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Abstract
In this paper, we introduce the concepts of generalized probabilistically bounded set
�∗ and Menger-Hausdorff metric˜G∗ in Menger probabilistic G-metric spaces, and
prove that (�∗,˜G∗,�) is also a Menger probabilistic G-metric space. Utilizing these
concepts, we establish some common fixed point theorems for three hybrid pairs of
mappings satisfying the common property (E.A) in Menger probabilistic G-metric
spaces. Finally, an example is given to exemplify the theorems.
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1 Introduction and preliminaries
As a generalization of a metric space, the concept of a probabilistic metric space has been
introduced by Menger [, ]. Fixed point theory in a probabilistic metric space is an im-
portant branch of probabilistic analysis, and many results on the existence of fixed points
or solutions of nonlinear equations in Menger PM-spaces have been studied by many
scholars (see e.g. [, ]). Egbert [] defined the notion of the distance between two sets
in a Menger PM-space, i.e., the so-called Menger-Hausdorff metric. In , Mustafa and
Sims [] introduced the concept of a generalized metric space, and many fixed point results
have been obtained by many authors (see e.g. [–]). On the other hand, Kaewcharoen
and Kaewkhao [] introduced the concept of a Hausdorff G-distance in a G-metric space.
Moreover, Zhou et al. [] defined the notion of a generalized probabilistic metric space
or a PGM-space as a generalization of a PM-space and a G-metric space. After that, Zhu
et al. [] obtained some fixed point theorems in generalized probabilistic metric spaces.
However, the concept of a Menger-Hausdorff G∗-metric in a PGM-space has not been
introduced and studied yet.

To fill this gap, we introduce the concept of a generalized probabilistically bounded
set and a Menger-Hausdorff G∗-metric in Menger probabilistic G-metric spaces, and we
prove that (�∗,˜G∗,�) is also a Menger probabilistic G-metric space. Based on these, we
obtain some useful results. As an application, we establish some common fixed point the-
orems for three hybrid pairs of mappings satisfying the common property (E.A) in Menger
probabilistic G-metric spaces. Finally, an example is given to illustrate the theorems.
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Throughout this paper, let R = (–∞, +∞), R+ = [, +∞), and Z
+ be the set of all positive

integers.
A mapping F : R → R

+ is called a distribution function if it is nondecreasing left-
continuous with supt∈R F(t) =  and inft∈R F(t) = .

We shall denote by D the set of all distribution functions while H will always denote the
specific distribution function defined by

H(t) =

{

, t ≤ ,
, t > .

A mapping � : [, ] × [, ] → [, ] is called a triangular norm (for short, a t-norm) if
the following conditions are satisfied:

() �(a, ) = a;
() �(a, b) = �(b, a);
() a ≥ b, c ≥ d ⇒ �(a, c) ≥ �(b, d);
() �(a,�(b, c)) = �(�(a, b), c).
A typical example of t-norm is �m, where �m(a, b) = min{a, b}, for each a, b ∈ [, ].

Remark . From (), it is not difficult to find that

�
(

�(a, b),�(c, d)
)

= �
(

�
(

�(a, b), c
)

, d
)

= �
(

�
(

�(a, c), b
)

, d
)

= �
(

�(a, c),�(b, d)
)

= · · · .

Definition . [] A triplet (X,F ,�) is called a Menger probabilistic metric space (for
short, a Menger PM-space) if X is a nonempty set, � is a t-norm and F is a mapping from
X × X into D satisfying the following conditions (we denote F (x, y) by Fx,y):

(MS-) Fx,y(t) = H(t) for all t ∈ R if and only if x = y;
(MS-) Fx,y(t) = Fy,x(t) for all t ∈ R;
(MS-) Fx,y(t + s) ≥ �(Fx,z(t), Fz,y(s)) for all x, y, z ∈ X and t, s ≥ .

Let (X,F ,�) be a PM-space and A be a nonempty subset of X. Then the function

DA(t) = sup
s<t

inf
x,y∈A

Fx,y(s), t ∈R

is called the probabilistic diameter of A. If supt> DA(t) = , then A is said to be probabilis-
tically bounded.

Let (X,F ,�) be a Menger PM-space and � be the family of all nonempty probabilisti-
cally bounded T -closed subsets of X. For any A, B ∈ �, define the distribution functions
as follows:

F̃ (A, B)(t) = F̃A,B(t) = sup
s<t

�
(

inf
x∈A

sup
y∈B

Fx,y(s), inf
y∈B

sup
x∈A

Fx,y(s)
)

, s, t ∈R,

F (x, A)(t) = Fx,A(t) = sup
s<t

sup
y∈A

Fx,y(s), s, t ∈ R,

where F̃ is called the Menger-Hausdorff metric induced by F .
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Lemma . [] Let (X,F ,�) be a Menger PM-space. Then for any A, B, C ∈ � and any
x, y ∈ X, we have the following:

(i) F̃A,B(t) =  if and only if A = B;
(ii) Fx,A(t) =  if and only if x ∈ A;

(iii) for any x ∈ A, Fx,B(t) ≥ F̃A,B(t), for all t ≥ ;
(iv) Fx,A(t + t) ≥ �(Fx,y(t), Fy,A(t)), for all t, t ≥ ;
(v) Fx,A(t + t) ≥ �(Fx,B(t), FA,B(t)), for all t, t ≥ ;

(vi) F̃A,C(t + t) ≥ �(F̃A,B(t), F̃B,C(t)), for all t, t ≥ .

Definition . [] A Menger probabilistic G-metric space (for brevity, a PGM-space) is a
triple (X, G∗,�), where X is a nonempty set, � is a continuous t-norm and G∗ is a mapping
from X × X × X into D (G∗

x,y,z denote the value of G∗ at the point (x, y, z)) satisfying the
following conditions:

(PGM-) G∗
x,y,z(t) =  for all x, y, z ∈ X and t >  if and only if x = y = z;

(PGM-) G∗
x,x,y(t) ≥ G∗

x,y,z(t) for all x, y, z ∈ X with z 	= y and t > ;
(PGM-) G∗

x,y,z(t) = G∗
x,z,y(t) = G∗

y,x,z(t) = · · · (symmetry in all three variables);
(PGM-) G∗

x,y,z(t + s) ≥ �(G∗
x,a,a(s), G∗

a,y,z(t)) for all x, y, z, a ∈ X and s, t ≥ .

Definition . [] Let (X, G∗,�) be a Menger PGM-space and x be any point in X. For
any ε >  and δ with  < δ < , and (ε, δ)-neighborhood of x is the set of all points y in X
for which G∗

x,y,y(ε) >  – δ and G∗
y,x,x (ε) >  – δ. We write

Nx (ε, δ) =
{

y ∈ X : G∗
x,y,y(ε) >  – δ, G∗

y,x,x (ε) >  – δ
}

,

which means that Nx (ε, δ) is the set of all points y in X for which the probability of the
distance from x to y being less than ε is greater than  – δ.

Lemma . [] Let (X, G∗,�) be a Menger PGM-space. Then (X, G∗,�) is a Hausdorff
space in the topology introduced by the family {Nx (ε, δ)} of (ε, δ)-neighborhoods.

Definition . [] Let (X, G∗,�) be a PGM-space, and {xn} is a sequence in X.
() {xn} is said to be convergent to a point x ∈ X (write xn → x), if for any ε >  and

 < δ < , there exists a positive integer Mε,δ such that xn ∈ Nx (ε, δ) whenever
n > Mε,δ ;

() {xn} is called a Cauchy sequence, if for any ε >  and  < δ < , there exists a positive
integer Mε,δ such that G∗

xn ,xm ,xl
(ε) >  – δ whenever n, m, l > Mε,δ ;

() (X, G∗,�) is said to be complete, if every Cauchy sequence in X converges to a point
in X .

We can analogously prove the following lemma as in Menger PM-spaces.

Lemma . Let (X, G∗,�) be a Menger PGM-space with � a continuous t-norm, {xn}, {yn},
and {zn} be sequences in X and x, y, z ∈ X, if {xn} → x, {yn} → y and {zn} → z as n → ∞.
Then

() lim infn→∞ G∗
xn ,yn ,zn (t) ≥ G∗

x,y,z(t) for all t > ;
() G∗

x,y,z(t + ) ≥ lim supn→∞ G∗
xn ,yn ,zn (t) for all t > .
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Particularly, if t is a continuous point of Gx,y,z(·), then limn→∞ Gxn ,yn ,zn (t) = Gx,y,z(t).

Definition . [] A pair of self-mappings S and T on X are said to be weakly compatible
(or coincidentally commuting) if they commute at their coincidence point, i.e., if Tu = Su
for some u ∈ X implies that TSu = STu.

Definition . [] Let F, F ∈ D . The algebraic sum F ⊕ F of F and F is defined by

(F ⊕ F)(t) = sup
t+t=t

min
{

F(t), F(t)
}

for all t ∈ R.

As a generalization, we give the following definition.

Definition . Let F, F, F ∈ D . The algebraic sum F ⊕F ⊕F of F, F, and F is defined
by

(F ⊕ F ⊕ F)(t) = sup
t+t+t=t

min
{

F(t), F(t), F(t)
}

for all t ∈ R.

Remark . Let F(t) = H(t). Then Definition . and Definition . are equivalent.

For two functions f and g , f > g means that f (t) ≥ g(t) and there exists some t such that
f (t) > g(t).

Definition . [] Let f and g be self-mappings of a set X. If w = fx = gx for some x in X,
then x is called a coincidence point of f and g , and w is called point of coincidence of f
and g .

In the sequel, we will denote by C(f , F) the set of all coincidence points of f and F .
We recall the definitions of property (E.A) for a hybrid pair of mappings and common

property (E.A) for two hybrid pairs of mappings in Menger PM-spaces.

Definition . [] Let (X,F ,�) be a Menger PM-space, (�, F̃ ,�) be the induced
Menger PM-space, f : X → X be a self-mapping and F : X → � be a multivalued mapping.
A pair of mappings (f , F) is said to satisfy the property (E.A), if there exist a sequence {xn}
in X, some a ∈ X, and A ∈ �, such that limn→∞ fxn = a ∈ A = limn→∞ Fxn.

Definition . [] Let (X,F ,�) be a Menger PM-space and (�, F̃ ,�) be the induced
Menger PM-space, f , g : X → X, and F , G : X → �. Two pairs of mappings (f , F) and (g, G)
are said to satisfy the common property (E.A) if there exist two sequences {xn}, {yn} in X,
some u ∈ X and A, B ∈ �, such that

lim
n→∞ Fxn = A, lim

n→∞ Gyn = B, lim
n→∞ fxn = lim

n→∞ gyn = u ∈ A ∩ B.
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2 Menger-Hausdorff metric in Menger PGM-spaces
In this section, we first introduce some new concepts in Menger PGM-spaces, and then
establish some useful results in Menger PGM-spaces.

Definition . Let A be a nonempty subset of X. The function D∗
A defined by

D∗
A(t) = sup

s<t
inf

p,q,r∈A
G∗

p,q,r(s)

is called the generalized probabilistic diameter of A.

Definition . A nonempty subset A of X is said to be
() generalized probabilistically bounded, if supt> D∗

A(t) = ;
() generalized probabilistically semi-bounded, if  < supt> D∗

A(t) < ;
() generalized probabilistically unbounded, if supt> D∗

A(t) = .

Lemma . If A and B are two nonempty subsets of X, then

D∗
A∪B(x + y) ≥ �

(

D∗
A(x), D∗

B(y)
)

. (.)

Proof Let x, y be given, for (.), we first prove that

inf
p,q,r∈A∪B

G∗
p,q,r(x + y) ≥ �

(

inf
p,q,r∈A

G∗
p,q,r(x), inf

p,q,r∈B
G∗

p,q,r(y)
)

. (.)

Case ():

inf
p,q,r∈A∪B

G∗
p,q,r(x + y) = inf

p∈A
q,r∈B

G∗
p,q,r(x + y). (.)

For any p, q, r ∈ X, we have

G∗
p,q,r(x + y) ≥ �

(

G∗
p,a,a(x), G∗

a,q,r(y)
)

.

Taking the infimum on both sides of this inequality as p ranges over A, a ranges over A∩B,
and r, q range over B, and using (.), we have

inf
p,q,r∈A∪B

G∗
p,q,r(x + y) = inf

p∈A
q,r∈B

G∗
p,q,r(x + y) ≥ inf

p∈A,q,r∈B
a∈A∩B

�
(

G∗
p,a,a(x), G∗

a,q,r(y)
)

≥ �
(

inf
p∈A

a∈A∩B

G∗
p,a,a(x), inf

q,r∈B
a∈A∩B

G∗
a,q,r(y)

)

≥ �
(

inf
p∈A
a∈A

G∗
p,a,a(x), inf

q,r∈B
a∈B

G∗
a,q,r(y)

)

≥ �
(

inf
p,q,r∈A

G∗
p,q,r(x), inf

p,q,r∈B
G∗

p,q,r(y)
)

.

So, (.) is proved.
Case (): infp,q,r∈A∪B G∗

p,q,r(x + y) < inf p∈A,
q,r∈B

G∗
p,q,r(x + y). Then one of the following equali-

ties:
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(a) infp,q,r∈A∪B G∗
p,q,r(x + y) = infp,q,r∈A G∗

p,q,r(x + y),
(b) infp,q,r∈A∪B G∗

p,q,r(x + y) = infp,q,r∈B G∗
p,q,r(x + y)

and
(c) infp,q,r∈A∪B G∗

p,q,r(x + y) = inf p∈B
q,r∈A

G∗
p,q,r(x + y)

holds.
If (a) holds, we have

inf
p,q,r∈A∪B

G∗
p,q,r(x + y) = inf

p,q,r∈A
G∗

p,q,r(x + y) ≥ inf
p,q,r∈A

G∗
p,q,r(x)

≥ �
(

inf
p,q,r∈A

G∗
p,q,r(x), 

)

≥ �
(

inf
p,q,r∈A

G∗
p,q,r(x), inf

p,q,r∈B
G∗

p,q,r(y)
)

.

Then (.) is proved.
Similarly, we can prove that (.) is satisfied if (b) or (c) holds.
Finally, by (.) and the continuity of �, we have

D∗
A∪B(x + y) = sup

s+t<x+y
inf

p,q,r∈A∪B
G∗

p,q,r(s + t) ≥ sup
s<x
t<y

inf
p,q,r∈A∪B

G∗
p,q,r(s + t)

≥ �
(

sup
s<x

inf
p,q,r∈A

G∗
p,q,r(s), sup

t<y
inf

p,q,r∈B
G∗

p,q,r(y)
)

= �
(

D∗
A(x), D∗

B(y)
)

.

This completes the proof. �

Lemma . Let (X, G∗,�) be a Menger PGM-space with a continuous t-norm.
() If A is a generalized probabilistically bounded set, then D∗

A is a distribution function.
() If A, B ⊆ X are two generalized probabilistically bounded sets, then A ∪ B is also a

generalized probabilistically bounded set.

Proof () Since A is a generalized probabilistically bounded set, by Definition ., it is
easy to see that D∗

A(t) is nondecreasing in t, D∗
A() = , supt> D∗

A(t) =  and D∗
A(t) is left-

continuous in t. This shows that D∗
A(t) is a distribution function.

() Since A and B are generalized probabilistically bounded sets, from Lemma . and
the continuity of �, we have supt> D∗

A∪B(t) ≥ �(supt> D∗
A( t

 ), supt> D∗
B( t

 )) = �(, ) = .
This completes the proof. �

Remark . By Lemma .(), we claim that if A, B, C are generalized probabilistically
bounded sets, then A ∪ B ∪ C is also a generalized probabilistically bounded set.

In the remainder of this paper, we always assume that (X, G∗,�) is a Menger PGM-space
with a continuous t-norm � and �∗ be the family of all nonempty T -closed generalized
probabilistically bounded sets.

Definition . For A, B, C ∈ �∗, define the mapping ˜G∗ : �∗ × �∗ × �∗ → D by

˜G∗
A,B,C(t) = min

{

gA,B(t), gB,C(t), gC,A(t)
}

,

where gA,B(t) = sups<t �(infx∈A supy∈B gx,y(s), infy∈B supx∈A gx,y(s)), gx,y(s) = �(G∗
x,x,y(s),

G∗
x,y,y(s)).
Then ˜G∗ is called the Menger-Hausdorff metric induced by G∗.
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Definition . Let A, B, C ∈ �∗ and x, y, z ∈ X.
() The generalized probabilistic distance between two points x, y and a set C is the

function ˜G∗
x,y,C(t) defined by

˜G∗
x,y,C(t) = sup

s<t
sup
z∈C

G∗
x,y,z(s), t ≥ .

() The generalized probabilistic distance between a point x and two sets B, C is the
function ˜G∗

x,B,C(t) defined by

˜G∗
x,B,C(t) = min

{

gx,B(t), gB,C(t), gx,C(t)
}

, t ≥ ,

where gx,B(t) = sups<t supy∈B gx,y(s).

Lemma . For any A, B, D ∈ �∗ and a, b > , we have

gA,B(a + b) ≥ �
(

gA,D(a), gD,B(b)
)

.

Proof For any x, y, z ∈ X and s, t > , we have

G∗
x,y,y(t + s) ≥ �

(

G∗
x,z,z(t), G∗

z,y,y(s)
)

and

G∗
x,x,y(t + s) ≥ �

(

G∗
x,x,z(t), G∗

z,z,y(s)
)

for all z ∈ D. Using the continuity and monotonicity of �, we have the following inequali-
ties:

sup
y∈B

G∗
x,y,y(t + s) ≥ �

(

sup
z∈D

G∗
x,z,z(t), inf

z∈D
sup
y∈B

G∗
z,y,y(s)

)

and

sup
y∈B

G∗
x,x,y(t + s) ≥ �

(

sup
z∈D

G∗
x,x,z(t), inf

z∈D
sup
y∈B

G∗
z,z,y(s)

)

.

Thus, we have

inf
x∈A

sup
y∈B

G∗
x,y,y(t + s) ≥ �

(

inf
x∈A

sup
z∈D

G∗
x,z,z(t), inf

z∈D
sup
y∈B

G∗
z,y,y(s)

)

, (.)

inf
x∈A

sup
y∈B

G∗
x,x,y(t + s) ≥ �

(

inf
x∈A

sup
z∈D

G∗
x,x,z(t), inf

z∈D
sup
y∈B

G∗
z,z,y(s)

)

. (.)

Similarly, we can get

inf
y∈B

sup
x∈A

G∗
x,x,y(t + s) ≥ �

(

inf
z∈D

sup
x∈A

G∗
x,x,z(t), inf

y∈B
sup
z∈D

G∗
z,z,y(s)

)

, (.)

inf
y∈B

sup
x∈A

G∗
x,y,y(t + s) ≥ �

(

inf
z∈D

sup
x∈A

G∗
x,z,z(t), inf

y∈B
sup
z∈D

G∗
z,y,y(s)

)

. (.)
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Since � is associative, by combining (.), (.), (.), and (.), we obtain

inf
x∈A

sup
y∈B

gx,y(t + s)

= �
(

inf
x∈A

sup
y∈B

G∗
x,y,y(t + s), inf

x∈A
sup
y∈B

G∗
x,x,y(t + s)

)

≥ �
(

�
(

inf
x∈A

sup
z∈D

G∗
x,z,z(t), inf

z∈D
sup
y∈B

G∗
z,y,y(s)

)

,�
(

inf
x∈A

sup
z∈D

G∗
x,x,z(t), inf

z∈D
sup
y∈B

G∗
z,z,y(s)

))

= �
(

�
(

inf
x∈A

sup
z∈D

G∗
x,z,z(t), inf

x∈A
sup
z∈D

G∗
x,x,z(t)

)

,�
(

inf
z∈D

sup
y∈B

G∗
z,y,y(s), inf

z∈D
sup
y∈B

G∗
z,z,y(s)

))

= �
(

inf
x∈A

sup
z∈D

gx,z(t), inf
z∈D

sup
y∈B

gy,z(s)
)

, (.)

inf
y∈B

sup
x∈A

gx,y(t + s)

= �
(

inf
y∈B

sup
x∈A

G∗
x,y,y(t + s), inf

y∈B
sup
x∈A

G∗
x,x,y(t + s)

)

≥ �
(

�
(

inf
z∈D

sup
x∈A

G∗
x,z,z(t), inf

y∈B
sup
z∈D

G∗
z,y,y(s)

)

,�
(

inf
z∈D

sup
x∈A

G∗
x,x,z(t), inf

y∈B
sup
z∈D

G∗
z,z,y(s)

))

= �
(

�
(

inf
z∈D

sup
x∈A

G∗
x,z,z(t), inf

z∈D
sup
x∈A

G∗
x,x,z(t)

)

,�
(

inf
y∈B

sup
z∈D

G∗
z,y,y(s), inf

y∈B
sup
z∈D

G∗
z,z,y(s)

))

= �
(

inf
z∈D

sup
x∈A

gx,z(t), inf
y∈B

sup
z∈D

gy,z(s)
)

. (.)

By (.) and (.), we have

gA,B(a + b)

= sup
t+s<a+b

�
(

inf
x∈A

sup
y∈B

gx,y(t + s), inf
y∈B

sup
x∈A

gx,y(t + s)
)

≥ sup
t+s<a+b

�
(

�
(

inf
x∈A

sup
z∈D

gx,z(t), inf
z∈D

sup
y∈B

gy,z(s)
)

,�
(

inf
z∈D

sup
x∈A

gx,z(t), inf
y∈B

sup
z∈D

gy,z(s)
))

= sup
t+s<a+b

�
(

�
(

inf
x∈A

sup
z∈D

gx,z(t), inf
z∈D

sup
x∈A

gx,z(t)
)

,�
(

inf
z∈D

sup
y∈B

gy,z(s), inf
y∈B

sup
z∈D

gy,z(s)
))

≥ �
(

sup
t<a

�
(

inf
x∈A

sup
z∈D

gx,z(t), inf
z∈D

sup
x∈A

gx,z(t)
)

, sup
s<b

�
(

inf
z∈D

sup
y∈B

gy,z(s), inf
y∈B

sup
z∈D

gy,z(s)
))

= �
(

gA,D(a), gD,B(b)
)

.

This completes the proof. �

Theorem . (�∗,˜G∗,�) is a Menger PGM-space.

Proof First, we prove that ˜G∗ is a distribution function. By the definition of ˜G∗(t), it is easy
to see that ˜G∗(t) is nondecreasing and left-continuous in t and ˜G∗() = . Now, we prove

sup
t>

˜G∗(t) = .

In fact, since A, B, C ∈ �∗, we know A ∪ B ∪ C ∈ �∗. By the continuity of �, we have

sup
t>

˜G∗(t) = sup
t>

min
{

gA,B(t), gB,C(t), gC,A(t)
}

= min
{

sup
t>

gA,B(t), sup
t>

gB,C(t), sup
t>

gC,A(t)
}
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and

sup
t>

gA,B(t) = sup
t>
s<t

�
{

�
[

inf
x∈A

sup
y∈B

G∗
x,y,y(s), inf

x∈A
sup
y∈B

G∗
x,x,y(s)

]

,

�
[

inf
y∈B

sup
x∈A

G∗
x,y,y(s), inf

y∈B
sup
x∈A

G∗
x,x,y(s)

]}

≥ �
{

sup
t>
s<t

�
[

inf
x∈A

inf
y∈B

G∗
x,y,y(s), inf

x∈A
inf
y∈B

G∗
x,x,y(s)

]

,

sup
t>
s<t

�
[

inf
y∈B

inf
x∈A

G∗
x,y,y(s), inf

y∈B
inf
x∈A

G∗
x,x,y(s)

]}

≥ �
{

�
[

sup
t>
s<t

inf
x,y∈A∪B

G∗
x,y,y(s), sup

t>
s<t

inf
x,y∈A∪B

G∗
x,x,y(s)

]

,

�
[

sup
t>
s<t

inf
x,y∈A∪B

G∗
x,y,y(s), sup

t>
s<t

inf
x,y∈A∪B

G∗
x,x,y(s)

]}

≥ �
{

�
[

sup
t>
s<t

inf
x,y,z∈A∪B

G∗
x,y,z(s), sup

t>
s<t

inf
x,y,z∈A∪B

G∗
x,y,z(s)

]

,

�
[

sup
t>
s<t

inf
x,y,z∈A∪B

G∗
x,y,z(s), sup

t>
s<t

inf
x,y,z∈A∪B

G∗
x,y,z(s)

]}

= �
{

�
[

D∗
A∪B,, D∗

A∪B
]

,�
[

D∗
A∪B,, D∗

A∪B
]}

= �
(

�(, ),�(, )
)

= .

Similarly, we have supt> gB,C(t) =  and supt> gC,A(t) = . This shows that ˜G∗ is a mapping
from �∗ × �∗ × �∗ into D .

Next, we will show that ˜G∗(t) satisfies the following:
() ˜G∗

A,B,C(t) =  for all t >  if and only if A = B;
() ˜G∗

A,A,B(t) ≥ ˜G∗
A,B,C(t) for all A, B, C ∈ �∗ with B 	= C and t > ;

() ˜G∗
A,B,C(t) = ˜G∗

A,C,B(t) = ˜G∗
B,A,C(t) = · · · (symmetry in all three variables);

() ˜G∗
A,B,C(t + s) ≥ �(˜G∗

A,D,D(t),˜G∗
D,B,C(t)) for all A, B, C ∈ �∗ with t > .

• (i) If ˜G∗
A,B,C(t) =  for all t > , then for any ε > , we have

gA,B(ε) = gB,C(ε) = gC,A(ε) = .

By gA,B(ε) = , we have

sup
s<ε

inf
x∈A

sup
y∈B

�
(

G∗
x,x,y(s), G∗

x,y,y(s)
)

= , (.)

sup
s<ε

inf
y∈B

sup
x∈A

�
(

G∗
x,x,y(s), G∗

x,y,y(s)
)

= . (.)

From (.), it follows that sups<ε supy∈B �(G∗
x,x,y(s), G∗

x,y,y(s)) =  for all x ∈ A. Therefore, for
any a ∈ A and λ > , there exists b∗ ∈ B, such that

�
(

G∗
a,a,b∗ (ε), G∗

a,b∗ ,b∗ (ε)
)

>  – λ.
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So, we have

G∗
a,a,b∗ (ε) >  – λ and G∗

a,b∗ ,b∗ (ε) >  – λ.

This shows that the point a is an accumulation point of B and hence a ∈ B, i.e., A ⊆ B.
From (.), we can prove that B ⊆ A. Therefore, we have A = B.
Similarly, we can also prove that B = C, C = A. So, we have A = B = C.
Conversely, if A = B = C, then for any t > , we have

˜G∗
A,B,C(t) = min

{

gA,A(t), gA,A(t), gA,A(t)
}

= gA,A(t).

For any s ∈ (, ),

gA,A(t) ≥ �
(

inf
a∈A

sup
b∈A

ga,b(s), inf
a∈A

sup
b∈A

ga,b(s)
)

= �
(

inf
a∈A

sup
b∈A

�
(

G∗
a,a,b(s), G∗

a,b,b(s)
)

, inf
a∈A

sup
b∈A

�
(

G∗
a,a,b(s), G∗

a,b,b(s)
)

)

= �(, ) = .

Therefore () is satisfied.
• (ii) ˜G∗

A,A,B(t) = min{gA,A(t), gA,B(t), gA,B(t)} = gA,B(t) ≥ min{gA,B(t), gB,C(t), gC,A(t)} =
˜G∗

A,B,C(t). So, () is satisfied.
• (iii) It is obvious that () holds.
• (iv) From Definition ., we have

˜G∗
A,B,C(t + s) = min

{

gA,B(t + s), gB,C(t + s), gC,A(t + s)
}

,

˜G∗
A,D,D(t) = min

{

gA,D(t), gD,D(t), gA,D(t)
}

= gA,D(t),

˜G∗
D,B,C(s) = min

{

gD,B(s), gB,C(s), gC,D(s)
}

.

We just need to show

min
{

gA,B(t + s), gB,C(t + s), gC,A(t + s)
} ≥ �

(

gA,D(t), min
{

gD,B(s), gB,C(s), gC,D(s)
})

.

In fact,

gB,C(t + s) ≥ gB,C(s) ≥ min
{

gD,B(s), gB,C(s), gC,D(s)
}

≥ �
(

gA,D(t), min
{

gD,B(s), gB,C(s), gC,D(s)
})

,

gA,B(t + s) ≥ �
(

gA,D(t), gD,B(s)
) ≥ �

(

gA,D(t), min
{

gD,B(s), gB,C(s), gC,D(s)
})

,

gC,A(t + s) ≥ �
(

gA,D(t), gD,C(s)
) ≥ �

(

gA,D(t), min
{

gD,B(s), gB,C(s), gC,D(s)
})

.

So, () is also satisfied. This completes the proof. �

Remark . By the proof process of Lemma . and Theorem ., we can also prove that
(X, g,�) and (�∗, g,�) are Menger PM-spaces. We call (X, g,�) the PM-space induced
by (X, G∗,�), and (�∗, g,�) is the PM-space induced by (X, g,�). So, the properties in
Lemma . can be applied to (X, g,�) and (�∗, g,�).
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Example . Let (X, d) be a metric space and x, y, z ∈ X, G∗
x,y,z(t) = t

t+max{d(x,y),d(y,z),d(x,z)} for
all t ≥ , then (X, G∗,�m) is a Menger PGM-space. In fact, G∗

x,y,z() = , supt> G∗
x,y,z(t) = ,

and G∗
x,y,z(t) is nondecreasing and continuous in t, so G∗

x,y,z(t) is a distribution function. Ob-
viously, G∗

x,y,z(t) satisfy (PGM-), (PGM-), and (PGM-). Next, we will show that (PGM-)
is also satisfied. Since d(x, y) ≤ d(x, a) + d(a, y) and d(x, z) ≤ d(x, a) + d(a, z), we have

G∗
x,y,z(t + s) =

t + s
t + s + max{max{d(x, y), d(y, z), d(x, z)}}

≥ t + s
t + s + max{d(x, a) + d(a, y), d(y, z), d(x, a) + d(a, z)}

≥ t + s
t + s + d(x, a) + max{d(a, y), d(y, z), d(a, z)}

≥ min

{

t
t + d(x, a)

,
s

s + max{d(a, y), d(y, z), d(a, z)}
}

= min
{

G∗
x,a,a(t), G∗

a,y,z(s)
}

,

which implies that (PGM-) is satisfied. So (X, G∗,�m) is a Menger PGM-space. Then

gx,y(t) = min
{

G∗
x,x,y(t), G∗

x,y,y(t)
}

=
t

t + d(x, y)

and

gA,B(t) = min

{

inf
x∈A

sup
y∈B

t
t + d(x, y)

, inf
y∈B

sup
x∈A

t
t + d(x, y)

}

= min

{

t
t + infx∈A supy∈B d(x, y)

,
t

t + infy∈B supx∈A d(x, y)

}

=
t

t + max{infx∈A supy∈B d(x, y), infy∈B supx∈A d(x, y)} =
t

t + δ(A, B)
.

Thus,

˜G∗
A,B,C(t) = min

{

gA,B(t), gB,C(t), gA,C(t)
}

= min

{

t
t + δ(A, B)

,
t

t + δ(B, C)
,

t
t + δ(A, C)

}

=
t

t + max{δ(A, B), δ(B, C), δ(A, C)} ,

where δ(A, B) = max{infx∈A supy∈B d(x, y), infy∈B supx∈A d(x, y)}. Then (�∗,˜G∗
A,B,C(t),�m) is a

Menger PGM-space induced by (X, G∗,�m).

Theorem . Let (�∗,˜G∗,�) be a Menger PGM-space. Then for any A, B, C, D ∈ �∗ and
x, y, z ∈ X, we have the following:

() ˜G∗
x,B,C(t) =  if and only if x ∈ B = C;

() ˜G∗
x,x,B(t) ≥ ˜G∗

x,B,B(t) ≥ ˜G∗
x,B,C(t) ≥ ˜G∗

A,B,C(t) for all x ∈ A and t ≥ ;
() ˜G∗

x,B,C(t + s) ≥ �(˜G∗
x,D,D(t),˜G∗

D,B,C(s)) for all s, t ≥ ;
() ˜G∗

x,y,C(t + s) ≥ �(˜G∗
x,a,a(t),˜G∗

a,y,C(s)) for all s, t ≥  and a ∈ X .
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Proof () If ˜G∗
x,B,C(t) = min{gx,B(t), gB,C(t), gx,C(t)} = , then we have gx,B(t) = gB,C(t) =

gx,C(t) = , which implies that x ∈ B, x ∈ C, B = C, that is, x ∈ B = C.
Conversely, it is obvious that ˜G∗

x,B,C(t) =  holds.
() From Definition . and Lemma ., we have

˜G∗
x,x,B(t) = sup

y∈B
G∗

x,x,y(t) ≥ gx,B(t) = ˜G∗
x,B,B(t) ≥ min

{

gx,B(t), gB,C(t), gx,C(t)
}

= ˜G∗
x,B,C(t) ≥ min

{

gA,B(t), gB,C(t), gA,C(t)
}

= ˜G∗
A,B,C(t).

So, () is proved.
() By Definition . and Lemma ., we have ˜G∗

x,B,C(t + s) = min{gx,B(t + s), gB,C(t +
s), gx,C(t + s)},

gx,B(t + s) ≥ �
(

gx,D(t), gD,B(s)
)

= �
(

˜G∗
x,D,D(t), gD,B(s)

) ≥ �
(

˜G∗
x,D,D(t),˜G∗

D,B,C(s)
)

,

gB,C(t + s) ≥ gB,D(s) ≥ ˜G∗
D,B,C(s) ≥ �

(

˜G∗
x,D,D(t),˜G∗

D,B,C(s)
)

,

gx,C(t + s) ≥ �
(

gx,D(t), gD,C(s)
)

= �
(

˜G∗
x,D,D(t), gD,C(s)

) ≥ �
(

˜G∗
x,D,D(t),˜G∗

D,B,C(s)
)

.

So, () is proved.
() By Lemma ., we have

˜G∗
x,y,C(t + s) = sup

z∈C
G∗

x,y,z(t + s) ≥ sup
z∈C

�
(

˜G∗
x,a,a(t),˜G∗

a,y,z(s)
)

= �
(

˜G∗
x,a,a(t),˜G∗

a,y,C(s)
)

. �

Remark . By (), (), and the proof of Lemma ., it is easy to prove that ˜G∗
x,x,B(t) =  if

and only if x ∈ B, and ˜G∗
x,B,B(t) =  if and only if x ∈ B.

3 Common fixed point theorems in Menger PGM-spaces
In this section, we will give some common fixed point theorems in Menger probabilistic
G-metric spaces. To this end, we first introduce the concept of common property (E.A)
for three hybrid pairs of mappings in Menger probabilistic G-metric spaces.

Definition . Let (X, G∗,�) be a Menger PM-space and (�∗,˜G∗,�) be the induced
Menger PM-space, f , h, r : X → X and F , H , R : X → �∗. Three pairs of mappings (f , F),
(h, H), and (r, R) are said to satisfy the common property (E.A) if there exist three se-
quences {xn}, {yn}, {zn} in X, some u ∈ X and A, B, C ∈ �∗, such that

lim
n→∞ Fxn = A, lim

n→∞ Hyn = B, lim
n→∞ Ryn = C,

lim
n→∞ fxn = lim

n→∞ hyn = lim
n→∞ rzn = u ∈ A ∩ B ∩ C.

We are now ready to give the common fixed point theorems in Menger probabilistic
G-metric spaces.

Theorem . Let (X, G∗,�) be a Menger PGM-space with a continuous t-norm on [, ]×
[, ] and (�∗,˜G∗,�) be the induced Menger PGM-space. Suppose that f , h, r : X → X and
F , H , R : X → �∗ are mappings satisfying the following conditions:

() (f , F), (h, H), and (r, R) satisfy the common property (E.A);
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() f (X), h(X), and r(X) are T -closed subsets of X ;
() for any x, y, z ∈ X with Fx, Hy, and Rz not all equal and some  ≤ k ≤ ,

˜G∗
Fx,Hy,Rz > min

{

G∗
fx,hy,rz, 

k

[

˜G∗
Fx,hy,rz ⊕ ˜G∗

fx,Hy,rz ⊕ ˜G∗
fx,hy,Rz

]}

, (.)

where 
k

[˜G∗
Fx,hy,rz ⊕ ˜G∗

fx,Hy,rz ⊕ ˜G∗
fx,hy,Rz](t) means [˜G∗

Fx,hy,rz ⊕ ˜G∗
fx,Hy,rz ⊕ ˜G∗

fx,hy,Rz]( 
k t).

Then (f , F), (h, H), and (r, R) each has a coincidence point. Moreover, if ffv = fv for v ∈
C(f , F), hhv = hv for v ∈ C(h, H), and rrv = rv for v ∈ C(r, R), then f , h, r, F , H , and R
have a common fixed point in X.

Proof Since (f , F), (h, H), and (r, R) satisfy the common property (E.A), there exist
{xn}, {yn}, {zn} ⊂ X, some u ∈ X and A, B, C ∈ �∗, such that

lim
n→∞ Fxn = A, lim

n→∞ Hyn = B, lim
n→∞ Tzn = C,

lim
n→∞ fxn = lim

n→∞ hyn = lim
n→∞ rzn = u ∈ A ∩ B ∩ C.

(.)

Since f (X) is T -closed, there exists some v ∈ X, such that u = fv. We claim that fv ∈ Fv.
Suppose this is not true, then fv /∈ Fv. By u = fv ∈ B, we have B 	= Fv. Thus, there exists
some t > , such that

˜G∗
Fv,B,C

(

t

k

)

> ˜G∗
Fv,B,C(t). (.)

(Otherwise, for all t > , ˜G∗
Fv,B,C(t) = ˜G∗

Fv,B,C( t
k ) = · · · = ˜G∗

Fv,B,C(( 
k )nt) →  as n → ∞, that

is, ˜G∗
Fv,B,C(t) = , for all t > , which is a contradiction.)

Without loss of generality, we can assume that t is a continuous point of ˜G∗
Fv,B,C(·). In

fact, by the left continuity of the distribution function, we know that there exists some
δ > , such that

˜G∗
Fv,B,C

(

t
k

)

> ˜G∗
Fv,B,C(t), ∀t ∈ (t – δ, t].

Since the distribution function is nondecreasing, the discontinuous points are at most a
countable set. Thus, when t is not a continuous point of ˜G∗

Fv,B,C(·), we can always choose
a point t in (t – δ, t] to replace t.

Noting that limn→∞ fxn = u /∈ Fv and u ∈ B = limn→∞ Hyn, we have Fv 	= limn→∞ Hyn, so
there exists some n ∈ Z

+, such that for all n ≥ n, Hyn 	= Fv.
From (.) we know that

˜G∗
Fv,Hyn ,Rzn > min

{

G∗
fv,hyn ,rzn , 

k

[

˜G∗
Fv,hyn ,rzn ⊕ ˜G∗

fv,Hyn ,rzn ⊕ ˜G∗
fv,hyn ,Rzn

]}

. (.)

It is easy to verify that

lim inf
n→∞

[

˜G∗
Fv,hyn ,rzn ⊕ ˜G∗

fv,Hyn ,rzn ⊕ ˜G∗
fv,hyn ,Rzn

]

(


k

t

)

≥ ˜G∗
Fv,u,u

(


k

t

)

. (.)
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In fact, for any δ, δ ∈ (, 
k t), we have

[

˜G∗
Fv,hyn ,rzn ⊕ ˜G∗

fv,Hyn ,rzn ⊕ ˜G∗
fv,hyn ,Rzn

]

(


k

t

)

≥ min

{

˜G∗
Fv,hyn ,rzn

(


k

t – δ – δ

)

,˜G∗
fv,Hyn ,rzn (δ),˜G∗

fv,hyn ,Rzn (δ)
}

.

Since fv = u ∈ [(B = limn→∞ Hyn) ∩ (C = limn→∞ Ryn)], by Lemma . and Theorem .(),
we get

lim inf
n→∞

[

˜G∗
Fv,hyn ,rzn ⊕ ˜G∗

fv,Hyn ,rzn ⊕ ˜G∗
fv,hyn ,Rzn

]

(


k

t

)

≥ ˜G∗
Fv,u,u

(


k

t – δ – δ

)

.

Letting δ, δ → , by the left continuity of the distribution function, we obtain (.).
Noting that t is the continuous point of ˜G∗

Fv,B,C(·), by Lemma ., we have

lim
n→∞

˜G∗
Fv,Hyn ,Rzn (t) = ˜G∗

Fv,B,C(t).

Thus, letting n → ∞ in (.) and using (.), we obtain

˜G∗
Fv,B,C(t) ≥ min

{

,˜G∗
Fv,u,u

(


k

t

)}

= ˜G∗
Fv,u,u

(


k

t

)

,

that is,

˜G∗
Fv,B,C(t) ≥ ˜G∗

Fv,u,u

(


k

t

)

.

But since fv ∈ B, by Theorem .() and (.), we obtain

˜G∗
Fv,u,u

(


k

t

)

> ˜G∗
Fv,B,C(t),

which is a contradiction. So, we get fv ∈ Fv.
On the other hand, since h(X) is T -closed, there exists some w ∈ X, such that u = hw.

We claim that hw ∈ Hw. Suppose this is not true, that is, hw /∈ Hw. Noting that u = hw ∈ C,
we have C 	= Hw. Similarly, we know that there exists some t > , such that

˜G∗
Fv,Hw,C

(


k

t

)

> ˜G∗
Fv,Hw,C(t). (.)

Similarly, without loss of generality, we can assume that t is a continuous point of
˜G∗

Fv,Hw,C(·).
Noting that limn→∞ rzn = u /∈ Hw and u ∈ C = limn→∞ Rzn, there exists some n ∈ Z

+,
such that for all n ≥ n, Rzn 	= Hw.

From (.) we know that

˜G∗
Fv,Hw,Rzn (t) > min

{

G∗
fv,hw,rzn (t),

[

˜G∗
Fv,hw,rzn ⊕ ˜G∗

fv,Hw,rzn ⊕ ˜G∗
fv,hw,Rzn

]

(


k

t

)}

. (.)
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Similarly, we can verify that

lim inf
n→∞

[

˜G∗
Fv,Hw,rzn ⊕ ˜G∗

fv,Hw,rzn ⊕ ˜G∗
fv,hw,Rzn

]

(


k

t

)

≥ ˜G∗
u,Hw,u

(


k

t

)

. (.)

Noting that t is a continuous point of ˜G∗
Fv,Hw,C(·), by Lemma ., we have

lim
n→∞

˜G∗
Fv,Hw,Rzn (t) = ˜G∗

Fv,Hw,C(t).

Thus, letting n → ∞ in (.) and using (.), we obtain

˜G∗
Fv,Hw,C(t) ≥ min

{

,˜G∗
u,Hw,u

(


k

t

)}

= ˜G∗
u,Hw,u

(


k

t

)

≥ ˜G∗
Fv,Hw,C

(


k

t

)

,

which is a contradiction. So, we get hw ∈ Hw.
Since r(X) is T -closed, there exists some a ∈ X, such that u = ra. We claim that ra ∈ Ra.

Suppose this is not true, that is, ra /∈ Ra. Noting that u = ra ∈ A, we have A 	= Ra. Similarly,
we know that there exists some t > , such that

˜G∗
A,Hw,Ra

(


k

t

)

> ˜G∗
A,Hw,Ra(t).

Similarly, without loss of generality, we can assume that t is a continuous point of
˜G∗

A,Hw,Ra(·).
Noting that limn→∞ fxn = u /∈ Ra and u ∈ A = limn→∞ Fxn, there exists some n ∈ Z

+,
such that for all n ≥ n, Fxn 	= Ra.

From (.), we know that

˜G∗
Fxn ,Hw,Ra(t) > min

{

G∗
fxn ,hw,ra(t),

[

˜G∗
Fxn ,hw,ra ⊕ ˜G∗

fxn ,Hw,ra ⊕ ˜G∗
fxn ,hw,Ra

]

(


k

t

)}

.

Similarly, it is easy to prove that u = ra ∈ Ra. This implies that v is a coincidence point
of (f , F), w is a coincidence point of (h, H), and a is a coincidence point of (r, R).

Since v ∈ C(f , F), w ∈ C(h, H), and a ∈ C(r, R), we have u = fv = ffv = fu ∈ Fv, u = hw =
hhw = hu ∈ Hw, and u = ra = rra = ru ∈ Rw. Next, we prove that Fv = Fu, Hw = Hu, and
Ra = Ru.

() First, we assert that Fv = Hw. In fact, suppose that Fv 	= Hw. Then, by (.), there
exists some t > , such that

˜G∗
Fv,Hw,Ra(t) > min

{

G∗
fv,hw,ra(t),

[

˜G∗
Fv,hw,ra ⊕ ˜G∗

fv,Hw,ra ⊕ ˜G∗
fv,hw,Ra

]

(


k

t

)}

.

This implies that

˜G∗
Fv,Hw,Ra(t) > ,

which is a contradiction, and thus we have Fv = Hw.
() Next, we assert that Fu = Hw. In fact, suppose that Fu 	= Hw. Then, by (.), there

exists some t > , such that

˜G∗
Fu,Hw,Ra(t) > min

{

G∗
fu,hw,ra(t),

[

˜G∗
Fu,hw,ra ⊕ ˜G∗

fu,Hw,ra ⊕ ˜G∗
fu,hw,Ra

]

(


k

t

)}

.
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This implies that

˜G∗
Fu,Hw,Ra(t) > ,

which is a contradiction, and thus we have Fu = Hw. Combining these two facts yields
Fv = Fu. Similarly, we can prove that Hw = Ra = Hu and Ra = Fv = Ru. Thus, we have
u = fu ∈ Fu, u = hu ∈ Hu, and u = ru ∈ Ru, that is, u is the common fixed point of f , h, r,
F , H , and R. This completes the proof. �

Setting f = h = r and F = H = R, we obtain the following result.

Theorem . Let (X, G∗,�) be a Menger PGM-space with a continuous t-norm on [, ]×
[, ] and (�∗,˜G∗,�) be the induced Menger PGM-space. Suppose that f : X → X and
F : X → �∗ are mappings satisfying the following conditions:

() (f , F) satisfies the property (E.A);
() f (X) is a T -closed subset of X ;
() for any x, y, z ∈ X with Fx, Fy, and Fz not all equal and some  ≤ k ≤ ,

˜G∗
Fx,Fy,Fz(t) > min

{

G∗
fx,fy,fz, 

k

[

˜G∗
Fx,fy,fz ⊕ ˜G∗

fx,Fy,fz ⊕ ˜G∗
fx,fy,Fz

]}

,

where 
k

[˜G∗
Fx,fy,fz ⊕ ˜G∗

fx,Fy,fz ⊕ ˜G∗
fx,fy,Fz](t) means [˜G∗

Fx,fy,fz ⊕ ˜G∗
fx,Fy,fz ⊕ ˜G∗

fx,fy,Fz]( 
k t).

Then f and F have a coincidence point. Moreover, if ffv = fv for v ∈ C(f , F), then f and F
have a common fixed point in X.

4 An example
In this section, we will provide an example to show the validity of Theorem ..

Example . Let X = (–, ) and define

G∗
x,y,z(t) =

t
t + max{|x – y|, |y – z|, |z – x|} ,

˜G∗
A,B,C(t) =

t
t + max{δ(A, B), δ(B, C), δ(A, C)}

for all x, y, z ∈ X, A, B, C ∈ �∗, and t ≥ . Then, by Example ., (X, G∗,�m) and
(�∗,˜G∗,�m) are PGM-spaces. Define f , h, r : X → X and F , H , R : X → �∗ as follows:

fx =

{


 , x ∈ (–, –) ∪ (, );

 x, x ∈ [–, ],

Fx =

⎧

⎪

⎨

⎪

⎩

[, 
 ], x ∈ (–, –) ∪ (, );

[ 
 x, ], x ∈ [–, ];

[, 
 x], x ∈ [, ],

hx =

{


 , x ∈ (–, –) ∪ (, );

 x, x ∈ [–, ],

Hx =

⎧

⎪

⎨

⎪

⎩

[, 
 ], x ∈ (–, –) ∪ (, );

[, – 
 x], x ∈ [–, ];

[– 
 x, ], x ∈ [, ],

rx =

{


 , x ∈ (–, –) ∪ (, );

 x, x ∈ [–, ],

Rx =

⎧

⎪

⎨

⎪

⎩

[, 
 ], x ∈ (–, –) ∪ (, );

[ 
 x, ], x ∈ [–, ];

[, 
 x], x ∈ [, ].
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Consider the sequences {xn = 
n+ } and {yn = – 

n+ } in X. Then

lim
n→∞ fxn = lim

n→∞ hxn = lim
n→∞ rxn =  ∈ lim

n→∞ Fxn ∩ lim
n→∞ Hxn ∩ lim

n→∞ Rxn,

which shows that (f , F), (h, H), and (r, R) satisfy the common property (E.A). Also f (X),
h(X), and r(X) are T -closed subsets of X. By a routine calculation, one can verify that
(.) holds for all x, y, z ∈ X, t > , and some  ≤ k < .

In fact, if x, y, z ∈ (–, –) ∪ (, ), for any t > ,

˜G∗
Fx,Hy,Rz(t) =

t
t + max{δ([, 

 ], [, 
 ]), δ([, 

 ], [, 
 ]), δ([, 

 ], [, 
 ])} =

t
t + 

= ,

˜G∗
fx,hy,rz(t) =

t
t + max{( 

 – 
 ), ( 

 – 
 ), ( 

 – 
 )} =

t
t + 


< .

So, we have

˜G∗
Fx,Hy,Rz(t) > ˜G∗

fx,hy,rz(t) ≥ min
{

G∗
fx,hy,rz(t), 

k

[

˜G∗
Fx,hy,rz ⊕ ˜G∗

fx,Hy,rz ⊕ ˜G∗
fx,hy,Rz

]

(t)
}

.

Similarly, if x, y, z ∈ [–, ], or x, y, z ∈ [, ], we also have

˜G∗
Fx,Hy,Rz(t) =  > ˜G∗

fx,hy,rz(t) ≥ min
{

G∗
fx,hy,rz(t), 

k

[

˜G∗
Fx,hy,rz ⊕ ˜G∗

fx,Hy,rz ⊕ ˜G∗
fx,hy,Rz

]

(t)
}

.

If x, y ∈ (–, –) ∪ (, ), z ∈ [, ], we have

˜G∗
Fx,Hy,Rz(t) =

t
t + max{δ([, 

 ], [, 
 ]), δ([ 

 x, ], [, 
 ]), δ([, 

 ], [ 
 x, ])} =

t
t + 

= ,

˜G∗
fx,hy,rz(t) =

t
t + max{( 

 – 
 ), | 

 z – 
 |, | 

 z – 
 |} ≤ t

t + 


< .

So, we have

˜G∗
Fx,Hy,Rz(t) > ˜G∗

fx,hy,rz(t) ≥ min
{

G∗
fx,hy,rz(t), 

k

[

˜G∗
Fx,hy,rz ⊕ ˜G∗

fx,Hy,rz ⊕ ˜G∗
fx,hy,Rz

]

(t)
}

.

Similarly, it is easy to verify (.) for the other cases. Thus, all the conditions of The-
orem . are satisfied and  is the unique coincidence point of (f , F), (h, H), and (r, R).
Furthermore, noting that ff  = f , hh = h, and rr = r,  remains the common fixed
point of (f , F), (h, H), and (r, R).
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