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Abstract
In this paper, we propose two descent alternating direction methods based on a
logarithmic-quadratic proximal method for structured variational inequalities. The first
method can be viewed as an extension of the method proposed by Bnouhachem
and Xu (Comput. Math. Appl. 67:671-680, 2014) by performing an additional step at
each iteration. The second method generates the new iterate by searching the
optimal step size along a new descent direction, which can be viewed as a
refinement and improvement of the first one. Under certain conditions, the global
convergence of the both methods is proved.
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1 Introduction
We consider the constrained convex programming problem with the following separate
structure:

min
{
θ(x) + θ(y)|Ax + By = b, x ∈Rn

+, y ∈Rm
+
}

, (.)

where θ : Rn
+ → R and θ : Rm

+ → R are closed proper convex functions, A ∈ Rl×n,
B ∈Rl×m are given matrices, and b ∈Rl is a given vector.

A large number of problems can be modeled as problem (.). In practice, these classes
of problems have very large size and, due to their practical importance, they have received
a great deal of attention from many researchers. Various methods have been suggested to
find the solution of problem (.). A popular approach is the alternating direction method
(ADM) which was proposed by Gabay and Mercier [] and Gabay []. The ADM can re-
duce the scale of variational inequalities by decomposing the original problem into a series
of subproblems with a lower scale. To make the ADM more efficient and practical, some
strategies have been studied; For further details, we refer to [–] and the references
therein.

Let ∂(·) denote the sub-gradient operator of a convex function, and f (x) ∈ ∂θ(x) and
g(y) ∈ ∂θ(y) are the sub-gradient of θ(x) and θ(y), respectively. By attaching a Lagrange
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multiplier vector λ ∈Rl to the linear constraint Ax + By = b, problem (.) can be written
in terms of finding w ∈W such that

(
w′ – w

)�Q(w) ≥ , ∀w′ ∈W , (.)

where

w =

⎛

⎜
⎝

x
y
λ

⎞

⎟
⎠ , Q(w) =

⎛

⎜
⎝

f (x) – A�λ

g(y) – B�λ

Ax + By – b

⎞

⎟
⎠ , W = Rn

+ ×Rm
+ ×Rl. (.)

Problem (.)-(.) is referred to as structured variational inequalities (in short, SVI).
Very recently, Yuan and Li [] developed the following logarithmic-quadratic proximal

(LQP)-based decomposition method by applying the LQP terms to regularize the ADM
subproblems: For a given wk = (xk , yk ,λk) ∈ Rn

++ ×Rm
++ ×Rl , and μ ∈ (, ), the new iter-

ative (xk+, yk+,λk+) is obtained via solving the following system:

f (x) – A�[
λk – H

(
Ax + Byk – b

)]
+ R

[(
x – xk) + μ

(
xk – X

k x–)] = , (.)

g(y) – B�[
λk – H(Ax + By – b)

]
+ S

[(
y – yk) + μ

(
yk – Y 

k y–)] = , (.)

λk+ = λk – H
(
Axk + Byk – b

)
, (.)

where H ∈Rl×l , R ∈Rn×n, and S ∈Rm×m are symmetric positive definite.
Note that the LQP method was presented originally in []. It seems that it is easier to

solve a series of systems of nonlinear equations than to solve a series of sub-variational
inequalities in many cases. Later, Bnouhachem et al. [], Bnouhachem and Ansari [],
and Li [] proposed some LQP alternating direction methods and made the LQP alter-
nating direction method more practical. Each iteration of the above methods contains a
prediction and a correction. The predictor is obtained via solving (.)-(.) and the new
iterate is obtained by a convex combination of the previous point and the one generated
by a projection-type method along a descent direction for [, ]. In , Bnouhachem
and Xu [] proposed the following LQP alternating direction: For a given wk = (xk , yk ,λk) ∈
Rn

++ ×Rm
++ ×Rl , and μ ∈ (, ), the predictor w̃k = (x̃k , ỹk , λ̃k) ∈Rn

++ ×Rm
++ ×Rl is obtained

via solving the following system:

f (x) – A�[
λk – H(Ax + By – b)

]
+ R

[(
x – xk) + μ

(
xk – X

k x–)] =: ξ k
x ≈ , (.a)

g(y) – B�[
λk – H(Ax + By – b)

]
+ S

[(
y – yk) + μ

(
yk – Y 

k y–)] =: ξ k
y ≈ , (.b)

λ̃k = λk – H
(
Ax̃k + Bỹk – b

)
, (.c)

where

∥∥G–ξ k∥∥
G ≤  – μ

 + μ
η∥∥wk – w̃k∥∥

G, η ∈ (, ), (.)

ξ k =

⎛

⎜
⎝

ξ k
x

ξ k
y



⎞

⎟
⎠ , (.)



Bnouhachem et al. Fixed Point Theory and Applications  (2015) 2015:137 Page 3 of 11

and

G =

⎛

⎜
⎝

( + μ)R
( + μ)S

H–

⎞

⎟
⎠ (.)

is a positive definite (block diagonal) matrix.
Take the new iterate wk+ = (xk+, yk+,λk+) as the solution of the following system:

τ
[
f
(
x̃k) – A�λ̃k] + R

[(
x – xk) + μ

(
xk – X

k x–)] = , (.a)

τ
[
g
(
ỹk) – B�λ̃k] + S

[(
y – yk) + μ

(
yk – Y 

k y–)] = , (.b)

λk+ = λk – τH
(
Ax̃k + Bỹk – b

)
. (.c)

Each iteration of the above method contains a prediction and a correction. The predictor
is obtained via solving (.)-(.) and the new iterate is computed directly by an explicit
formula derived from the original LQP method.

Inspired and motivated by the above research, we present two methods to solve SVI.
The first one can be viewed as an extension of the method proposed in [] by performing
an additional step at each iteration. The second method can be viewed as an extension of
the first one by using a new descent direction which provides a significant refinement and
improvement of the first one. We also study the global convergence of the both methods
method under certain conditions.

2 Iterative methods and convergence results
In this section, we suggest and analyze two new modified logarithmic-quadratic proximal
alternating direction methods for solving structured variational inequalities. The follow-
ing lemma provides some basic properties of the projection onto �.

Lemma . Let G be a symmetry positive definite matrix and � be a nonempty closed
convex subset of Rl . We denote by P�,G(·) the projection under the G-norm, that is,

P�,G(v) = argmin
{‖v – u‖G : u ∈ �

}
.

Then

(
z – P�,G[z]

)�G
(
P�,G[z] – v

) ≥ , ∀z ∈ Rl, v ∈ �; (.)
∥∥P�,G[u] – P�,G[v]

∥∥
G ≤ ‖u – v‖G, ∀u, v ∈ Rl; (.)

∥∥u – P�,G[z]
∥∥

G ≤ ‖z – u‖
G –

∥∥z – P�,G[z]
∥∥

G, ∀z ∈ Rl, u ∈ �. (.)

For convenience, we make the following standard assumptions to guarantee that the
problem under consideration is solvable and the proposed methods are well defined.

Assumption A f (x) is monotone with respect to Rn
++ and g(y) is monotone with respect

to Rm
++.
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Assumption B The solution set of SVI, denoted by W∗, is nonempty.

Then the iterative scheme of the first method is given as follows.

Algorithm .
Step . The initial step:

Given ε > , μ ∈ (, ) and w = (x, y,λ) ∈Rn
++ ×Rm

++ ×Rl . Set k = .
Step . Prediction step:

Compute w̃k = (x̃k , ỹk , λ̃k) ∈Rn
++ ×Rm

++ ×Rl by solving the system (.a)-(.c).
Step . Convergence verification:

If {max‖xk – x̃k‖∞,‖yk – ỹk‖∞,‖λk – λ̃k‖∞} < ε, then stop.
Step . Correction step:

Compute w̄k = (x̄k , ȳk , λ̄k) by solving the following system:

 – μ

 + μ
αk

[
f
(
x̃k) – A�λ̃k] + R

[(
x – xk) + μ

(
xk – X

k x–)] = , (.a)

 – μ

 + μ
αk

[
g
(
ỹk) – B�λ̃k] + S

[(
y – yk) + μ

(
yk – Y 

k y–)] = , (.b)

λk+ = λk –
 – μ

 + μ
αkH

(
Ax̃k + Bỹk – b

)
, (.c)

where

αk =
ϕk

‖dk‖
G

, (.)

ϕk :=
∥∥xk – x̃k∥∥

R +
∥∥yk – ỹk∥∥

S +
∥∥λk – λk+∥∥

H– +
(
wk – w̃k)�

ξ k , (.)

and

dk := wk – w̃k + G–ξ k . (.)

The new iterate wk+(τk) = (xk+, yk+,λk+) is given by

wk+(τk) = ρwk + ( – ρ)PW
[
wk – τkd′

k
]
, ρ ∈ (, ), (.)

where

d′
k := wk – w̄k . (.)

Set k := k +  and go to Step .
τk is a positive scalar.

How to choose a suitable step length τk to force convergence will be discussed later.

Theorem . [] For given wk = (xk , yk ,λk) ∈ Rn
++ ×Rm

++ ×Rl , let w̄k = (x̄k , ȳk , λ̄k) be gen-
erated by (.a)-(.c). Then for any w∗ = (x∗, y∗,λ∗) ∈W∗, we have

∥∥wk – w∗∥∥
G –

∥∥w̄k – w∗∥∥
G ≥  – μ

 + μ
�(αk), (.)
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where

�(αk) := αkϕk – α
k‖dk‖

G. (.)

Theorem . [] For given wk ∈Rn
++ ×Rm

++ ×Rl , let w̃k be generated by (.b)-(.c), then
we have the following:

αk ≥ 


(.)

and

�(αk) ≥ ( – η)( – μ)
( + μ)

∥∥wk – w̃k∥∥
G. (.)

How should one choose values of τk to ensure that wk+(τk) is closer to the solution set
than wk? For this purpose, we define

�(τk) =
∥∥wk – w∗∥∥

G –
∥∥wk+(τk) – w∗∥∥

G. (.)

Theorem . Let w∗ = (x∗, y∗,λ∗) ∈W∗, then we have

�(τk) ≥ ( – ρ)
(
τk

{∥∥d′
k
∥∥

G +
∥∥wk – w∗∥∥

G –
∥∥w̄k – w∗∥∥

G

}
– τ 

k
∥∥d′

k
∥∥

G

)
. (.)

Proof Since w∗ = (x∗, y∗,λ∗) ∈W∗ and wk∗(τk) = PW [wk – τkd′
k], it follows from (.) that

∥∥wk
∗(τk) – w∗∥∥

G ≤ ∥∥wk – τkd′
k – w∗∥∥

G –
∥∥wk – τkd′

k – wk
∗(τk)

∥∥
G. (.)

On the other hand, we have

∥∥wk+(τk) – w∗∥∥
G =

∥∥ρ
(
wk – w∗) + ( – ρ)

(
wk

∗(τk) – w∗)∥∥
G

= ρ∥∥wk – w∗∥∥
G + ( – ρ)∥∥wk

∗(τk) – w∗∥∥
G

+ ρ( – ρ)
(
wk – w∗)�G

(
wk

∗(τk) – w∗).

Using the identity

(a + b)�Gb = ‖a + b‖
G – ‖a‖

G + ‖b‖
G,

for a = wk – wk∗(τk), b = wk∗(τk) – w∗, and (.), we obtain

∥∥wk+(τk) – w∗∥∥
G = ρ∥∥wk – w∗∥∥

G + ( – ρ)∥∥wk
∗(τk) – w∗∥∥

G

+ ρ( – ρ)
{∥∥wk – w∗∥∥

G –
∥∥wk – wk

∗(τk)
∥∥ +

∥∥wk
∗(τk) – w∗∥∥

G

}

= ρ
∥∥wk – w∗∥∥

G + ( – ρ)
∥∥wk

∗(τk) – w∗∥∥
G – ρ( – ρ)

∥∥wk – wk
∗(τk)

∥∥
G

≤ ρ
∥∥wk – w∗∥∥

G + ( – ρ)
∥∥wk – τkd′

k – w∗∥∥
G

– ( – ρ)
∥∥wk – τkd′

k – wk
∗(τk)

∥∥
G – ρ( – ρ)

∥∥wk – wk
∗(τk)

∥∥
G
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=
∥∥wk – w∗∥∥

G – ( – ρ)
{∥∥wk – wk

∗(τk) – τkd′
k
∥∥

G + ρ
∥∥wk – wk

∗(τk)
∥∥

G

– τ 
k
∥∥d′

k
∥∥

G + τk
(
wk – w∗)�Gd′

k
}

≤ ∥∥wk – w∗∥∥
G – ( – ρ)

{
τk

(
wk – w∗)�Gd′

k – τ 
k
∥∥d′

k
∥∥

G

}
.

Using the definition of �(τk), we get

�(τk) ≥ ( – ρ)
{

τk
(
wk – w∗)�Gd′

k – τ 
k
∥∥d′

k
∥∥

G

}

= ( – ρ)
(
τk

{∥∥d′
k
∥∥

G –
(
w∗ – w̄k)�Gd′

k
}

– τ 
k
∥∥d′

k
∥∥

G

)
. (.)

The identity

(
w∗ – w̄k)�Gd′

k =


(∥∥w̄k – w∗∥∥

G –
∥∥wk – w∗∥∥

G

)
+



∥∥d′

k
∥∥

G (.)

implies

∥∥d′
k
∥∥

G – 
(
w∗ – w̄k)�Gd′

k =
∥∥wk – w∗∥∥

G –
∥∥w̄k – w∗∥∥

G. (.)

Substituting (.) in (.), we get the assertion of this lemma. �

Using Theorem . and Theorem ., we get

�(τk) ≥ ( – ρ)�(τk), (.)

where

�(τk) = τk

{∥∥d′
k
∥∥

G +
(

 – μ

 + μ

)
�(αk)

}
– τ 

k
∥∥d′

k
∥∥

G. (.)

�(τk) measures the progress obtained in the kth iteration. It is natural to choose a step
length τk which maximizes the progress. Note that �(τk) is a quadratic function of τk and
it reaches its maximum at

τ ∗
k =

‖d′
k‖

G + ( –μ

+μ
)�(αk)

‖d′
k‖

G

and

�
(
τ ∗

k
)

=
τ ∗

k {‖d′
k‖

G + ( –μ

+μ
)�(αk)}


. (.)

Using (.), we have

τ ∗
k ≥ ( – μ)( – η)

( + μ)

(‖d′
k‖

G + ‖wk – w̃k‖
G

‖d′
k‖

G

)

≥ ( – μ)( – η)
( + μ) , (.)
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which implies

�
(
τ ∗

k
) ≥ τ ∗

k ( –μ

+μ
)�(αk)



≥ ( – μ)( – η)

( + μ)

∥∥wk – w̃k∥∥
G. (.)

Remark . If ρ =  and τ ∗
k = , Algorithm . reduces to the method proposed in [].

Since τ ∗
k is to maximize the profit function �(τ ), we have

�
(
τ ∗

k
) ≥ �(). (.)

Inequalities (.) and (.) show theoretically that Algorithm . is expected to make
more progress than the method proposed in [] at each iteration, and so it explains theo-
retically that Algorithm . outperforms the method proposed in [].

Inspired and motivated by the first method, we next propose the following new LQP
alternating direction method for solving SVI.

Algorithm .
Step . The initial step:

Given ε > , μ ∈ (, ), and w = (x, y,λ) ∈Rn
++ ×Rm

++ ×Rl and d′′
 = (, , ).

Set k = .
Step . Prediction step:

Compute w̃k = (x̃k , ỹk , λ̃k) ∈Rn
++ ×Rm

++ ×Rl by solving the system (.a)-(.c).
Step . Convergence verification:

If {max‖xk – x̃k‖∞,‖yk – ỹk‖∞,‖λk – λ̃k‖∞} < ε, then stop.
Step . Correction step:

Compute w̄k = (x̄k , ȳk , λ̄k) by solving the system (.a)-(.c). The new iterate
wk+(βk) is given by

wk+(βk) = ρwk + ( – ρ)PW
[
wk – βkd′′

k
]
, ρ ∈ (, ), (.)

where

d′′
k := d′

k + σkd′′
k–, (.)

σk = max

(
,

–d′�
k Gd′′

k–
‖d′′

k–‖
G

)
,

and

βk =
‖d′

k‖
G + ( –μ

+μ
)�(αk)

‖d′′
k‖

G
. (.)

Set k := k +  and go to Step .

The following lemma has motivated us to choose the new descent direction as d′′
k .
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Lemma . For any k ≥ , we have

d′′�
k–G

(
wk – w∗) ≥ . (.)

Proof From (.) and (.) it is easy to show that

(
wk – w∗)�Gd′

k ≥ ‖d′
k‖

G + ( –μ

+μ
)�(αk)



≥ ( – μ)( – η)
( + μ)

∥∥wk – w̃k∥∥
G. (.)

Note that (.) is trivially true for k =  since d′′
 = (, , ). By induction, consider any

k ≥  and assume that

d′′�
k–G

(
wk– – w∗) ≥ .

Using the definition of d′′
k–, we have

d′′�
k–G

(
wk – w∗) = d′′�

k–G
(
wk– – w∗) + d′′�

k–G
(
wk – wk–)

= d′�
k–G

(
wk– – w∗) + σk–d′′�

k–G
(
wk– – w∗)

+ d′′�
k–G

(
wk – wk–)

≥ d′�
k–G

(
wk– – w∗) + d′′�

k–G
(
wk – wk–)

≥ ‖d′
k–‖

G + ( –μ

+μ
)�(αk–)


–

∥∥d′′
k–

∥∥
G

∥∥PW
[
wk– – βk–d′′

k–
]

– wk–∥∥
G

≥ ‖d′
k–‖

G + ( –μ

+μ
)�(αk–)


– βk–

∥∥d′′
k–

∥∥
G

= ,

where the second inequality follows from (.). Hence, the lemma is proved. �

Remark . From (.) and Lemma ., we get

(
wk – w∗)�Gd′′

k ≥ ( – μ)( – η)
( + μ)

∥∥wk – w̃k∥∥
G.

Then –d′′
k is a descent direction of 

‖wk – w∗‖ at the point wk . Since –d′′
k is a descent

direction of the distance function at wk , along –d′′
k , one can find a new iterate which is

closer to the solution set. Due to this fact, we construct (.).

Lemma . Let w∗ = (x∗, y∗,λ∗) ∈W∗, then we have

�(βk) ≥ ( – ρ)
(
βk

{∥∥d′
k
∥∥

G +
∥∥wk – w∗∥∥

G –
∥∥w̄k – w∗∥∥

G

}
– β

k
∥∥d′′

k
∥∥

G

)
, (.)
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where

�(βk) =
∥∥wk – w∗∥∥

G –
∥∥wk+(βk) – w∗∥∥

G. (.)

Proof Similar to (.), we have

∥∥wk+(βk) – w∗∥∥
G ≤ ∥∥wk – w∗∥∥

G – ( – ρ)
{

βk
(
wk – w∗)�Gd′′

k – β
k
∥∥d′′

k
∥∥

G

}

=
∥∥wk – w∗∥∥

G – ( – ρ)
{

βk
(
wk – w∗)�G

(
d′

k + σkd′′
k–

)
– β

k
∥∥d′′

k
∥∥

G

}

≤ ∥∥wk – w∗∥∥
G – ( – ρ)

{
βk

(
wk – w∗)�Gd′

k – β
k
∥∥d′′

k
∥∥

G

}
.

Using (.) and the definition of �(βk), we get the assertion of this lemma. �

Using Theorem . and Lemma ., we get

�(βk) ≥ ( – ρ)�(βk), (.)

where

�(βk) = βk

{∥∥d′
k
∥∥

G +
(

 – μ

 + μ

)
�(αk)

}
– β

k
∥∥d′

k
∥∥

G

=
βk{‖d′

k‖
G + ( –μ

+μ
)�(αk)}


. (.)

Remark . From (.), it is easy to prove that

∥∥d′′
k
∥∥

G ≤ ∥∥d′
k
∥∥

G,

which implies that

τ ∗
k ≤ βk .

From (.), (.), (.), and (.), we have

�
(
τ ∗

k
) ≥ ( – ρ)�

(
τ ∗

k
)

=
τ ∗

k ( – ρ){‖d′
k‖

G + ( –μ

+μ
)�(αk)}



and

�(βk) ≥ ( – ρ)�(βk) =
βk( – ρ){‖d′

k‖
G + ( –μ

+μ
)�(αk)}


.

From the above inequalities, we obtain

�(βk) ≥ �
(
τ ∗

k
)
. (.)

Inequality (.) shows theoretically that Algorithm . can be expected to make more
progress than Algorithm . at each iteration, and so it explains theoretically that Algo-
rithm . outperforms Algorithm ..
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Now, we mainly focus on investigating the convergence of the proposed methods. The
following theorem plays a crucial role in the convergence of the proposed methods.

Theorem . Let wk+ be the new iterate generated by

wk+ = wk+(τ ∗
k
)

or wk+ = wk+(βk).

Then, for any w∗ ∈W∗, wk and w̃k are bounded, and

∥∥wk+ – w∗∥∥ ≤ ∥∥wk – w∗∥∥ – c
∥∥wk – w̃k∥∥

G, (.)

where

c :=
( – μ)( – η)

( + μ) > .

Proof Inequality (.) follows from (.), (.), (.), and (.) immediately. It fol-
lows from (.) that

∥∥wk+ – w∗∥∥ ≤ ∥∥wk – w∗∥∥ ≤ · · · ≤ ∥∥w – w∗∥∥,

and thus, {wk} is a bounded sequence.
It follows from (.) that

∞∑

k=

c
∥∥wk – w̃k∥∥

G < +∞,

which means that

lim
k→∞

∥∥wk – w̃k∥∥
G = .

Since {wk} is a bounded sequence, we conclude that {w̃k} is also bounded. �

The convergence of the proposed method can be proved by using similar arguments to
[]. Hence the proof is omitted.

Theorem . [] The sequence {wk} generated by the proposed methods converges to some
w∞ which is a solution of SVI.

3 Conclusions
In this paper, we proposed two new modified logarithmic-quadratic proximal alternat-
ing direction methods for solving structured variational inequalities. The first one can be
viewed as an extension of the method proposed in [] by performing an additional step at
each iteration and another optimal step length is employed to reach substantial progress
in each iteration while the second method generates the new iterate by searching the opti-
mal step size along a new descent direction. It is proved theoretically that the lower-bound
of the progress obtained by the second method is greater than that by the first one. Global
convergence of the proposed method is proved under mild assumptions.
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