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Abstract

In this paper, we introduce the concepts of generalized probabilistically bounded set
2* and Menger-Hausdorff metric G* in Menger probabilistic G-metric spaces, and
prove that (€2*, G*, A) is also a Menger probabilistic G-metric space. Utilizing these
concepts, we establish some common fixed point theorems for three hybrid pairs of
mappings satisfying the common property (E.A) in Menger probabilistic G-metric
spaces. Finally, an example is given to exemplify the theorems.
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1 Introduction and preliminaries

As a generalization of a metric space, the concept of a probabilistic metric space has been
introduced by Menger [1, 2]. Fixed point theory in a probabilistic metric space is an im-
portant branch of probabilistic analysis, and many results on the existence of fixed points
or solutions of nonlinear equations in Menger PM-spaces have been studied by many
scholars (see e.g. [3, 4]). Egbert [5] defined the notion of the distance between two sets
in a Menger PM-space, i.e., the so-called Menger-Hausdorff metric. In 2006, Mustafa and
Sims [6] introduced the concept of a generalized metric space, and many fixed point results
have been obtained by many authors (see e.g. [7-12]). On the other hand, Kaewcharoen
and Kaewkhao [13] introduced the concept of a Hausdorff G-distance in a G-metric space.
Moreover, Zhou et al. [14] defined the notion of a generalized probabilistic metric space
or a PGM-space as a generalization of a PM-space and a G-metric space. After that, Zhu
et al. [15] obtained some fixed point theorems in generalized probabilistic metric spaces.
However, the concept of a Menger-Hausdorff G*-metric in a PGM-space has not been
introduced and studied yet.

To fill this gap, we introduce the concept of a generalized probabilistically bounded
set and a Menger-Hausdorff G*-metric in Menger probabilistic G-metric spaces, and we
prove that (Q*,G*, A) is also a Menger probabilistic G-metric space. Based on these, we
obtain some useful results. As an application, we establish some common fixed point the-
orems for three hybrid pairs of mappings satisfying the common property (E.A) in Menger
probabilistic G-metric spaces. Finally, an example is given to illustrate the theorems.
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Throughout this paper, let R = (—o0, +00), R* = [0, +00), and Z* be the set of all positive
integers.

A mapping F : R — R* is called a distribution function if it is nondecreasing left-
continuous with sup, . F(£) =1 and inf;cg F(¢) = 0.

We shall denote by Z the set of all distribution functions while H will always denote the
specific distribution function defined by

0, t<0,
H(t) = -
1, t>0.

A mapping A : [0,1] x [0,1] — [0,1] is called a triangular norm (for short, a £-norm) if
the following conditions are satisfied:

1) A1) =a

(2) Ala,b) = A(b,a);

(3) a=b,c=d= Ala,c) = A(b,d);

(4) A(a, A(b,c)) = A(A(a, b),c).

A typical example of ¢-norm is A, where A,,(a,b) = min{a, b}, for each a,b € [0,1].

Remark 1.1 From (4), it is not difficult to find that

A(A(a,b), Ale,d)) = A(A(A(a,b),¢),d) = A(A(Ala, ), ), d)
= A(Aa,0), A, d)) =+

Definition 1.1 [16] A triplet (X,.%#, A) is called a Menger probabilistic metric space (for
short, a Menger PM-space) if X is a nonempty set, A is a t-norm and .% is a mapping from
X x X into Z satisfying the following conditions (we denote .7 (x, y) by F,,):

(MS-1) F,,(t)=H(t) for all £ € R if and only if x = y;

(MS-2) F,,(t) = F)(¢t) forall t e R;

(MS-3) Fyy(t+s) > A(F,,(t),F,y(s)) forall x,y,z € X and t,5 > 0.

Let (X, #, A) be a PM-space and A be a nonempty subset of X. Then the function
Dy(¢) =sup inf Fy\(s), teR
s<t %YEA

is called the probabilistic diameter of A. If sup,., D4(t) = 1, then A is said to be probabilis-
tically bounded.

Let (X,.#, A) be a Menger PM-space and 2 be the family of all nonempty probabilisti-
cally bounded 7 -closed subsets of X. For any A, B € 2, define the distribution functions

as follows:
ﬁi(A,B)(t) = ﬁA,B(t) =sup A (inf sup Fy,(s), inf sup Fx,y(s)>, s,teR,
s<t X€A yeB YEB xea

F (%, A)(t) = Fya(t) =supsupFy,(s), s teR,
s<t yEA

where .7 is called the Menger-Hausdorff metric induced by .#.
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Lemma 1.1 [16] Let (X,.%, A) be a Menger PM-space. Then for any A, B, C € Q and any
x,y € X, we have the following:
(i) Fap(t)=1 ifand only if A = B;

(i) Fxa(t) =1ifandonlyifx € A;

(iii) foranyx € A, Fyp5(t) > FA,B (2), forall t > 0;

(iv) Foalts + ) = A(Fxy(t1), Fya(2)), for all t1,t5 > 0;

(V) Feati + 1) = A(Fyp(t1), Fap(t2)), for all ty,t, > 0;

(i) Fac(ty +ts) = A(Eap(tr), Fac(ts)), for all ty,t, > 0.

Definition1.2 [14] A Menger probabilistic G-metric space (for brevity, a PGM-space) is a
triple (X, G*, A), where X is a nonempty set, A is a continuous z-norm and G* is a mapping
from X x X x X into & (G} , denote the value of G* at the point (x,y,2)) satisfying the

X0,
following conditions:

(PGM-1) G:, (t)=1forallx,y,ze X and t >0 ifandonlyifx =y =z;

X,
(PGM-2) G;, (1) = G (¢) forallx,y,z € X withz #y and £ > 0;

(PGM-3) C [0 =G; Zy(t) yx (&) =+ (symmetry in all three variables);
(PGM-4) Gj;yz(t +5) > A(Gy, ,(9), G;‘;yz(t)) for all x,y,z,a € X and s,t > 0.

Definition 1.3 [14] Let (X, G*, A) be a Menger PGM-space and x( be any point in X. For
any € >0 and § with 0 <8 <1, and (¢, §)-neighborhood of x; is the set of all points y in X
for which G (¢)>1-6§ and G (€) >1-48. We write

*0:)5Y YX0-%0

Ny, (€, 8)—{yeX (€)>1-4,G

X0 %0

05 (€)>1-38},
which means that Ny, (¢, 8) is the set of all points y in X for which the probability of the
distance from x to y being less than € is greater than 1 — 8.

Lemma 1.2 [14] Let (X, G*, A) be a Menger PGM-space. Then (X, G*, A) is a Hausdorff
space in the topology introduced by the family {N,, (¢, 8)} of (¢, 8)-neighborhoods.

Definition 1.4 [14] Let (X, G*, A) be a PGM-space, and {x,} is a sequence in X.
(1) {x.,} is said to be convergent to a point x € X (write x,, — x), if for any € > 0 and
0 < § <1, there exists a positive integer M, s such that x,, € N, (€, 5) whenever
n>Mecs;
(2) {4} is called a Cauchy sequence, if for any € > 0 and 0 < § < 1, there exists a positive
integer M, s such that G

-~ xl(e) >1- 8 whenever n,m, [ > M, s;

(3) (X,G* A) is said to be complete, if every Cauchy sequence in X converges to a point
in X.

We can analogously prove the following lemma as in Menger PM-spaces.

Lemmal.3 Let (X, G* A) be a Menger PGM-space with A a continuous t-norm, {x,}, {y,},

and {z,,} be sequences in X and x,y,z € X, if {x,} = %, {yu} = y and {z,} = z as n — oo.

Then
(1) liminf, . G} o 2, () > G:yz(t)for all t > 0;
(2) G;yz(t +0) > limsup,,_, ., G} o 2, (8) forall £ > 0.
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Particularly, if £, is a continuous point of Gy, .(-), then lim,_. o Gx, 5,2, (f0) = Gx,y,z(t0).

Definition 1.5 [17] A pair of self-mappings S and T on X are said to be weakly compatible
(or coincidentally commuting) if they commute at their coincidence point, i.e., if Tu = Su

for some u € X implies that TSy = STu.

Definition 1.6 [18] Let F},F, € 9. The algebraic sum F; @ F, of F; and F, is defined by

(F1 @ F)(t) = sup min{Fi(t), F>(t2)}

t1+tr=t
forall £ e R.
As a generalization, we give the following definition.

Definition1.7 Let Fy, F,, F5 € 2. The algebraic sum F; @ F, @ F5 of Fi, F, and F is defined
by

(FL®@F, ®Fs)(t)= sup min{F(t), Fy(t,), F5(t3)}

i +ty+t3=t
forall £ € R.
Remark 1.2 Let F3(¢) = H(¢). Then Definition 1.6 and Definition 1.7 are equivalent.

For two functions f and g, f > ¢ means that f(¢) > g(¢) and there exists some £, such that
f(to) > glto).

Definition 1.8 [19] Let f and g be self-mappings of a set X. If w = fx = gx for some x in X,
then x is called a coincidence point of f and g, and w is called point of coincidence of f

and g.

In the sequel, we will denote by C(f, F) the set of all coincidence points of f and F.
We recall the definitions of property (E.A) for a hybrid pair of mappings and common
property (E.A) for two hybrid pairs of mappings in Menger PM-spaces.

Definition 1.9 [20] Let (X,.#,A) be a Menger PM-space, (£2, Z,A) be the induced
Menger PM-space, f : X — X be a self-mapping and F : X — Q be a multivalued mapping.
A pair of mappings (f, F) is said to satisfy the property (E.A), if there exist a sequence {x,}
in X, some a € X, and A € , such that lim,,_,  fx, =a € A = lim,_,  Fx;,.

Definition 1.10 [20] Let (X,.%, A) be a Menger PM-space and (£2, Z, A) be the induced
Menger PM-space, f,g: X — X,and F, G : X — Q. Two pairs of mappings (f, F) and (g, G)
are said to satisfy the common property (E.A) if there exist two sequences {x,}, {y,} in X,
some u € X and A, B € Q, such that

lim Fx, = A, lim Gy, =B, lim fx, = lim gy, =u€ ANB.
n—o00 n—00 n—00

n—00
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2 Menger-Hausdorff metric in Menger PGM-spaces
In this section, we first introduce some new concepts in Menger PGM-spaces, and then
establish some useful results in Menger PGM-spaces.

Definition 2.1 Let A be a nonempty subset of X. The function D} defined by

D% (t)=sup inf G
A( ) s<1PP:qV€A pqr( 9

is called the generalized probabilistic diameter of A.

Definition 2.2 A nonempty subset A of X is said to be
(1) generalized probabilistically bounded, if sup,,, D} (£) = 1;
(2) generalized probabilistically semi-bounded, if 0 < sup,,, D% (£) < 1;
(3) generalized probabilistically unbounded, if sup,,, D7 (£) =

Lemma 2.1 If A and B are two nonempty subsets of X, then
Diius(x + ) = A(D} (%), D3 (). (2.1)

Proof Let x, y be given, for (2.1), we first prove that

G ee) = A( inf G, (0, inf,G,00) (2.2)
Case (1):
inf G (x+y)= 1nf q,(x +9). (2.3)

pqreAUB par
qreB

For any p,q,r € X, we have

(x+y) > A( paa(x) qur(y))~

qu

Taking the infimum on both sides of this inequality as p ranges over A, a ranges over AN B,

and r, g range over B, and using (2.3), we have

inf G (x+y)= mfG;q,(x+y)z inf A(G),,(%),G},,(9)

p,qreAUB par pEA,qreB
qreB acANB
> A( ;Ielﬁ Gpm( x), mf qur(y)>
acANB aeAﬂB
<;2£ Gpaa( )’ lnf G:qr(y)>
acA aeB
> A(p;r}i qur(x), mf G;q,(y)>.

So, (2.2) is proved.
Case (2): infy, g rcauB pq,(x +9)< mfpeA M,(x + ). Then one of the following equali-

ties:



Tu et al. Fixed Point Theory and Applications (2015) 2015:130 Page 6 of 18

(@) infp,q,reAuB s y'(x + y) infp,q,rEA Gp 7, r(x + y),
(b) infygreavs Gy, (x +y) = infpgres G, (6 +7)

and
(c) inf, g caur G o x+y) = lnfqprEB o, Lx+y)
holds.

If (a) holds, we have

pqlrgffwBqur(my) pfﬂi Gy +y) > p}]r;gAqur()

zA( mf G, (x),1 zA( mf G* r(x) 1nf G, ))
»a g, ) P ar

Then (2.2) is proved.
Similarly, we can prove that (2.2) is satisfied if (b) or (c) holds.
Finally, by (2.2) and the continuity of A, we have
D gx+y) = sup 1nf qu,(s +t) > sup 1nf qu,(s +1)

st+t<x+y P reA s<x p,qr€A
t<y

> A(sup ian qur( s), sup infB G;qr(y)> = A(ng(x),D;(y)).

s<x PHrE t<y PaTe

This completes the proof. d

Lemma 2.2 Let (X, G*, A) be a Menger PGM-space with a continuous t-norm.
(1) IfA is a generalized probabilistically bounded set, then D}, is a distribution function.
2) IfA,B C X are two generalized probabilistically bounded sets, then AU B is also a
generalized probabilistically bounded set.

Proof (1) Since A is a generalized probabilistically bounded set, by Definition 2.1, it is
easy to see that D (¢) is nondecreasing in ¢, D} (0) = 0, sup,,, D% (£) = 1 and D} (¢) is left-
continuous in ¢. This shows that D} (¢) is a distribution function.

(2) Since A and B are generalized probabilistically bounded sets, from Lemma 2.1 and
the continuity of A, we have sup,,o D% 5(t) = A(sup,o D% (%), sup,.o D5(£)) = A(1,1) = 1.
This completes the proof. g

Remark 2.1 By Lemma 2.2(2), we claim that if A, B, C are generalized probabilistically
bounded sets, then A U BU C is also a generalized probabilistically bounded set.

In the remainder of this paper, we always assume that (X, G*, A) is a Menger PGM-space
with a continuous ¢-norm A and Q2* be the family of all nonempty .7 -closed generalized
probabilistically bounded sets.

Definition 2.3 For A, B, C € Q*, define the mapping G XV XQL > D by
é;,g,c(f) = min{ga 5(£), gs.c(£), gc.a(0)},
where g4, s(t) = SUPs<¢ A(infyea Supyeng’i"(s)’ian’EB SUPyea gx:}’(s))r gx,y(s) = A(G:xy( s),

(s))-
Gryy
Then G* is called the Menger-Hausdorft metric induced by G*.
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Definition 2.4 LetA,B,C € Q* and x,y,z € X.
(1) The generalized probabilistic distance between two points x, y and a set C is the
function G* C(t) defined by

xyC(t)—Supsqu () tZO~

x,9,Z
s<t zeC k&

(2) The generalized probabilistic distance between a point x and two sets B, C is the
function a;,B’C(t) defined by

G p.c(t) = min{g.5(8), g5.c(), guc(8)},  £>0,

where g;,5(£) = Sup,., SUP e g,y($)-

Lemma 2.3 Forany A,B,D € Q* and a,b > 0, we have

gasla+b) > A(gap(a),gps(b)).
Proof For any x,y,z € X and s,t > 0, we have

G, (t+5) = A(G;, (1), G}, ()

%9,y X,2,Z

and

Gyt +95) = A(G), (), G}, (5)

X,%,) X,%,2

for all z € D. Using the continuity and monotonicity of A, we have the following inequali-

ties:

sup Gy, (£ +5) > A(sup G .2(0), inf sup Gzyy(s))

X
yeB el zeD

and

sup Gy, (E+3) > A(sup Gy .. (1), 1nf sup G, .y(s ))
yeB

Thus, we have

inf sup G t +5) > A (an sup Gy, (t), inf sup G:yy( )), (2.4)
xEA cA zeD zeD yEB
infsup Gy, (£+5) > A (an sup G, . (9), mf sup G ,,(s )). (2.5)
x€A yeB €A zeD

Similarly, we can get
inf sup xxy(t +5)>A (mf sup Gy ..(), 1nf sup Zzy(s)> (2.6)
y€B

j1lr61f sup G, (t +5)> A (;gjg ilel}: vazvz(t)’},g iup z”(s)> (2.7)
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Since A is associative, by combining (2.4), (2.5), (2.6), and (2.7), we obtain

inf supgxy(t +5)
x€A yeB
_ A(ng jlelg nyy(t + s),ilelAf ?up xxy(t + s))

>A (A (inf sup G, (t), 1nf sup :,y,y(s)>’ <1nf sup G, . (t),;lgg iup zzy(s)>)

X€A zeD x€A zeD

=A< ()nfsup G, (D), 1nfsup x“(t)) (;gfsup Zyy(s) 1nfsup Zzy(s)>>

€A zeD X€A zeD
= A(an Sup gy, (t 1nf supgyz( )) (2.8)
€A zeD D yeB
inf supgxy(t +5)
VEB xen

= A(infsup G, (¢ + 9, inf sup G, (¢ + )
InfSup Gy, (£ +5), InfSup G, (¢ +5)

ZA( (;Ielfsup G (0), lnfsup zyy(S)> (1211;iup Gy, (1), 1nfsup zzy(s)>>

= ( (mf sup G, (t), ;gg ilelﬁ) Gmyz(t)), (mf sup Gzyy(s)';,g ilelg Gz,z,y(s)))

2€D yep V€B zeD
=A (inf Sup gy, (t), inf supgy,z(s)>. (2.9)
2€D yep Y€B zeD

By (2.8) and (2.9), we have

ga(a+b)
= sup A(mfsupgxy(t+s) 1nfsupgxy(t+s))
t+s<a+b x€A yeB
> A f z(£), inf f z(£), inf
= sup ( (él supgs, (1), in Supgyz(S)) (m SUp g, 2(8), m SUngz(S)))

= sup A( (mf Sup g (t), 1nf supgxz(t)> (inf sup gy -(s), inf supgy,z(s)>)
zeD yeB Y€B ;D

t+s<a+b *€A zeD D yen

> A (sup Al inf sup g, .(¢), 1nf supgxz( )) sup A (mf sup g (s), inf supgy,z(s)))
t<a €A zeD D yea s<b DyeB ¥eB zeD

= A(ga,n(a), gp.s(D)).
This completes the proof. O
Theorem 2.1 (2%, é*, A) is a Menger PGM-space.

Proof First, we prove that G* is a distribution function. By the definition of G*(t), itis easy
to see that é*(t) is nondecreasing and left-continuous in ¢ and E—?*(O) = 0. Now, we prove

sup G*(t) =1

t>0

In fact, since A, B, C € Q*, we know A U BU C € Q*. By the continuity of A, we have

sup G*(¢) = sup min{ga5(t),gs,c(t),gca(t)} = mm{supgA B(£),sup g c(t), supge.a(t )}

t>0 t>0 t>0 t>0
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and

supga p(t) = sup A[ [mf sup xyy(s) mf sup Gxxy(s)]
gy e

[;relfsqux”( s), mfsup J”Cy(s)]}

B xea

> A{sup A[mf inf G;yy(s) 1nf 1nf G;xy(s)],
R

sup A[mf inf G¥_ _(s),inf 1nf G (s )]}
>0 )’G x€A x5y )’E XE. Xy
s<t

> A{ [su inf GI  (s),sup inf G (s)]
- t>(§)xy€AUB Y t>gxy€AUB s ’
s<t s<t

A[ f f ]}
Sup inf  Grp(S)sup inf Grry(s)
=afa

s<t s<t
>0 %)Z2€AUB 0 %)z€AU
Alsup inf nyz( s),sup inf nyz( )] }

[sup inf Gy (s),sup inf nyz(s)]
s<t s<t
t>0 X%Y,2€AUB >0 %,),2€AUB

s<t s<t
= A{A[DZUB,’D:UB]’ A[DZUB,’D:UB]}
= A(A(L1),A(LD)

I
=

Similarly, we have sup,. , gz c(£) = 1and sup,,, gc,4(¢) = 1. This shows that G*isa mapping
from Q* x Q* x Q* into 2.

Next, we will show that (~¥*(t) satisfies the following:

(1) G pc(®)=1forallt>0ifand only if A = B;

2) Giup(t) = Gy o(t) forall A,B,C € Q* with B# C and ¢ > 0;

() Gipc(t) =G} () = Gpy (t) = -+ (symmetry in all three variables);
(4) G4yt +5) = AGh p p(t), Gl c(t)) for all A, B,C € Q* with ¢ > 0.

o (i) If éj\,B,C(t) =1forall £ > 0, then for any € > 0, we have

ga8(€) =gpcle) =gcale) =1.

By ga5(€) =1, we have

sup inf supA( xxy(s) G;kyy( )) 1, (2.10)
s<€ XEA yeB

sup inf sup A $), G5 (s))=1. 2.11
s<?3’€3xe£ ( xxy() xyy( )) ( )

From (2.10), it follows that sup,_, sup,.z A(Gj , ,(s), G}

xyy(s)) =1forall x € A. Therefore, for

X%,y

any a € A and A > 0, there exists b* € B, such that

A(Gz,a,b* (6)7 GZ,h*,b* (E)) >1-A.
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So, we have
Ghap(€)>1—4 and G} pe(€) >1— 1.

This shows that the point a is an accumulation point of B and hence a € B, i.e., A C B.
From (2.11), we can prove that B C A. Therefore, we have A = B.
Similarly, we can also prove that B=C, C = A. So, we have A=B = C.
Conversely, if A = B = C, then for any ¢ > 0, we have

G p.c(®) = minfgaa(®),g4.4(t), gaa(®)} = gaa(d).

For any s € (0,1),
gaa(t) > A (inf sup g,.»(s), inf sup g, (s))
acA beA acA beA

= A(inf sup A(GZ, ,(9), G, (5)), inf sup A(G, (), GZ,b,b(S))>
a€A pea a€A pea

= AL =1

Therefore (1) is satisfied.
o (i) G} ,p(6) = min{gaa(?),84,5(£),848(8)} = gap(t) > min{ga(t),gsc(t),gca(t)} =
G} 5c(t)- So, (2) is satisfied.
o (iii) It is obvious that (3) holds.
o (iv) From Definition 2.3, we have
éZ,B,C(t +5) = min{gA,B(t +8),gec(t+5),gcalt+ s)},
G p,p() = min{gan(£), g0,0(2), 840(8)} = gan(®),

Gp5,c() = min{gp,5(s),g5,c(), gc.p ()}

We just need to show

min{ga st +5),gs.c(t+5),gca(t +5)} = A(gap(t), min{gp 5(s), g5.c(s),gc.0(s)})-

In fact,

go.c(t +5) > gpc(s) > min{gps(s), gs,c(s),gc.o(s)}

> A(ga,p(t), min{gp 5(s), gs,c(s), gc.0(9)}),
a5t +3) > A(gan(0),gp,8()) = A(ga,n(t), min{gp s(s),g5,c(s), gc.0(5)}),
gealt+5) = A(gan(t),gp,c(s)) = A(gan(t), min{gp 5(s), gs.c(s), gc,n(s)})-

So, (4) is also satisfied. This completes the proof. O

Remark 2.2 By the proof process of Lemma 2.3 and Theorem 2.1, we can also prove that
(X,g,A) and (2*,g, A) are Menger PM-spaces. We call (X, g, A) the PM-space induced
by (X, G*, A), and (2*,g, A) is the PM-space induced by (X, g, A). So, the properties in
Lemma 1.1 can be applied to (X, g, A) and (2%, g, A).
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Example 2.1 Let (X,d) be a metric space and x,y,z € X, nyz( ) = ey td(yz T for
all £ > 0, then (X, G*, A,,,) is a Menger PGM-space. In fact, G WZ(O) =0, Sup, xyz(t) 1,
and G} 9, .() isnondecreasing and continuousin ¢, so G} (t) isa distribution function. Ob-
viously, xyz(t) satisfy (PGM-1), (PGM-2), and (PGM- 3) Next, we will show that (PGM-4)
is also satisfied. Since d(x,y) < d(x, a) + d(a,y) and d(x,z) < d(x,a) + d(a, z), we have

G: (t+s) = L+s
Hyi t + s + max{max{d(x,y),d(y, z),
- t+s
T t+s+max{d(x,a) +d(a,y),dy,z),dx,a) + da,z)}
t+s

v

t+s+d(x,a) + max{d(a,y),d(y,z),d(a,z)}

. t s
= mm{ t+dma) s+ maxd(@y),d0,2),d@2) }
mm{G* ®),G:. (s )}

X%,0,0 a,y,z

which implies that (PGM-4) is satisfied. So (X, G*, A,,) is a Menger PGM-space. Then

R

and
t) = £ L int ‘
= min] inf sup ————, infsup ——
44,8 xeA yeg t+ d(x,y) yeB er t+d(x,y)
) { t t }
= min - ,—
£ +infyea sUp,p d(x,y) t+inf,epsup,., d(x,y)

3 t 3 t

"t + max{infycs sup,p d(%,y), infyep sup ., d(x,)) T t+8(A,B)
Thus,

Gy pc(t) = min{gas(t),gs.c(t).gac(d))

, t t t
- mm{ £+8(A,B) t+8(B,C) t+8(A,C) }
t
T+ max{8(4,B),8(B,C),8(4,C)}’

where §(A, B) = max{infyc4 Sup,cp d(x,y),inf,ep sup,. 4 d(x,9)}. Then (%, EZ,B,C(t)’ A, isa
Menger PGM-space induced by (X, G*, A,,).

Theorem 2.2 Let (%, G*, A) be a Menger PGM-space. Then for any A,B,C,D € Q* and
x,9,z € X, we have the following:

(1) G*BC =1 lfandonlylfxeB G

2) G;xB(t) >@G BB(t) >@G Bc(t) > GZBC(t)forallxeA and t > 0;

(3) G*Bc(t +5)> AG oD G})Byc(s))for all s, t > 0;

(4) E—?* c(t+s)= A(G* (1), G () foralls,t >0 and a € X.

X,0,4 a,y,C
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Proof (1) If 6;,B,c(t) = min{g, 5(¢),ga,c(t), gxc(t)} = 1, then we have g, 5(t) = gac(t) =
gxc(2) =1, which implies that x € B,x € C, B= C, thatis,x € B=C.

Conversely, it is obvious that 5;‘; 5,c(t) =1 holds.

(2) From Definition 2.4 and Lemma 1.1, we have

Gy p(®) = Sup G, () = &at) = Gy 5p(t) = min{g, 5(t),g,c(t), guc(t)}
yE
= é:,g,c(t) > min{gu 5(£), gs,c(t), gac(t)} = éjyg,c(t)'

So, (2) is proved.
(3) By Definition 2.4 and Lemma 1.1, we have a;,g,c(t +8) = min{g,p(¢ + 5),gp,c(t +
8),&rc(t +$)},

st +3) = A(gup(0),80,5(9)) = A(Grp p(0),80,5(5)) = A(G (1), Gy (),
gec(t+5s)>gpp(s) > é}B,B,C(S) > A(é;D,D(t), 5E,B,C(S)),

gx,c(t +5)> A(gx,D(t),gD,c(S)) = A(E’:":,D,D(t)ng,C(S)) > A(é:)D,D(t), EE,B,C(S))~

So, (3) is proved.
(4) By Lemma 1.1, we have

E?*,yyc(t +8)=sup G (t+s)>sup A(é* (®), @:,y,z(s)) = A(éj;m(t), é;yy'c(s)). 0

x X,9,2 X,a,a
zeC zeC

Remark 2.3 By (1), (2), and the proof of Lemma 2.2, it is easy to prove that é;,x,B(t) =1if
and only if x € B, and @j}B,B(t) =1lifand onlyifx € B.

3 Common fixed point theorems in Menger PGM-spaces

In this section, we will give some common fixed point theorems in Menger probabilistic
G-metric spaces. To this end, we first introduce the concept of common property (E.A)
for three hybrid pairs of mappings in Menger probabilistic G-metric spaces.

Definition 3.1 Let (X, G*, A) be a Menger PM-space and (Q*,G*, A) be the induced
Menger PM-space, f,h,r: X — X and F,H,R : X — Q*. Three pairs of mappings (f, F),
(h,H), and (r,R) are said to satisfy the common property (E.A) if there exist three se-
quences {x,}, {y.}, {z,} in X, some u € X and A, B, C € Q*, such that

lim Fx, = A, lim Hy, =B, lim Ry, =C,
n—oQ

n—00 n—00

lim fx, = lim hy, = lim rz, =u€ ANBNC.
n— 00 n—00 n—00

We are now ready to give the common fixed point theorems in Menger probabilistic

G-metric spaces.

Theorem 3.1 Let (X, G*, A) be a Menger PGM-space with a continuous t-norm on [0,1] x
[0,1] and (2%, G, A) be the induced Menger PGM-space. Suppose that f,h,r: X — X and
F,H,R: X — Q* are mappings satisfying the following conditions:

(1) (f,F), (h,H), and (r,R) satisfy the common property (E.A);
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(2) f(X), h(X), and r(X) are T -closed subsets of X
(3) forany x,y,z € X with Fx, Hy, and Rz not all equal and some 1 <k <3,

G?x,Hy,Rz > min{G;x,hy,rz’ % [G;x,hy,rz S G;x,Hy,rz @ G}kx,hy,Rz] }’ (31)

where % [G;x,hy,rz Gf*x,Hy,rz ® G;x,hy,Rz] (t) means [G;;x,hy,rz ® G;x,Hy,rz ® G}kx,hy,Rz](%t)‘
Then (f,F), (h,H), and (r,R) each has a coincidence point. Moreover, if ffv = fv for v €
C(f,F), hhv = hv for v € C(h,H), and rrv = rv for v € C(r,R), then f, h, r, F, H, and R

have a common fixed point in X.

Proof Since (f,F), (h,H), and (r,R) satisfy the common property (E.A), there exist
{xu} {yu}, {zn} C X, some u € X and A, B, C € Q*, such that

lim Fx, = A, lim Hy, =B, lim 7z, = C,
n— o0 n—00 n— o0

(3.2)
lim fx, = lim hy, = lim rz,=u€ ANBNC.
n—00 n— 00 n—00

Since f(X) is .7 -closed, there exists some v € X, such that u = fv. We claim that fv € Fv.
Suppose this is not true, then fv ¢ Fv. By u = fv € B, we have B # Fv. Thus, there exists

some tg > 0, such that

~ 3¢, ~
G?W,B,C(%) > G;V,B,c(to)' (3.3)
(Otherwise, for all £ > 0, Gf, 5 o(t) = Gh, 5 c(3) = -+ = G, 5 o((3)') > Las n — oo, that

~

is, Gf, g c(t) =1, for all £ > 0, which is a contradiction.)

Without loss of generality, we can assume that £; is a continuous point of é;;v,B,C(')‘ In
fact, by the left continuity of the distribution function, we know that there exists some
8 > 0, such that

~ 3t ~
G;v,B,C(?) > G;kfv,B,C(t)’ Vt e (to — 5, t()].

Since the distribution function is nondecreasing, the discontinuous points are at most a
countable set. Thus, when £, is not a continuous point of é}v 5.c(+), we can always choose
a point ¢ in (¢ — 8, %] to replace £.

Noting that lim,,_, « f¥, = u ¢ Fvand u € B = lim,,_, oo Hy,, we have Fv # lim,,_, .o Hy,, sO
there exists some ny € Z*, such that for all n > ny, Hy,, # Fv.

From (3.1) we know that

ok . * ok ok ok
GFV,H)’anZn > mm{va,hymrzn’ % [GFV:hynyVZn ® va,Hyn,rzn ® va,hyn,Rzn] } (3~4)

It is easy to verify that

e -, -, 3 - (3
hmlnf[GFv,hy,,,rzn @ fv,Hyy,,rzn@va,hyn,Rzﬂ] %to ZGFv,u,u %to . (3.5)

n—00
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In fact, for any &1, 68, € (0, %to), we have

ek ok Sk 3
[ Fv,hyn,rzn @ va,Hyn,rz,,, D va,hyn,Rzn] %to
P 3 - .
= min GFv,hyn,rzn %t() - 81 - 82 ’ va,Hyn,rz,, (81)’ va,hyn,Rzn (52) .

Since fv = u € [(B = limy,—, o Hy,,) N (C = lim,_, »x Ry,)], by Lemma 1.3 and Theorem 2.2(1),
we get

n—00

e ~ - 3 - 3
lim lnf[G;v,hyn,rzn D G;V,Hyn,rzn D Gf*v,hyn,Rzn] (Eto) = G?v,u,u (Eto —-0i- 82)

Letting 81,82 — 0, by the left continuity of the distribution function, we obtain (3.5).

Noting that £, is the continuous point of é}v (), by Lemma 1.3, we have

nlingo G;V,Hyn,Rzn (tO) = G;V,B,C(t(])’

Thus, letting # — oo in (3.4) and using (3.5), we obtain
Sk . Sk 3 ok 3
GFV,B,C(tO) > miny 1, GFv,u,u zfo = GFv,u,u %to ’

that is,
ok Sk 3
GFV,B,C(tO) = GFv,u,u %to .

But since fv € B, by Theorem 2.2(3) and (3.3), we obtain

~ 3 ~
G;v,u,u <z t0> > G;V,B,C(tO)’

which is a contradiction. So, we get fv € Fv.

On the other hand, since %(X) is .7 -closed, there exists some w € X, such that u = hw.
We claim that iw € Hw. Suppose this is not true, that is, sw ¢ Hw. Noting that u = hw € C,
we have C # Hw. Similarly, we know that there exists some ; > 0, such that

~ 3 ~
G;V,HW,C(%tl) > G;v,Hw,C(tl)‘ (36)

Similarly, without loss of generality, we can assume that #; is a continuous point of
GT-'V,HW,C(')'

Noting that lim,_, « 7z, = u ¢ Hw and u € C = lim,_, c Rz,, there exists some n; € Z*,
such that for all n > ny, Rz,, # Hw.

From (3.1) we know that

~ . ~ ~ ~ 3
G;k?v,Hw,Rzn (tl) > mln{ Gf*v,hw,rzn (tl)’ [G;v,hw,rzn 2] G;V,Hw,rzﬂ 2] G}Fv,hw,Rzy,] (% tl) } . (37)
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Similarly, we can verify that

ot ~. ~ 3 ~ 3

hnrglogf[GFv,Hw,rz,, D va,Hw,rzn D va,hw,Rzn] %tl z Gu,Hw,u ;tl . (3.8)
Noting that #; is a continuous point of é}v w,c(+), by Lemma 1.3, we have

lim G;V,HW,RZn (tl) = G}k—“v,Hw,C(tl)’

n—00

Thus, letting n — oo in (3.7) and using (3.8), we obtain

Sk . s 3 s 3 Sk 3
GFV,HW,C(tl) > miny 1, Gu,Hw,u %tl = YuHwu %tl z GFV,HW,C %tl ’

which is a contradiction. So, we get hw € Hw.

Since r(X) is 7 -closed, there exists some a € X, such that « = ra. We claim that ra € Ra.
Suppose this is not true, that is, ra ¢ Ra. Noting that 4 = ra € A, we have A # Ra. Similarly,
we know that there exists some ¢, > 0, such that

~ 3 ~
G:Z,Hw,Ra (%b) > G:Z,HW,R&! (tZ)'

Similarly, without loss of generality, we can assume that ¢, is a continuous point of
G.Z,Hw,Ra(.)‘

Noting that lim,,_, o fX, = 4 ¢ Ra and u € A = lim,_,» Fx,, there exists some n, € Z*,
such that for all # > n,, Fx,, # Ra.

From (3.1), we know that

~ . ~ ~ ~ 3
G;xn,Hw,Ra(tz) > mln{ G}kx,,,hw,m (tZ)’ [G;xn,hw,m S G;x,,,Hw,m @ Gf*xn,hw,Ru] (zb) }

Similarly, it is easy to prove that u = ra € Ra. This implies that v is a coincidence point
of (f,F), wis a coincidence point of (%, H), and « is a coincidence point of (7, R).

Since v e C(f,F), we C(h,H),and a € C(r,R), we have u = fv = ffv = fu € Fv, u = hw =
hhw = hu € Hw, and u = ra = rra = ru € Rw. Next, we prove that Fv = Fu, Hw = Hu, and
Ra =Ru.

(1) First, we assert that Fv = Hw. In fact, suppose that Fv # Hw. Then, by (3.1), there
exists some t3 > 0, such that

~ . ~ ~ ~ 3

G;k-'v,Hw,Ra (t3) > min { Gf*v,hw,m (t3)’ [G;v,hw,m 2] G;V,Hw,m 2] Gf*v,hw,Ra] <z t3> } .
This implies that

a;.;V,Hw,an(tB) >1,

which is a contradiction, and thus we have Fv = Hw.
(2) Next, we assert that Fu = Hw. In fact, suppose that Fu # Hw. Then, by (3.1), there
exists some t4 > 0, such that

~ . ~ ~ ~ 3
G;kfu,Hw,Ra (t4) > mln{ G}ku,hw,m (t4)’ [G;u,hw,m 2] G;M,Hw,m 2] G}ku,hw,Ru] <%t4'> }
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This implies that

G;u,HW,Ra (t4) >1,

which is a contradiction, and thus we have Fu = Hw. Combining these two facts yields
Fv = Fu. Similarly, we can prove that Hw = Ra = Hu and Ra = Fv = Ru. Thus, we have
u = fu € Fu, u = hu € Hu, and u = ru € Ru, that is, u is the common fixed point of f, 4, r,
F, H, and R. This completes the proof. O

Setting f = h =r and F = H = R, we obtain the following result.

Theorem 3.2 Let (X, G*, A) be a Menger PGM-space with a continuous t-norm on [0,1] x
[0,1] and (2%, G, A) be the induced Menger PGM-space. Suppose that f : X — X and
F : X — Q* are mappings satisfying the following conditions:

(1) (f,F) satisfies the property (E.A);

(2) f(X) isa T -closed subset of X;

(3) forany x,y,z € X with Fx, Fy, and Fz not all equal and some 1 < k < 3,

G;'x,Fy,Fz(t) > min{G}kx,fyfz’ % [G;x,fyfz S G;x,Fyfz @ Gf*xfy,Fz] }’

fa fa = fa fa = 3
where % [G;F-"x,fyfz & G}(x,Fyfz @ G;xfy,Fz] (t) means [G;xfy,fz ® G}kvaJ’fZ ® Gf*xfy,Fz](Zt)’
Then f and F have a coincidence point. Moreover, if ffv = fv for v € C(f,F), then f and F

have a common fixed point in X.

4 An example
In this section, we will provide an example to show the validity of Theorem 3.1.

Example 4.1 Let X = (-2,2) and define

t
t+max{|x —yl|,|y—zl, |z - x|}’
_ t
" t+max{8(4,B),8(B,C),8(A,C)}

Gy (8) =

G pc(t)

for all x,9,z € X, A,B,C € Q% and t > 0. Then, by Example 2.1, (X,G*,A,,) and
(Q*,@*, A,,) are PGM-spaces. Define f,h,r: X — X and F,H,R : X — Q* as follows:

(0,2], xe(-2,-1)U(L,2);

5 .
S = { & x€(=2,-)U(L2); Fx=1 [ix,0], xe[-1,0];
3% xelbl) [0,1x], xe0,1],
F’ re(-2-1)U(L2) 0,3, xe(=2,-1)U(1,2);
hx={° Hx=11[0,-1x], x€[-1,0];
3% xel-Ll) [-1x,0], xe[0,1],

[0,3], xe(-2,-1)U(L2);
Rx = [%x,o], x € [-1,0];

{ 7, xe(-2,-1)U(,2)
rx = 1
3 [0,2x], x€[0,1].

x, x€[-1,1],
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Consider the sequences {x, = ﬁ} and {y, = —ﬁ} in X. Then

lim fx, = lim hx, = lim rx, =0 € lim Fx, N lim Hx, N lim Rx,,
n—00 n—00 n—00 n—00 n—00 n—00
which shows that (f, F), (4, H), and (r, R) satisfy the common property (E.A). Also f(X),
h(X), and r(X) are .7 -closed subsets of X. By a routine calculation, one can verify that
(3.1) holds for all x,y,z € X, t > 0, and some 1 < k < 3.
In fact, ifx,y,z € (-2,-1) U (1,2), for any ¢ > 0,

t t

o) = ax(5(10, 21,10, 113010, 3110, 19,800,310, 3D}~ £+0 "
~. t ¢
Gfx,hy,rz(t) = = 3 <L

t+max{(g -2, (-5, (G-} t+g

So, we have

G}k-"x,Hy,Rz(t) > G}(x,hy,rz(t) = mln{ G}kx,hy,rz(t)’ [G;x,hy,rz @ G}kx,Hy,rz ® Gf*x,hy,Rz] (t) }

3
k
Similarly, if x, y,z € [-1,0], or %, ,z € [0,1], we also have

;k—'x,Hy,Rz(t) =1> G;x,hy,rz(t) z min{ G;x,hy,rz(t )’ % [G;x,hy,rz D G;x,Hy,rz @ G}Fx,hy,Rz] (t)}

Ifx,y e (-2,-1)U(1,2), z € [0,1], we have

t t

~*x (t): - =1
Fx,Hy.Rz t + max{8([0, 2], [0, 11),8([1x,01,[0, 21),8([0, 2], [4x,0])}  £+0
~ t t
G0 = STE
Polr T e max{(S - ), 13e- B 12— T e
So, we have

G;x,Hy,Rz(t) > G}kx,hy,rz(t) = mln{ }kx,hy,rz(t)’ % [G?x,hy,rz @ G}kx,Hy,rz D G}kx,hy,Rz] (t) }

Similarly, it is easy to verify (3.1) for the other cases. Thus, all the conditions of The-
orem 3.1 are satisfied and O is the unique coincidence point of (f,F), (h,H), and (7, R).
Furthermore, noting that 0 = 0, 740 = /0, and rr0 = r0, 0 remains the common fixed
point of (f, F), (h, H), and (r, R).
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