} such that g(xn) ≺ g(xn+) for all n ∈N and g(xn) converges to

g(x), for some x ∈ X , then g(xn) ≺ g(x) for all n ∈N;
() there exist L ≥  and k, r ∈ [, ) with  < k + r <  such that

H(Tx, Ty) ≤ kd
(
g(x), g(y)

)
+ LD

(
g(y), Tx

)
+ rD

(
g(x), Ty

)

for all x, y ∈ X with g(x) ≺ g(y).
Then there exists u ∈ X such that g(u) ∈ Tu.
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Proof Define G = (V (G), E(G)), where V (G) = X and E(G) = {(x, y) : x ≺ y}. Let x, y ∈ X be
such that (g(x), g(y)) ∈ E(G). Then g(x) ≺ g(y). Since T is g-increasing, we have Tx ≺ Ty.
Then, for any u ∈ Tx, there exists v ∈ PTy(u) such that u ≺ v and so (u, v) ∈ E(G). Thus T is
weak g-graph-preserving. By (), there exist x ∈ X and u ∈ Tx such that g(x) ≺ u, and
so (g(x), u) ∈ E(G). So assumption (ii) of Theorem . is satisfied. It is easy to see that (iii)
and (iv) of Theorem . are also satisfied. Therefore, this corollary is obtained directly by
Theorem .. �

If g is the identity map, then the following result is directly obtained by Corollary ..

Corollary . Let (X, d) be a complete metric space endowed with a partial ordering �.
Let T : X → PB(X) be a multi-valued mapping. Suppose that

() T is increasing;
() there exist x ∈ X and u ∈ Tx such that x ≺ u;
() for each sequence {xn} such that xn ≺ xn+ for all n ∈N and xn converges to x, for

some x ∈ X , then xn ≺ x for all n ∈N;
() there exist L ≥  and k, r ∈ [,∞) with  < k + r <  such that

H(Tx, Ty) ≤ kd(x, y) + LD(y, Tx) + rD(x, Ty)

for all x, y ∈ X with x ≺ y.
Then there exists u ∈ X such that u ∈ Tu.

4 Applications
In this section, we prove the existence of a coupled fixed point for a single-valued mapping
in a complete metric space endowed with a directed graph.

Let X be a nonempty set and F : X × X → X be a single-valued mapping. An element
(x, y) ∈ X × X is called a coupled fixed point of F if x = F(x, y) and y = F(y, x). We denote
by C Fix(F) the set of all coupled fixed points of the mapping F , i.e., C Fix(F) = {(x, y) ∈
X × X | F(x, y) = x and F(y, x) = y}.

Coupled fixed point theorems and their application were investigated by many authors
(see [, , –] for examples).

Definition . [] Let (X,�) be a partially ordered set and F : X × X → X be a given
mapping. The mapping F is said to have the mixed monotone property if it is monotone
nondecreasing in x and monotone nonincreasing in y, that is,

x, x ∈ X, x � x ⇒ F(x, y) � F(x, y),

y, y ∈ X, y � y ⇒ F(x, y)  F(x, y).

Recently, Chifu and Petrusel [] introduced the concept of edge-preserving as follows.

Definition . [] We say that F : X × X → X is edge-preserving if (x, u) ∈ E(G), (y, v) ∈
E(G–) implies (F(x, y), F(u, v)) ∈ E(G) and (F(y, x), F(v, u)) ∈ E(G–).
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Let (X, d) be a metric space and let Y = X × X. Then the mapping η : Y × Y → [,∞)
defined by

η
(
(x, y), (u, v)

)
= d(x, u) + d(y, v) for all (x, y), (u, v) ∈ Y

is a metric on Y , and it is easy to see that (X, d) is complete if and only if (Y ,η) is complete.
For a mapping F : X × X → X, we define the mapping TF : Y → Y by

TF (x, y) =
(
F(x, y), F(y, x)

)
for all (x, y) ∈ Y .

Note that an element (x, y) ∈ X × X is a coupled fixed point of F if and only if (x, y) is a
fixed point of TF .

Theorem . Let (X, d) be a complete metric space and G = (V (G), E(G)) be a directed
graph such that V (G) = X. Let the mapping F : X × X → X be edge-preserving and suppose
that the following properties hold:

(i) there exist x, y ∈ X such that (x, F(x, y)) ∈ E(G) and (y, F(y, x)) ∈ E(G–);
(ii) X has the following property:

(a) if any sequence {xn} in X such that xn → x and (xn, xn+) ∈ E(G) for n ∈N, then
(xn, x) ∈ E(G) for all n ∈N;

(b) if any sequence {yn} in X such that yn → y and (yn, yn+) ∈ E(G–) for n ∈N,
then (yn, y) ∈ E(G–) for all n ∈N;

(iii) there exist L ≥  and k, r ∈ [, ) with  < k + r <  such that

d
(
F(x, y), F(u, v)

)
+ d

(
F(y, x), F(v, u)

)

≤ k
[
d(x, u) + d(y, v)

]
+ L

[
d
(
u, F(x, y)

)
+ d

(
v, F(y, x)

)]

+ r
[
d
(
x, F(u, v)

)
+ d

(
y, F(v, u)

)]

for all x, y, u, v ∈ X with (x, u) ∈ E(G) and (y, v) ∈ E(G–).
Then there exist x, y ∈ X such that x = F(x, y) and y = F(y, x).

Proof Let Y = X × X and η be a metric on Y given by

η
(
(x, y), (u, v)

)
= d(x, u) + d(y, v) for all (x, y), (u, v) ∈ Y .

Then (Y ,η) is a complete metric space. Let GY be a directed graph defined by GY =
(V (GY ), E(GY )), where V (GY ) = Y and

E(GY ) =
{(

(x, y), (u, v)
) | (x, u) ∈ E(G) and (y, v) ∈ E

(
G–)}.

We shall show that TF satisfies all conditions of Theorem .. Let (x, y), (u, v) ∈ Y such that
((x, y), (u, v)) ∈ E(GY ). Then (x, u) ∈ E(G) and (y, v) ∈ E(G–). Since F is edge-preserving, we
have (F(x, y), F(u, v)) ∈ E(G) and (F(y, x), F(v, u)) ∈ E(G–). Hence ((F(x, y), F(y, x)), (F(u, v),
F(v, u))) ∈ E(GY ). Thus (TF (x, y), TF (u, v)) ∈ E(GY ). So TF satisfies assumption (i) of Theo-
rem .. By (), there exists (x, y) ∈ Y such that (x, F(x, y)) ∈ E(G) and (y, F(y, x)) ∈
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E(G–), so ((x, y), (F(x, y), F(y, x))) ∈ E(GY ). Thus ((x, y), TF (x, y)) ∈ E(GY ), so as-
sumption (ii) of Theorem . is satisfied by TF . Next, we will show that TF satisfies as-
sumption (iv) of Theorem .. By condition (iii), we have

η
(
TF (x, y), TF (u, v)

)
= η

((
F(x, y), F(y, x)

)
,
(
F(u, v), F(v, u)

))

= d
(
F(x, y), F(u, v)

)
+ d

(
F(y, x), F(v, u)

)

≤ k
[
d(x, u) + d(y, v)

]
+ L

[
d
(
u, F(x, y)

)
+ d

(
v, F(y, x)

)]

+ r
[
d
(
x, F(u, v)

)
+ d

(
y, F(v, u)

)]

= kη
(
(x, y), (u, v)

)
+ Lη

(
(u, v),

(
F(x, y), F(y, x)

))

+ rη
(
(x, y),

(
F(u, v), F(v, u)

))

= kη
(
(x, y), (u, v)

)
+ Lη

(
(u, v), TF (x, y)

)

+ rη
(
(x, y), TF (u, v)

)

for all (x, y) ∈ E(G) and (y, v) ∈ E(G–). So assumption (iv) of Theorem . is satisfied. Fi-
nally, we will show that Y has Property (A). For any sequence (xn, yn) in Y , it is easy to see
that if (xn, yn) → (x, y) and ((xn, yn), (xn+, yn+)) ∈ E(GY ) for n ∈ N, then xn → x, yn → y,
(xn, xn+) ∈ E(G), and (yn, yn+) ∈ E(G–). By (ii), we have (xn, x) ∈ E(G) and (yn, y) ∈ E(G–).
So ((xn, yn), (x, y)) ∈ E(GY ). Thus all conditions of Theorem . are satisfied. Hence there
exists (x, y) ∈ Y such that (x, y) = TF (x, y), which implies that (x, y) is a coupled fixed point
of F . �

The following corollary is a consequence of Theorem ..

Corollary . Let (X,�) be a partially ordered set and suppose there is a metric d on
X such that (X, d) is a complete metric space. Let F : X × X → X be a mapping having
the mixed monotone property on X and there exist x, y ∈ X such that x � F(x, y) and
y  F(y, x). Assume that there exist L ≥  and k, r ∈ [, ) with  < k + r <  such that

d
(
F(x, y), F(u, v)

)
+ d

(
F(y, x), F(v, u)

)

≤ k
[
d(x, u) + d(y, v)

]
+ L

[
d
(
u, F(x, y)

)
+ d

(
v, F(y, x)

)]

+ r
[
d
(
x, F(u, v)

)
+ d

(
y, F(v, u)

)]

for all x, y, u, v ∈ X with x � u and y  v. Suppose that X has the following property:
(a) if a nondecreasing sequence {xn} → x, then xn � x for all n ∈N;
(b) if a nonincreasing sequence {yn} → y, then yn  y for all n ∈ N.

Then there exist x, y ∈ X such that x = F(x, y) and y = F(y, x), that is, F has a coupled fixed
point in X × X.

Proof Let G = (V (G), E(G)), where V (G) = X and E(G) = {(x, y) | x � y}. We can directly
check that all conditions of Theorem . are satisfied. Therefore F has a coupled fixed
point. �
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