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Abstract
In this paper, we generalize the algebraic sum ⊕ of Fang. Based on this concept, we
prove some common fixed point theorems for three pairs of self-mappings satisfying
the common (E.A) property in Menger PGM-spaces. Finally, an example is given to
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1 Introduction
As a generalization of a metric space, the concept of a probabilistic metric space has been
introduced by Menger [, ]. Fixed point theory in a probabilistic metric space is an impor-
tant branch of probabilistic analysis, and many results on the existence of fixed points or
solutions of nonlinear equations under various types of conditions in Menger PM-spaces
have been extensively studied by many scholars (see e.g. [, ]). In , Mustafa and
Sims [] introduced the concept of a generalized metric space, based on the notion of
a generalized metric space, many authors obtained many fixed point theorems for map-
pings satisfying different contractive conditions in generalized metric spaces (see [–]).
Moreover, Zhou et al. [] defined the notion of a generalized probabilistic metric space
or a PGM-space as a generalization of a PM-space and a G-metric space. After that, Zhu
et al. [] obtained some fixed point theorems.

In , Aamri and Moutawakil [] defined a property for a pair of mappings, i.e., the
so-called property (E.A), which is a generalization of the concept of noncompatibility. In
, Fang and Gang [] defined the property (E.A) for two mappings in Menger PM-
spaces and studied the existence of and common fixed points in such spaces. Recently,
Wu et al. [] defined a property for two hybrid pairs of mappings satisfying the common
property (E.A) in Menger PM-spaces. Gu and Yin [] introduced the concept of common
(E.A) property and obtained some common fixed point theorems for three pairs of self-
mappings satisfying the common (E.A) property in generalized metric spaces.
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The aim of this paper is to introduce the common (E.A) property in Menger PGM-
spaces, generalize the algebraic sum ⊕ in [], and study the common fixed point theorems
for three pairs of weakly compatible self-mappings under strict contractive conditions in
Menger PGM-spaces. Our results do not rely on any commuting or continuity condition
of the mappings.

2 Preliminaries
Throughout this paper, let R = (–∞, +∞), R+ = [, +∞), and Z

+ be the set of all positive
integers.

A mapping F : R → R
+ is called a distribution function if it is nondecreasing left-

continuous with supt∈R F(t) =  and inft∈R F(t) = .
We shall denote by D the set of all distribution functions while H will always denote the

specific distribution function defined by

H(t) =

{
, t ≤ ,
, t > .

A mapping � : [, ] × [, ] → [, ] is called a triangular norm (for short, a t-norm) if
the following conditions are satisfied:

() �(a, ) = a;
() �(a, b) = �(b, a);
() a ≥ b, c ≥ d ⇒ �(a, c) ≥ �(b, d);
() �(a,�(b, c)) = �(�(a, b), c).
A typical example of a t-norm is �m, where �m(a, b) = min{a, b}, for each a, b ∈ [, ].

Definition . [] A Menger probabilistic G-metric space (for short, a PGM-space) is a
triple (X, G∗,�), where X is a nonempty set, � is a continuous t-norm, and G∗ is a mapping
from X × X × X into D (G∗

x,y,z denotes the value of G∗ at the point (x, y, z)) satisfying the
following conditions:

(PGM-) G∗
x,y,z(t) =  for all x, y, z ∈ X and t >  if and only if x = y = z;

(PGM-) G∗
x,x,y(t) ≥ G∗

x,y,z(t) for all x, y, z ∈ X with z 
= y and t > ;
(PGM-) G∗

x,y,z(t) = G∗
x,z,y(t) = G∗

y,x,z(t) = · · · (symmetry in all three variables);
(PGM-) G∗

x,y,z(t + s) ≥ �(G∗
x,a,a(s), G∗

a,y,z(t)) for all x, y, z, a ∈ X and s, t ≥ .

Example . [] Let (X, G) be a G-metric space, where G(x, y, z) = |x – y| + |y – z| + |z – x|.
Define G∗

x,y,z(t) = t
t+G(x,y,z) for all x, y, z ∈ X. Then (X, G∗,�m) is a Menger PGM-space.

Definition . [] Let (X, G∗,�) be a Menger PGM-space and x be any point in X. For
any ε >  and δ with  < δ < , and (ε, δ)-neighborhood of x is the set of all points y in X
for which G∗

x,y,y(ε) >  – δ and G∗
y,x,x (ε) >  – δ. We write

Nx (ε, δ) =
{

y ∈ X : G∗
x,y,y(ε) >  – δ, G∗

y,x,x (ε) >  – δ
}

,

which means that Nx (ε, δ) is the set of all points y in X for which the probability of the
distance from x to y being less than ε is greater than  – δ.

Definition . [] Let (X, G∗,�) be a PGM-space, and {xn} is a sequence in X.
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() {xn} is said to be convergent to a point x ∈ X (write xn → x), if for any ε >  and
 < δ < , there exists a positive integer Mε,δ such that xn ∈ Nx (ε, δ) whenever
n > Mε,δ ;

() {xn} is called a Cauchy sequence, if for any ε >  and  < δ < , there exists a positive
integer Mε,δ such that G∗

xn ,xm ,xl
(ε) >  – δ whenever n, m, l > Mε,δ ;

() (X, G∗,�) is said to be complete, if every Cauchy sequence in X converges to a point
in X .

Remark . Let (X, G∗,�) be a Menger PGM-space, {xn} is a sequence in X. Then the
following are equivalent:

() {xn} is convergent to a point x ∈ X ;
() G∗

xn ,xn ,x(t) →  as n → ∞, for all t > ;
() G∗

xn ,x,x(t) →  as n → ∞, for all t > .

We can analogously prove the following lemma as in Menger PM-spaces.

Lemma . Let (X, G∗,�) be a Menger PGM-space with � a continuous t-norm, {xn}, {yn},
and {zn} be sequences in X and x, y, z ∈ X, if {xn} → x, {yn} → y, and {zn} → z as n → ∞.
Then

() lim infn→∞ G∗
xn ,yn ,zn (t) ≥ G∗

x,y,z(t) for all t > ;
() G∗

x,y,z(t + o) ≥ lim supn→∞ G∗
xn ,yn ,zn (t) for all t > .

Particularly, if t is a continuous point of Gx,y,z(·), then limn→∞ Gxn ,yn ,zn (t) = Gx,y,z(t).

Lemma . [] Let (X, G∗,�) be a Menger PGM-space. For each λ ∈ (, ], define a func-
tion G∗

λ by

G∗
λ(x, y, z) = inf

t

{
t ≥  : G∗

x,y,z(t) >  – λ
}

,

for x, y, z ∈ X, then
() G∗

λ(x, y, z) < t if and only if G∗
x,y,z(t) >  – λ;

() G∗
λ(x, y, z) =  for all λ ∈ (, ] if and only if x = y = z;

() G∗
λ(x, y, z) = G∗

λ(y, x, z) = G∗
λ(y, z, x) = · · · ;

() if � = �m, then for every λ ∈ (, ], G∗
λ(x, y, z) ≤ G∗

λ(x, a, a) + G∗
λ(a, y, z).

Definition . [] Let f and g be self-mappings of a set X. If w = fx = gx for some x in X,
then x is called a coincidence point of f and g , and w is called point of coincidence of f
and g .

Definition . Let S and T be two self-mappings of a Menger PGM-space (X, G∗,�).
S and T are said to be weakly compatible (or coincidentally commuting) if they commute
at their coincidence points, i.e., if Tu = Su for some u ∈ X implies that TSu = STu.

Definition . [] Let (X, d) be a G-metric space and A, B, S, and T four self-mappings
on X. The pairs (A, S) and (B, T) are said to satisfy the common (E.A) property if there exist
two sequences {xn} and {yn} in X such that limn→∞ Axn = limn→∞ Sxn = limn→∞ Byn =
limn→∞ Tyn = t for some t ∈ X.
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Definition . Let (X, G∗,�) be a Menger PGM-space and A, B, S, and T four self-
mappings on X. The pairs (A, S) and (B, T) are said to satisfy the common (E.A) prop-
erty if there exist two sequences xn and yn in X such that limn→∞ Axn = limn→∞ Sxn =
limn→∞ Byn = limn→∞ Tyn = t for some t ∈ X.

Definition . [] Let F, F ∈ D . The algebraic sum F ⊕ F of F and F is defined by

(F ⊕ F)(t) = sup
t+t=t

min
{

F(t), F(t)
}

(.)

for all t ∈ R.

As a generalization, we give the following definition.

Definition . Let F, F, F ∈ D . The algebraic sum F ⊕F ⊕F of F, F, and F is defined
by

(F ⊕ F ⊕ F)(t) = sup
t+t+t=t

min
{

F(t), F(t), F(t)
}

(.)

for all t ∈ R.

Remark . Let F(t) = H(t), then (.) and (.) are equivalent.

Definition . [] Let φ : R+ →R
+ be a function and φn(t) be the nth iteration of φ(t),

(i) φ is nondecreasing;
(ii) φ is upper semi-continuous from the right;

(iii)
∑∞

n= φn(t) < +∞ for all t > .
We define � the class of functions φ : R+ →R

+ satisfying conditions (i), (ii), and (iii).

Lemma . Let (X, G∗,�) be a Menger PGM-space and x, y, z ∈ X. If there exists φ ∈ �,
such that

G∗
x,y,z

(
φ(t) + o

) ≥ G∗
x,y,z(t), (.)

for all t > . Then x = y = z.

Proof Let λ ∈ (, ] and we put a = G∗
λ(x, y, z). Since φ(·) is upper semi-continuous from

the right at the point a, for given ε > , there exists s > a such that φ(s) < φ(a) + ε. By
Lemma ., s > G∗

λ(x, y, y) implies that G∗
x,y,z(s) >  – λ. So, it follows from (.) that

G∗
x,y,z

(
φ(s) + ε

) ≥ G∗
x,y,z

(
φ(s) + o

) ≥ G∗
x,y,z(s) >  – λ,

which implies that G∗
λ(x, y, z) < φ(s) + ε < φ(a) + ε. By the arbitrariness of ε, we get a =

G∗
λ(x, y, z) ≤ φ(a), thus a = , i.e., G∗

λ(x, y, z) = . By () of Lemma ., we conclude that
x = y = z. �
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3 Main results
In this section, we will establish some new common fixed point theorems in Menger PGM-
spaces.

Theorem . Let (X, G∗,�) be a Menger PGM-space. Suppose the self-mappings f , g , h,
R, S, and T : X → X satisfy the following conditions:

G∗
fx,gy,hz

(
φ(t)

) ≥ min
{

G∗
Rx,Sy,Tz(t), G∗

fx,Rx,Rx(t), G∗
gy,Sy,Sy(t), G∗

hz,Tz,Tz(t),[
G∗

fx,Sy,Tz ⊕ G∗
Rx,gy,Tz ⊕ G∗

Rx,Sy,hz
]
(t),[

G∗
fx,gy,Tz ⊕ G∗

fx,Sy,hz ⊕ G∗
Rx,gy,hz

]
(t)

}
(.)

for all x, y, and z ∈ X, t > , where φ ∈ �. If one of the following conditions is satisfied, then
the pairs (f , R), (g, S), and (h, T) have a common fixed point of coincidence in X:

(i) the subspace Rx is closed in X , fx ⊆ Sx, gx ⊆ Tx, and the two pairs of (f , R) and (g, S)
satisfy the common (E.A) property;

(ii) the subspace Sx is closed in X , gx ⊆ Tx, hx ⊆ Rx, and the two pairs of (g, S) and
(h, T) satisfy the common (E.A) property;

(iii) the subspace Tx is closed in X , fx ⊆ Sx, hx ⊆ Rx, and the two pairs of (f , R) and
(h, T) satisfy the common (E.A) property.

Moreover, if the pairs (f , R), (g, S), and (h, T) are weakly compatible, then f , g , h, R, S, and
T have a unique common fixed point in X.

Proof First, we suppose that the subspace Rx is closed in X, fx ⊆ Sx, gx ⊆ Tx, and the
two pairs of (f , R) and (g, S) satisfy the common (E.A) property. Then by Definition . we
know that there exist two sequences {xn} and {yn} in X such that

lim
n→∞ fxn = lim

n→∞ Rxn = lim
n→∞ gyn = lim

n→∞ Syn = t,

for some t ∈ X. Since gx ⊆ Tx, there exists a sequence {zn} in X such that gyn = Tzn. Hence
limn→∞ Tzn = a. Next, we will show limn→∞ hzn = a. In fact, if limn→∞ hzn = z 
= a, then
from (.) we can get

G∗
fxn ,gyn ,hzn

(
φ(t)

) ≥ min
{

G∗
Rxn ,Syn ,Tzn (t), G∗

fxn ,Rxn ,Rxn (t), G∗
gyn ,Syn ,Syn (t), G∗

hzn ,Tzn ,Tzn (t),[
G∗

fxn ,Syn ,Tzn ⊕ G∗
Rxn ,gyn ,Tzn ⊕ G∗

Rxn ,Syn ,hzn

]
(t),[

G∗
fxn ,gyn ,Tzn ⊕ G∗

fxn ,Syn ,hzn ⊕ G∗
Rxn ,gyn ,hzn

]
(t)

}
.

On letting n → ∞, and by () of Lemma ., we can obtain

G∗
a,a,z

(
φ(t) + o

) ≥ lim sup
n→∞

G∗
fxn ,gyn ,hzn

(
φ(t)

)
≥ min

{
, , , G∗

z,a,a(t),

lim
n→∞

[
G∗

fxn ,Syn ,Tzn ⊕ G∗
Rxn ,gyn ,Tzn ⊕ G∗

Rxn ,Syn ,hzn

]
(t),

lim
n→∞

[
G∗

fxn ,gyn ,Tzn ⊕ G∗
fxn ,Syn ,hzn ⊕ G∗

Rxn ,gyn ,hzn

]
(t)

}
. (.)
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In addition, by Definition ., it is easy to verify that

lim
n→∞

[
G∗

fxn ,Syn ,Tzn ⊕ G∗
Rxn ,gyn ,Tzn ⊕ G∗

Rxn ,Syn ,hzn

]
(t)

≥ lim
n→∞ min

{
G∗

fxn ,Syn ,Tzn (t), G∗
Rxn ,gyn ,Tzn (t), G∗

Rxn ,Syn ,hzn (t)
}

≥ min
{

G∗
a,a,a(t), G∗

a,a,a(t), G∗
a,a,z(t)

}
= G∗

a,a,z(t). (.)

Similarly, we also have

lim
n→∞

[
G∗

fxn ,gyn ,Tzn ⊕ G∗
fxn ,Syn ,hzn ⊕ G∗

Rxn ,gyn ,hzn

]
(t) ≥ G∗

a,a,z(t).

Then (.) is

G∗
a,a,z

(
φ(t) + o

) ≥ G∗
a,a,z(t)

for all t > . By Lemma ., we have a = z. So, limn→∞ hzn = a.
Since Rx is a closed subset of X and limn→∞ Rxn = a, there exists p ∈ X such that a = Rp,

we claim that fp = a. Suppose not, then by using (.), we obtain

G∗
fp,gyn ,hzn

(
φ(t)

) ≥ min
{

G∗
Rp,Syn ,Tzn (t), G∗

fp,Rp,Rp(t), G∗
gyn ,Syn ,Syn (t), G∗

hzn ,Tzn ,Tzn (t),[
G∗

fp,Syn ,Tzn ⊕ G∗
Rp,gyn ,Tzn ⊕ G∗

Rp,Syn ,hzn

]
(t),[

G∗
fp,gyn ,Tzn ⊕ G∗

fp,Syn ,hzn ⊕ G∗
Rp,gyn ,hzn

]
(t)

}
.

Taking n → ∞ on the two sides of the above inequality, similar to (.), we get

G∗
fp,a,a

(
φ(t) + o

) ≥ min
{

, G∗
fp,a,a(t), , , lim

n→∞
[
G∗

fp,Syn ,Tzn ⊕ G∗
Rp,gyn ,Tzn ⊕ G∗

Rp,Syn ,hzn

]
(t),

lim
n→∞

[
G∗

fp,gyn ,Tzn ⊕ G∗
fp,Syn ,hzn ⊕ G∗

Rp,gyn ,hzn

]
(t)

}
≥ min

{
, G∗

fp,a,a(t), , , G∗
fp,a,a(t), G∗

fp,a,a(t)
}

= G∗
fp,a,a(t).

By Lemma ., we have fp = a = Rp. Hence, p is the coincidence point of the pair (f , R).
By condition fx ⊆ Sx and fp = a, there exists u ∈ X such that a = Su. Now we claim that

gu = a. In fact, if gu 
= a, then from (.), we have

G∗
fp,gu,hzn

(
φ(t)

) ≥ min
{

G∗
Rp,Su,Tzn (t), G∗

fp,Rp,Rp(t), G∗
gu,Su,Su(t), G∗

hzn ,Tzn ,Tzn (t),[
G∗

fp,Su,Tzn ⊕ G∗
Rp,gu,Tzn ⊕ G∗

Rp,Su,hzn

]
(t),[

G∗
fp,gu,Tzn ⊕ G∗

fp,Su,hzn ⊕ G∗
Rp,gu,hzn

]
(t)

}
.

Letting n → ∞ on the two sides of the above inequality, we get

G∗
a,gu,a

(
φ(t) + o

) ≥ min
{

, , G∗
gu,a,a(t), , lim

n→∞
[
G∗

fp,Su,Tzn ⊕ G∗
Rp,gu,Tzn ⊕ G∗

Rp,Su,hzn

]
(t),

lim
n→∞

[
G∗

fp,gu,Tzn ⊕ G∗
fp,Su,hzn ⊕ G∗

Rp,gu,hzn

]
(t)

}
≥ min

{
, , G∗

gu,a,a(t), , G∗
a,gu,a(t), G∗

a,gu,a(t)
}

= G∗
a,gu,a(t).
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By Lemma ., we can also obtain gu = a, and so u is the coincidence point of the pair
(g, S).

Since gX ⊆ TX, there exists v ∈ X such that a = Tv. We claim that hv = a. If not, from
(.), we have

G∗
fp,gu,hv

(
φ(t) + o

) ≥ G∗
fp,gu,hv

(
φ(t)

)
≥ min

{
G∗

Rp,Su,Tv(t), G∗
fp,Rp,Rp(t), G∗

gu,Su,Su(t), G∗
hv,Tv,Tv(t),[

G∗
fp,Su,Tv ⊕ G∗

Rp,gu,Tv ⊕ G∗
Rp,Su,hv

]
(t),[

G∗
fp,gu,Tv ⊕ G∗

fp,Su,hv ⊕ G∗
Rp,gu,hv

]
(t)

}
≥ min

{
, , , G∗

hv,a,a(t),
[
G∗

a,a,a ⊕ G∗
a,a,a ⊕ G∗

a,a,hv
]
(t),[

G∗
a,a,a ⊕ G∗

a,a,hv ⊕ G∗
a,a,hv

]
(t)

}
≥ min

{
, , , G∗

hv,a,a(t), G∗
a,a,hv(t), G∗

a,a,hv(t)
}

= G∗
a,a,hv(t).

By Lemma ., we have hv = a = Tv, so v is the coincidence point of the pair (h, T).
Therefore, in all the above cases, we obtain fp = Rp = a, gu = Su = hv = Tv = a. Now, weak

compatibility of the pairs (f , R), (g, S), and (h, T) give fa = Ra, ga = Sa, and ha = Ta.
Next, we show that fa = a. In fact, if fa 
= a, then from (.) we have

G∗
fa,a,a

(
φ(t) + o

) ≥ min
{

G∗
Ra,Su,Tv(t), G∗

fa,Ra,Ra(t), G∗
gu,Su,Su(t), G∗

hv,Tv,Tv(t),[
G∗

fa,Su,Tv ⊕ G∗
Ra,gu,Tv ⊕ G∗

Ra,Su,hv
]
(t),[

G∗
fa,gu,Tv ⊕ G∗

fa,Su,hv ⊕ G∗
Ra,gu,hv

]
(t)

}
≥ min

{
G∗

Ra,a,a(t), , , ,
[
G∗

fa,a,a ⊕ G∗
Ra,a,a ⊕ G∗

Ra,a,a
]
(t),[

G∗
fa,a,a ⊕ G∗

fa,a,hv ⊕ G∗
Ra,a,a

]
(t)

}
≥ min

{
, , , G∗

fa,a,a(t), G∗
fa,a,a(t), G∗

fa,a,a(t)
}

= G∗
fa,a,a(t).

From Lemma . we know fa = a and so fa = Ra = a. Similarly, it can be show that ga =
Sa = a and ha = Ta = a, so we get fa = ga = ha = Ra = Sa = Ta = a, which means that a is a
common fixed point of f , g , h, R, S, and T .

Next, we will show the uniqueness. Actually, suppose that w ∈ X, w 
= a is another com-
mon fixed point of f , g , h, R, S, and T . Then by (.), we have

G∗
w,a,a

(
φ(t) + o

) ≥ min
{

G∗
Rw,Sa,Ta(t), G∗

fw,Rw,Rw(t), G∗
ga,Sa,Sa(t), G∗

ha,Ta,Ta(t),[
G∗

fw,Sa,Ta ⊕ G∗
Rw,ga,Ta ⊕ G∗

Rw,Sa,ha
]
(t),[

G∗
fw,ga,Ta ⊕ G∗

fw,Sa,ha ⊕ G∗
Rw,ga,ha

]
(t)

}
≥ min

{
G∗

w,a,a(t), , , ,
[
G∗

fa,a,a ⊕ G∗
w,a,a ⊕ G∗

w,a,a
]
(t),[

G∗
w,a,a ⊕ G∗

w,a,hv ⊕ G∗
w,a,a

]
(t)

}
≥ min

{
, , , G∗

w,a,a(t), G∗
w,a,a(t), G∗

w,a,a(t)
}

= G∗
w,a,a(t).

By Lemma . we have a = w, a contradiction, so, f , g , h, R, S, and T have a unique common
fixed point.
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Finally, if condition (ii) or (iii) holds, then the argument is similar to the above, so we
omit it. This completes the proof of Theorem .. �

Taking φ(t) = λt, λ ∈ (, ), then we can obtain the following results.

Corollary . Let (X, G∗,�) be a Menger PGM-space. Suppose the self-mappings f , g , h,
R, S, and T : X → X satisfy the following conditions:

G∗
fx,gy,hz(λt) ≥ min

{
G∗

Rx,Sy,Tz(t), G∗
fx,Rx,Rx(t), G∗

gy,Sy,Sy(t), G∗
hz,Tz,Tz(t),[

G∗
fx,Sy,Tz ⊕ G∗

Rx,gy,Tz ⊕ G∗
Rx,Sy,hz

]
(t),[

G∗
fx,gy,Tz ⊕ G∗

fx,Sy,hz ⊕ G∗
Rx,gy,hz

]
(t)

}

for all x, y, and z ∈ X, where λ ∈ (, ). If one of the following conditions is satisfied, then the
pairs (f , R), (g, S), and (h, T) have a common fixed point of coincidence in X:

(i) the subspace Rx is closed in X , fx ⊆ Sx, gx ⊆ Tx, and the two pairs of (f , R) and (g, S)
satisfy the common (E.A) property;

(ii) the subspace Sx is closed in X , gx ⊆ Tx, hx ⊆ Rx, and the two pairs of (g, S) and
(h, T) satisfy the common (E.A) property;

(iii) the subspace Tx is closed in X , fx ⊆ Sx, hx ⊆ Rx, and the two pairs of (f , R) and
(h, T) satisfy the common (E.A) property.

Moreover, if the pairs (f , R), (g, S), and (h, T) are weakly compatible, the f , g , h, R, S, and
T have a unique common fixed point in X.

Theorem . Let (X, G∗,�) be a Menger PGM-space. Suppose self-mappings f , g , h, R, S,
and T : X → X satisfying the following conditions:

G∗
fx,gy,hz(t) ≥ ψ

{
m(x, y, z, t)

}
(.)

for all x, y, and z ∈ X, where

m(x, y, z, t) = min
{

G∗
Rx,Sy,Tz(t), G∗

fx,Rx,Rx(t), G∗
gy,Sy,Sy(t), G∗

hz,Tz,Tz(t),[
G∗

fx,Sy,Tz ⊕ G∗
Rx,gy,Tz ⊕ G∗

Rx,Sy,hz
]
(t),[

G∗
fx,gy,Tz ⊕ G∗

fx,Sy,hz ⊕ G∗
Rx,gy,hz

]
(t)

}
,

ψ is continuous and ψ(t) > t for all t > . If one of the following conditions is satisfied, then
the pairs (f , R), (g, S), and (h, T) have a common fixed point of coincidence in X:

(i) the subspace Rx is closed in X , fx ⊆ Sx, gx ⊆ Tx, and the two pairs of (f , R) and (g, S)
satisfy the common (E.A) property;

(ii) the subspace Sx is closed in X , gx ⊆ Tx, hx ⊆ Rx, and the two pairs of (g, S) and
(h, T) satisfy the common (E.A) property;

(iii) the subspace Tx is closed in X , fx ⊆ Sx, hx ⊆ Rx, and the two pairs of (f , R) and
(h, T) satisfy the common (E.A) property.

Moreover, if the pairs (f , R), (g, S), and (h, T) are weakly compatible, the f , g , h, R, S, and
T have a unique common fixed point in X.
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Proof First, we suppose that condition (i) is satisfied. Then there exist two sequences {xn}
and {yn} in X such that

lim
n→∞ fxn = lim

n→∞ Rxn = lim
n→∞ gyn = lim

n→∞ Syn = t,

for some t ∈ X.
Since gx ⊆ Tx, there exists a sequence {zn} in X such that gyn = Tzn. Hence limn→∞ Tzn =

a. We claim that limn→∞ hzn = a. In fact, if limn→∞ hzn = z 
= a, it is not difficult to prove
that there exists t >  such that

ψ
(
G∗

a,a,z(t)
)

> G∗
a,a,z(t). (.)

If not, we have G∗
a,a,z(t) ≥ ψ(G∗

a,a,z(t)) > G∗
a,a,z(t) for all t > , which is a contradiction. Then

by (.), there exists t >  such that

G∗
fxn ,gyn ,hzn (t) ≥ ψ

{
m(xn, yn, zn, t)

}
, (.)

where

ψ
{

m(xn, yn, zn, t)
}

= ψ
{
min

{
G∗

Rxn ,Syn ,Tzn (t), G∗
fxn ,Rxn ,Rxn (t), G∗

gyn ,Syn ,Syn (t), G∗
hzn ,Tzn ,Tzn (t),[

G∗
fxn ,Syn ,Tzn ⊕ G∗

Rxn ,gyn ,Tzn ⊕ G∗
Rxn ,Syn ,hzn

]
(t),[

G∗
fxn ,gyn ,Tzn ⊕ G∗

fxn ,Syn ,hzn ⊕ G∗
Rxn ,gyn ,hzn

]
(t)

}}
. (.)

Letting n → ∞ in (.) and by the property of ψ , we can obtain

lim
n→∞ψ

{
m(xn, yn, zn, t)

}
= ψ

{
lim

n→∞ min
{

G∗
Rxn ,Syn ,Tzn (t), G∗

fxn ,Rxn ,Rxn (t), G∗
gyn ,Syn ,Syn (t), G∗

hzn ,Tzn ,Tzn (t),
[
G∗

fxn ,Syn ,Tzn ⊕ G∗
Rxn ,gyn ,Tzn ⊕ G∗

Rxn ,Syn ,hzn

]
(t),[

G∗
fxn ,gyn ,Tzn ⊕ G∗

fxn ,Syn ,hzn ⊕ G∗
Rxn ,gyn ,hzn

]
(t)

}}
. (.)

As the proof of Theorem ., we know

lim
n→∞

[
G∗

fxn ,Syn ,Tzn ⊕ G∗
Rxn ,gyn ,Tzn ⊕ G∗

Rxn ,Syn ,hzn

]
(t) ≥ G∗

a,a,z(t),

lim
n→∞

[
G∗

fxn ,gyn ,Tzn ⊕ G∗
fxn ,Syn ,hzn ⊕ G∗

Rxn ,gyn ,hzn

]
(t) ≥ G∗

a,a,z(t).

Then (.) is

lim
n→∞ψ

{
m(xn, yn, zn, t)

} ≥ ψ
{
min

{
, , , G∗

z,a,a(t), G∗
z,a,a(t), G∗

z,a,a(t)
}}

= ψ
{

G∗
z,a,a(t)

}
. (.)
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Without loss of generality, we assume that t in (.) is a continuous point of Ga,a,z(·). By
the left-continuity of the distribution function and the continuity of ψ , there exists δ > 
such that

ψ
(
G∗

a,a,z(t)
)

> G∗
a,a,z(t),

for all t ∈ (t – δ, t]. Since Ga,a,z(·) is nondecreasing, the set of all discontinuous points of
Ga,a,z(·) is a countable set at most. Thus, when t is a discontinuous point of GTa,Ta,Sa(·),
we can choose a continuous point t of GTa,Ta,Sa(·) in (t – δ, t] to replace t.

Let n → ∞ in (.), then we have G∗
a,a,z(t) ≥ ψ{G∗

a,a,z(t)}, which contradicts (.). Then
a = z, limn→∞ hzn = a.

Since Rx is a closed subset of X and limn→∞ Rxn = a, there exists p in X such that a = Rp,
we claim that fp = a. Suppose not, then by using (.), we obtain

G∗
fp,gyn ,hzn (t) ≥ ψ

{
min

{
G∗

Rp,Syn ,Tzn (t), G∗
fp,Rp,Rp(t), G∗

gyn ,Syn ,Syn (t), G∗
hzn ,Tzn ,Tzn (t),[

G∗
fp,Syn ,Tzn ⊕ G∗

Rp,gyn ,Tzn ⊕ G∗
Rp,Syn ,hzn

]
(t),[

G∗
fp,gyn ,Tzn ⊕ G∗

fp,Syn ,hzn ⊕ G∗
Rp,gyn ,hzn

]
(t)

}}
.

Similarly, we can get fp = Rp = a. Hence, p is the coincidence point of the pair (f , R).
By the condition fx ⊆ Sx and fp = a, there exists u ∈ X such that a = Su. Now we claim

that gu = a. In fact, if gu 
= a, then from (.), we have

G∗
fp,gu,hzn (t) ≥ ψ

{
min

{
G∗

Rp,Su,Tzn (t), G∗
fp,Rp,Rp(t), G∗

gu,Su,Su(t), G∗
hzn ,Tzn ,Tzn (t),[

G∗
fp,Su,Tzn ⊕ G∗

Rp,gu,Tzn ⊕ G∗
Rp,Su,hzn

]
(t),[

G∗
fp,gu,Tzn ⊕ G∗

fp,Su,hzn ⊕ G∗
Rp,gu,hzn

]
(t)

}}
;

in the same way, we can also obtain gu = a, and so u is the coincidence point of the pair
(g, S).

Since gX ⊂ TX, there exists v ∈ X such that a = Tv. We claim that hv = a. If not, from
(.) and the property of ψ , we have

G∗
fp,gu,hv(t) ≥ ψ

{
min

{
G∗

Rp,Su,Tv(t), G∗
fp,Rp,Rp(t), G∗

gu,Su,Su(t), G∗
hv,Tv,Tv(t),[

G∗
fp,Su,Tv ⊕ G∗

Rp,gu,Tv ⊕ G∗
Rp,Su,hv

]
(t),[

G∗
fp,gu,Tv ⊕ G∗

fp,Su,hv ⊕ G∗
Rp,gu,hv

]
(t)

}}
= ψ

{
min

{
, , , G∗

hv,a,a(t),
[
G∗

a,a,a ⊕ G∗
a,a,a ⊕ G∗

a,a,hv
]
(t),[

G∗
a,a,a ⊕ G∗

a,a,hv ⊕ G∗
a,a,hv

]
(t)

}}
≥ ψ

{
min

{
, , , G∗

hv,a,a(t), G∗
a,a,hv(t), G∗

a,a,hv(t)
}}

= ψ
{

G∗
a,a,hv(t)

}
> G∗

a,a,hv(t),

a contradiction. Hence hv = Tv = a, and so v is the coincidence point of the pair (h, T).
Therefore, in all the above cases, we obtain fp = Rp = a, gu = Su = a, and hv = Tv = a.

Now, the weak compatibility of the pairs (f , R), (g, S), and (h, T) give fa = Ra, ga = Sa, and
ha = Ta.
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Next, we show that fa = a. In fact, if fa 
= a, then from (.) we have

G∗
fa,a,a(t) ≥ ψ

{
min

{
G∗

Ra,Su,Tv(t), G∗
fa,Ra,Ra(t), G∗

gu,Su,Su(t), G∗
hv,Tv,Tv(t),[

G∗
fa,Su,Tv ⊕ G∗

Ra,gu,Tv ⊕ G∗
Ra,Su,hv

]
(t),

[
G∗

fa,gu,Tv ⊕ G∗
fa,Su,hv ⊕ G∗

Ra,gu,hv
]
(t)

}}
= ψ

{
min

{
G∗

Ra,a,a(t), , , ,
[
G∗

fa,a,a ⊕ G∗
Ra,a,a ⊕ G∗

Ra,a,a
]
(t),[

G∗
fa,a,a ⊕ G∗

fa,a,hv ⊕ G∗
Ra,a,a

]
(t)

}}
≥ ψ

{
min

{
, , , G∗

fa,a,a(t), G∗
fa,a,a(t), G∗

fa,a,a(t)
}}

= ψ
{

G∗
fa,a,a(t)

}
> G∗

fa,a,a(t),

which is a contradiction, hence fa = a and so fa = Ra = a. Similarly, it can be shown that
ga = Sa = a and ha = Ta = a, so we get fa = ga = ha = Ra = Sa = Ta = a, which means that
a is a common fixed point of f , g , h, R, S, and T .

Next, we will show the uniqueness. Actually, suppose that w ∈ X, w 
= a is another com-
mon fixed point of f , g , h, R, S, and T . Then by (.), we have

G∗
w,a,a(t) ≥ ψ

{
min

{
G∗

Rw,Sa,Ta(t), G∗
fw,Rw,Rw(t), G∗

ga,Sa,Sa(t), G∗
ha,Ta,Ta(t),[

G∗
fw,Sa,Ta ⊕ G∗

Rw,ga,Ta ⊕ G∗
Rw,Sa,ha

]
(t),[

G∗
fw,ga,Ta ⊕ G∗

fw,Sa,ha ⊕ G∗
Rw,ga,ha

]
(t)

}}
≥ ψ

{
min

{
G∗

w,a,a(t), , , ,
[
G∗

fa,a,a ⊕ G∗
w,a,a ⊕ G∗

w,a,a
]
(t),[

G∗
w,a,a ⊕ G∗

w,a,hv ⊕ G∗
w,a,a

]
(t)

}}
≥ ψ

{
min

{
, , , G∗

w,a,a(t), G∗
w,a,a(t), G∗

w,a,a(t)
}}

= ψ
{

G∗
w,a,a(t)

}
> G∗

w,a,a(t),

which is a contradiction, so f , g , h, R, S, and T have a unique common fixed point.
Finally, if condition (ii) or (iii) holds, then the argument is similar to the above, so we

omit it. This completes the proof of Theorem .. �

Taking ψ(t) = ρt, ρ ∈ (, +∞), then we can obtain the following results.

Corollary . Let (X, G∗,�) be a Menger PGM-space. Suppose the self-mappings f , g , h,
R, S, and T : X → X satisfy the following conditions:

G∗
fx,gy,hz(t) ≥ ρ min

{
G∗

Rx,Sy,Tz(t), G∗
fx,Rx,Rx(t), G∗

gy,Sy,Sy(t), G∗
hz,Tz,Tz(t),[

G∗
fx,Sy,Tz ⊕ G∗

Rx,gy,Tz ⊕ G∗
Rx,Sy,hz

]
(t),[

G∗
fx,gy,Tz ⊕ G∗

fx,Sy,hz ⊕ G∗
Rx,gy,hz

]
(t)

}
,

for all x, y, and z ∈ X, where ρ ∈ (, +∞). If one of the following conditions is satisfied, then
the pairs (f , R), (g, S), and (h, T) have a common fixed point of coincidence in X:

(i) the subspace Rx is closed in X , fx ⊆ Sx, gx ⊆ Tx, and the two pairs of (f , R) and (g, S)
satisfy the common (E.A) property;
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(ii) the subspace Sx is closed in X , gx ⊆ Tx, hx ⊆ Rx, and the two pairs of (g, S) and
(h, T) satisfy the common (E.A) property;

(iii) the subspace Tx is closed in X , fx ⊆ Sx, hx ⊆ Rx, and the two pairs of (f , R) and
(h, T) satisfy the common (E.A) property.

Moreover, if the pairs (f , R), (g, S), and (h, T) are weakly compatible, the f , g , h, R, S, and
T have a unique common fixed point in X.

4 An application
In this section, we will provide an example to exemplify the validity of the main result.

Example . Let X = [, ], G∗
x,y,z(t) = t

t+|x–y|+|y–z|+|z–x| , from Example ., we know
(X, G∗,�) is a PGM-space. We define the mappings f , g , h, R, S, and T by

fx =

{
, x ∈ [, 

 ],

 , x ∈ ( 

 , ],
gx =

{
, x ∈ [, 

 ],

 , x ∈ ( 

 , ],

hx =

{
, x ∈ [, 

 ],

 , x ∈ ( 

 , ],
Rx =

{
, x ∈ [, 

 ],

 , x ∈ ( 

 , ],

Sx =

⎧⎪⎨
⎪⎩

, x ∈ [, 
 ),


 , x = 

 ,

 , x ∈ ( 

 , ],
Tx =

⎧⎪⎨
⎪⎩

, x ∈ [, 
 ],


 , x = 

 ,

 , x ∈ ( 

 , ].

Noting that f , g , h, R, S, and T are discontinuous mappings, RX is closed in X. From the
definition of f , g , h, R, S, and T , we have fx ⊆ Sx, gx ⊆ Tx; let xn = 

n + 
 , yn = 

n + 
 , then

the pairs (f , R) and (g, S) satisfy the common (E.A) property. Thus, the condition (i) in
Theorem . is satisfied. It is not difficult to find that (f , R), (g, S), and (h, T) are weakly
compatible. Let φ(t) = 

 (t). Next we will show that (.) is also satisfied.
To prove (.), we just need to show G∗

fx,gy,hz(φ(t)) ≥ G∗
Rx,Sy,Tz(t); we discuss the following

cases.
Case (). For x, y, z ∈ [, 

 ], we have G∗
fx,gy,hz(φ(t)) = , then (.) is obviously satisfied.

Case (). For x, y, z ∈ ( 
 , ], we have

G∗
fx,gy,hz

(
φ(t)

)
=

t
t + 


≥ t

t + 


= G∗
Rx,Sy,Tz(t).

Case (). For x, y ∈ [, 
 ], z ∈ ( 

 , ], it is not difficult to find that G∗
Rx,Sy,Tz(t) = t

t+ 


, neither

y ∈ [, 
 ) nor y = 

 . On the other hand, G∗
fx,gy,hz(φ(t)) = t

t+ 


, we have

G∗
fx,gy,hz

(
φ(t)

) ≥ G∗
Rx,Sy,Tz(t).

Case (). For x, z ∈ [, 
 ], y ∈ ( 

 , ], similar to Case (), we have

G∗
fx,gy,hz

(
φ(t)

)
=

t
t + 


≥ t

t + 


= G∗
Rx,Sy,Tz(t).

Case (). For y, z ∈ [, 
 ], x ∈ ( 

 , ], we have G∗
fx,gy,hz(φ(t)) = t

t+ 


. Next we divide the study
into two subcases.
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(a) If y = z = 
 , x ∈ ( 

 , ], we have G∗
Rx,Sy,Tz(t) = t

t+ 


, then

G∗
fx,gy,hz

(
φ(t)

) ≥ G∗
Rx,Sy,Tz(t).

(b) If y 
= 
 or z 
= 

 , x ∈ ( 
 , ], we have G∗

Rx,Sy,Tz(t) = t
t+ 


, then

G∗
fx,gy,hz

(
φ(t)

) ≥ G∗
Rx,Sy,Tz(t)

is also satisfied.
Case (). For x ∈ [, 

 ], y, z ∈ ( 
 , ], we have

G∗
fx,gy,hz

(
φ(t)

)
=

t
t + 


≥ t

t + 


= G∗
Rx,Sy,Tz(t).

Case (). For y ∈ [, 
 ], x, z ∈ ( 

 , ], we have G∗
fx,gy,hz(φ(t)) = t

t+ 


. Next we divide the study
into two subcases.

(a) If y ∈ [, 
 ), x, z ∈ ( 

 , ], we have G∗
Rx,Sy,Tz(t) = t

t+ 


, then

G∗
fx,gy,hz

(
φ(t)

) ≥ G∗
Rx,Sy,Tz(t).

(b) If y = 
 , x, z ∈ ( 

 , ], we have G∗
Rx,Sy,Tz(t) = t

t+ 


, then

G∗
fx,gy,hz

(
φ(t)

) ≥ G∗
Rx,Sy,Tz(t).

Case (). For z ∈ [, 
 ], x, y ∈ ( 

 , ], we have G∗
fx,gy,hz(φ(t)) = t

t+ 


. Next we divide the study
into two subcases.

(a) If z ∈ [, 
 ), x, y ∈ ( 

 , ], we have G∗
Rx,Sy,Tz(t) = t

t+ 


, then

G∗
fx,gy,hz

(
φ(t)

) ≥ G∗
Rx,Sy,Tz(t).

(b) If z = 
 , x, y ∈ ( 

 , ], we have G∗
Rx,Sy,Tz(t) = t

t+ 


, then

G∗
fx,gy,hz

(
φ(t)

) ≥ G∗
Rx,Sy,Tz(t).

Then in all the above cases, f , g , h, R, S, and T satisfy the conditions (.) and (i) of
Theorem .. So, f , g , h, R, S, and T have a unique common fixed point in [, ]. In fact, 
is the unique common fixed point of f , g , h, R, S, and T .
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6. Abbas, M, Nazir, T, Radenović, S: Some periodic point results in generalized metric spaces. Appl. Math. Comput.

217(8), 4094-4099 (2010)
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