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1 Introduction
The notion of asymptotic pointwise mappings was introduced in [–]. The use of ul-
trapower technique was useful in proving some related fixed point results. In the paper
[], the authors gave simple and elementary proofs for the existence of fixed point theo-
rems for asymptotic pointwise mappings without the use of ultrapowers. In [], most of
these results were extended to metric spaces. In this paper, we introduce the new con-
cept of G-monotone mappings in Banach spaces. Indeed, recently a new direction has
been discovered dealing with the extension of the Banach contraction principle to met-
ric spaces endowed with a partial order. The first attempt was successfully carried by
Ran and Reurings []. In particular, they show how this extension is useful when deal-
ing with some special matrix equations. Another similar approach was carried by Nieto
and Rodríguez-López [] who used such arguments in solving some differential equations.
In [], Jachymski gave a more general unified version of these extensions by considering
graphs instead of a partial order. Recently, the author [] showed the existence of fixed
points for monotone multivalued mappings on a metric space with a graph.

In this work, we investigate the fixed point theory of pointwise G-monotone contraction
mappings. In particular, we will extend the main result of [] to the case of G-monotone
mappings. Our approach is new and different from the ideas found in [, ]. This work
was inspired by [].

For more on metric fixed point theory, the reader may consult the book [].

2 Graph basic definitions
The terminology of graph theory instead of partial ordering gives a wider picture and
yields interesting generalization of the Banach contraction principle. In this section, we
give the basic graph theory definitions and notations which will be used throughout.
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A graph is an ordered pair (V , E), where V is a set and E is a binary relation on V
(E ⊆ V × V ). Elements of E are called edges. We are concerned here with directed graphs
(digraphs) that have a loop at every vertex (i.e., (a, a) ∈ E for each a ∈ V ). Such digraphs
are called reflexive. In this case E ⊆ V × V corresponds to a reflexive (and symmetric)
binary relation on V . Moreover, we may treat G as a weighted graph by assigning to each
edge the distance between its vertices. By G– we denote the conversion of a graph G, i.e.,
the graph obtained from G by reversing the direction of edges. Thus we have

E
(
G–) =

{
(y, x) | (x, y) ∈ E(G)

}
.

A digraph G is called an oriented graph if whenever (u, v) ∈ E(G), then (v, u) /∈ E(G). The
letter G̃ denotes the undirected graph obtained from G by ignoring the direction of edges.
Actually, it will be more convenient for us to treat G̃ as a directed graph for which the set
of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E
(
G–).

Given a digraph G = (V , E), a (di)path of G is a sequence a, a, . . . , an, . . . with (ai, ai+) ∈
E(G) for each i = , , , . . . . A finite path (a, a, . . . , an) is said to have length n +  for n ∈N.
A closed directed path of length n >  from x to y, i.e., x = y, is called a directed cycle. An
acyclic digraph is a digraph that has no directed cycle. A digraph is connected if there is a
finite (di)path joining any two of its vertices and it is weakly connected if G̃ is connected.

Definition . A digraph G is transitive if

(x, y) ∈ E(G) and (y, z) ∈ E(G) ⇒ (x, z) ∈ E(G) for all x, y, z ∈ V (G).

Definition . Let (X,‖ · ‖) be a Banach space. ω is called a weak-cluster point of a se-
quence (xn)n∈N in X if there exists a subsequence (xφ(n))n∈N such that (xφ(n))n∈N converges
weakly to ω.

As Jachymski [] did, we introduce the following property.
Let (X,‖ · ‖) be a Banach space and G be a reflexive digraph defined on X. We say that

E(G) has property (∗) if

(∗) for any sequence (xn)n∈N in X such that (xn, xn+) ∈ E(G) for n ∈ N and ω is a weak-
cluster point of (xn)n∈N, then there exists a subsequence (xφ(n))n∈N which converges
weakly to ω and (xφ(n),ω) ∈ E(G) for every n ≥ .

Note that if G is a reflexive transitive digraph defined on X, then property (∗) implies the
following property:

for any sequence (xn)n≥ in X such that (xn, xn+) ∈ E(G) for n ≥  and ω is a
weak-cluster point of (xn)n≥, we have (xn,ω) ∈ E(G) for every n ≥ .

Let us finish this section with the following example of a transitive cyclic digraph which
can not be generated by a partial order. Therefore our approach is different from the one
used in [] which is based on the use of a partial order in Banach and metric spaces.

Example . Let (l,‖ · ‖) be the classical Hilbert space. Define the digraph G on l by:
(x, y) ∈ E(G) if and only if xi ≤ yi, for i = , . . . , where x = (xn) and y = (yn) are in l.
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Then G is reflexive, transitive for which G-intervals are convex and closed. Note that G
contains cycles. Indeed, we have (x, y) ∈ E(G) and (y, x) ∈ E(G), where

x = (, , , . . .) and y = (, , , . . .).

3 Monotone pointwise contraction mappings
Let us start this section by defining G-monotone pointwise Lipschitzian mappings.

Definition . Let (X, d) be a metric space and G be a reflexive digraph defined on X. Let
C be a nonempty subset of X. A mapping T : C → C is said to be

() G-monotone if T is edge preserving, i.e., (T(x), T(y)) ∈ E(G) whenever (x, y) ∈ E(G)
for any x, y ∈ C.

() G-monotone pointwise Lipschitzian if T is G-monotone and for any x ∈ X , there
exists k(x) ∈ [, +∞) such that

d
(
T(x), T(y)

) ≤ k(x)d(x, y) for any y ∈ C such that (x, y) ∈ E(G̃).

If k(x) ∈ [, ) for any x ∈ X, then T is said to be a G-monotone pointwise contraction
mapping. If k(x) ≤  for any x ∈ X, then T is said to be a G-monotone nonexpansive map-
ping. A fixed point of T is any element x ∈ C such that T(x) = x. The set of all fixed points
of T is denoted by Fix(T).

It is clear that the pointwise contractive concept was introduced to extend the contrac-
tive behavior in the Banach contraction principle.

Example . As Kirk did in [], we consider K a bounded closed convex subset of the
Hilbert space l. Let F : K → K be such that F is continuously Fréchet differentiable on
a convex open set containing K . Then F is a pointwise contraction on K if and only if
‖F ′

x‖ <  for each x ∈ K , where F ′
x denotes the Fréchet derivative of F at x. Next consider

the metric space

M = {, } × K =
{

(, x), (, x); x ∈ K
}

.

The distance d on M is defined by

d
(
(ε, x), (ε, x)

)
= |ε – ε| + ‖x – x‖.

Let G be the graph with M as its vertex set and its edge set E(G) defined by the following
two conditions:

() (, x) and (, y) are not connected for any x, y ∈ K ;
() (ε, x) and (ε, y) are connected if and only if x ≤ y (using the natural pointwise order

in l) for any ε ∈ {, } and x, y ∈ K .
Define the mapping T : M → M by

T
(
(ε, x)

)
=

(
 – ε, F(x)

)
.

If we choose F to be G-monotone on K , i.e., (x, y) ∈ E(G) implies that (F(x), F(y)) ∈ E(G)
for any x, y ∈ K . Then T is a G-monotone pointwise contraction on M. Indeed, any two
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vertices of G are connected if and only if they have the same first component. Next we
notice

d
(
T

(
(ε, x)

)
, T

(
(ε, y)

))
= d

((
 – ε, F(x)

)
,
(
 – ε, F(y)

))

=
∥∥F(x) – F(y)

∥∥

≤ α(x)‖x – y‖
= α(x)d

(
(ε, x), (ε, y)

)
,

where α(x) ∈ [, ), for any ε ∈ {, } and x, y ∈ K with (x, y) ∈ E(G). Clearly we used the
fact that F is a pointwise contraction on K . But T is not a pointwise contraction on M
since

d
(
T

(
(, x)

)
, T

(
(, x)

))
= d

(
(, x), (, x)

)
= 

for any x ∈ K .

For more examples on fixed points of multivalued mappings on metric spaces endowed
with a graph, see [].

The fundamental fixed point result for pointwise contraction mappings is the following
theorem.

Theorem . [, ] Let C be a weakly compact convex subset of a Banach space and sup-
pose that T : C → C is a pointwise contraction. Then T has a unique fixed point z. More-
over, the orbit (Tn(x))n≥ converges to z for each x ∈ C.

Note that if T is a G-monotone pointwise Lipschitzian mapping, then it is not necessarily
continuous by contrast to the case of pointwise Lipschitzian mappings. Since the main
focus of this paper is about the existence of the fixed points, we have the following result.

Theorem . Let (X, d) be a metric space and G be a reflexive digraph defined on X. Let
C be a nonempty subset of X. Let T : C → C be a G-monotone pointwise contraction. If
a ∈ Fix(T), then for any x ∈ X such that (a, x) ∈ E(G), we have (Tn(x))n≥ converges to a. In
particular, if a and b are two fixed points of T and (a, b) ∈ E(G), then we must have a = b.

Proof Let a ∈ Fix(T) and (a, x) ∈ E(G). Since T is G-monotone, we have (a, Tn(x)) ∈ E(G)
for any n ≥ . Using the definition of pointwise contraction, we get

d
(
Tn(x), a

) ≤ k(a)d
(
Tn–(x), a

) ≤ k(a)nd(x, a)

for any n ≥ . Since k(a) < , we conclude that (Tn(x))n∈N converges to a. Obviously if a and
b are two fixed points of T and (a, b) ∈ E(G), then we have (Tn(b))n∈N = (b)n∈N converges
to a, which implies a = b. �

Remark . In both Banach and metric spaces [, ], the pointwise contraction map-
pings have at most one fixed point. But in the case of G-monotone pointwise contrac-
tion mappings, we may have more than one fixed point. Indeed Jachymski [] proved that
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G-contractions have a fixed point in each component of elements that are compatible.
Since we do not assume the weak connectivity of the digraph G, we may have more than
one component which implies the possibility to have more than one fixed point.

The crucial part in dealing with pointwise contractions is the existence of the fixed point.
Usually it takes more assumptions than the classical Banach contraction principle.

4 Existence of fixed point of monotone pointwise contractions
In this section, we investigate the existence of a fixed point of G-monotone pointwise
contraction mappings. Since Theorem . is done in the linear case, we will assume that
(X,‖ · ‖) is a Banach space and G is a reflexive digraph defined on X. Moreover, the linear
convexity of X is assumed to be compatible with the graph structure in the following sense:

(CG) If (x, y) ∈ E(G) and (w, z) ∈ E(G), then

(
αx + ( – α)w,αy + ( – α)z

) ∈ E(G)

for all x, y, w, z ∈ X and α ∈R
+.

Note that the classical proof of Theorem . will not work in the setting of G-monotone
mappings. The main difficulty encountered in this setting has to do with the fact that the
mappings do not have a good behavior on the entire sets. They do have a good behavior
only on connected points. For this reason, our investigation is based on a constructive
approach initiated by Krasnoselskii [].

Lemma . Let (X,‖ · ‖) be a Banach space and G be a reflexive digraph defined on X.
Assume that E(G) has properties (∗) and (CG). Let C be a nonempty convex subset of X. Let
T : C → C be a G-monotone mapping. Fix λ ∈ (, ) and x ∈ C. Consider the Krasnoselskii
iteration sequence (xn)n≥ ⊂ C defined by

xn+ = ( – λ)xn + λT(xn), n ≥ . (KIS)

(i) If (x, T(x)) ∈ E(G), then we have (xn, xn+) ∈ E(G) for any n ≥ .
(ii) If (T(x), x) ∈ E(G), then we have (xn+, xn) ∈ E(G) for any n ≥ .

Proof We will prove (i). The proof of (ii) is similar and will be omitted. As (x, T(x)) ∈ E(G)
and (x, x) ∈ E(G), we have by property (CG)

(
( – λ)x + λx, ( – λ)x + λT(x)

) ∈ E(G),

i.e., (x, x) ∈ E(G). Now assume that (xn–, xn) ∈ E(G) for n > . Since T is G-monotone,
we have (T(xn–), T(xn)) ∈ E(G). Using property (CG) again, we get

(
( – λ)xn– + λT(xn–), ( – λ)xn + λT(xn)

) ∈ E(G),

i.e., (xn, xn+) ∈ E(G). Hence, by induction, we have (xn, xn+) ∈ E(G) for all n ≥ . �

In order to show that the main property satisfied by the sequence is defined by (KIS), we
need the following result which may be found in [, ]. We will give its proof here.
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Lemma . Let (X,‖ · ‖) be a Banach space and G be a reflexive digraph defined on X.
Assume that E(G) has properties (∗) and (CG). Let C be a nonempty convex subset of X.
Let T : C → C be a G-monotone nonexpansive mapping. Assume there exists x ∈ C such
that (x, T(x)) ∈ E(G̃). Consider the sequence (xn)n≥ defined by (KIS). Then we have

( + nλ)
∥∥T(xi) – xi

∥∥ ≤ ∥∥T(xi+n) – xi
∥∥ + ( – λ)–n(∥∥T(xi) – xi

∥∥ –
∥∥T(xi+n) – xi+n

∥∥)
()

for any i, n ∈N.

Proof Without loss of any generality, we may assume (x, T(x)) ∈ E(G). We will prove this
inequality by induction on n ∈ N. The inequality is obvious when n = . Fix n ≥  and
assume the inequality holds for any i ∈N. In particular, we have

( + nλ)
∥∥T(xi+) – xi+

∥∥ ≤ ∥∥T(xi++n) – xi+
∥∥ + ( – λ)–n∥∥T(xi+) – xi+

∥∥

– ( – λ)–n∥∥T(xi++n) – xi++n
∥
∥.

Lemma . implies that (xm, xm+) ∈ E(G) for any m ≥ . Since T is a G-monotone nonex-
pansive mapping, we get

∥
∥T(xm+) – T(xm)

∥
∥ ≤ ‖xm+ – xm‖,

and (T(xm), T(xm+)) ∈ E(G) for any m ≥ . Since

∥∥T(xi++n) – xi+
∥∥ ≤ ( – λ)

∥∥T(xi+n+) – xi
∥∥ + λ

∥∥T(xi+n+) – T(xi)
∥∥

≤ ( – λ)
∥∥T(xi+n+) – xi

∥∥ + λ

n∑

k=

∥∥T(xi+k+) – T(xi+k)
∥∥

≤ ( – λ)
∥∥T(xi+n+) – xi

∥∥ + λ

n∑

k=

‖xi+k+ – xi+k‖,

we get

( + nλ)
∥
∥T(xi+) – xi+

∥
∥ ≤ ( – λ)

∥
∥T(xi+n+) – xi

∥
∥ + λ

n∑

k=

‖xi+k+ – xi+k‖

+ ( – λ)–n(∥∥T(xi+) – xi+
∥
∥ –

∥
∥T(xi++n) – xi++n

∥
∥)

,

which implies

∥
∥T(xi+n+) – xi

∥
∥ ≥ ( + nλ)

( – λ)
∥
∥T(xi+) – xi+

∥
∥ –

λ

( – λ)

n∑

k=

‖xi+k+ – xi+k‖

– ( – λ)–n–(∥∥T(xi+) – xi+
∥
∥ –

∥
∥T(xi++n) – xi++n

∥
∥)

.

Note that (‖T(xm) – xm‖)m≥ is a decreasing sequence. Indeed, we have

‖xm+ – xm‖ = λ
∥∥T(xm) – xm

∥∥, m ≥ .
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So to show that (‖T(xm) – xm‖)m≥ is decreasing, we only need to prove that (‖xm+ –
xm‖)m≥ is decreasing, which is true since

‖xm+ – xm+‖ ≤ ( – λ)‖xm+ – xm‖ + λ
∥∥T(xm+) – T(xm)

∥∥

≤ ( – λ)‖xm+ – xm‖ + λ‖xm+ – xm‖ = ‖xm+ – xm‖

for any m ≥ . Using this fact and  + nλ ≤ ( – λ)–n, we get

∥
∥T(xi+n+) – xi

∥
∥ ≥ ( – λ)–n–[∥∥T(xi+n+) – xi+n+

∥
∥ –

∥
∥T(xi+) – xi+

∥
∥]

+
( + nλ)
( – λ)

∥∥T(xi+) – xi+
∥∥ –

λ(n + )
( – λ)

∥∥T(xi) – xi
∥∥

= ( – λ)–n–[∥∥T(xi+n+) – xi+n+
∥∥ –

∥∥T(xi) – xi
∥∥]

+
(

( + nλ)
( – λ)

– ( – λ)–n–
)∥∥T(xi+) – xi+

∥∥

+
(

( – λ)–n– –
λ(n + )

( – λ)

)∥∥T(xi) – xi
∥∥

≥ ( – λ)–n–[∥∥T(xi+n+) – xi+n+
∥∥ –

∥∥T(xi) – xi
∥∥]

+
(

( + nλ)
( – λ)

– ( – λ)–n–
)∥

∥T(xi) – xi
∥
∥

+
(

( – λ)–n– –
λ(n + )

( – λ)

)∥
∥T(xi) – xi

∥
∥

= ( – λ)–n–[∥∥T(xi+n+) – xi+n+
∥
∥ –

∥
∥T(xi) – xi

∥
∥]

+
(
 + (n + )λ

)∥∥T(xi) – xi
∥∥.

This is our inequality when we take n +  instead of n. Therefore by induction inequality
() is true for any i, n ∈ N. �

As a direct consequence of Lemma ., we get the following result.

Theorem . Let (X,‖ · ‖) be a Banach space and G be a reflexive digraph defined on X.
Assume that E(G) has properties (∗) and (CG). Let C be a bounded nonempty convex subset
of X. Let T : C → C be a G-monotone nonexpansive mapping. Assume that there exists
x ∈ C such that (x, T(x)) ∈ E(G̃). Consider the sequence (xn)n≥ defined by (KIS). Then
we have limn→∞ ‖xn – T(xn)‖ = .

Proof Using Lemma ., we know that the inequality

( + nλ)
∥∥T(xi) – xi

∥∥ ≤ ∥∥T(xi+n) – xi
∥∥ + ( – λ)–n(∥∥T(xi) – xi

∥∥ –
∥∥T(xi+n) – xi+n

∥∥)

holds for any i, n ∈ N. Since (‖xn – T(xn)‖)n≥ is decreasing, we set limn→+∞ ‖xn –
T(xn)‖ = R. Then, if we let i → +∞ in the above inequality, we obtain

( + nλ)R ≤ δ(C)
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for any n ∈ N, where δ(C) = sup{‖x – y‖; x, y ∈ C} < +∞. Obviously this will imply a con-
tradiction if we assume R �= . Therefore we must have

lim
n→+∞

∥
∥xn – T(xn)

∥
∥ = . �

Such a sequence (xn)n≥ is known as an approximate fixed point sequence of T . Assume
that there exists x ∈ C such that (x, T(x)) ∈ E(G). Let ω be a weak-cluster point of (xn).
Since E(G) has property (∗) and (xn, xn+) ∈ E(G), for any n ≥ , there exists a subsequence
(xφ(n)) of (xn) such that (xφ(n)) weakly converges to ω and (xφ(n),ω) ∈ E(G) for any n ≥ .
If we assume that T is a G-monotone pointwise contraction, then T is a G-monotone
nonexpansive mapping. Moreover, we have

∥∥T(xφ(n)) – T(ω)
∥∥ ≤ k(ω)‖xφ(n) – ω‖, n ≥ . ()

Assume that X satisfies the large Opial property [] which says that for any sequence
(yn) ⊂ X which weakly converges to y, we have

lim inf
n→∞ ‖yn – y‖ ≤ lim inf

n→∞ ‖yn – z‖

for any z ∈ X. Using inequality () above, we get

lim inf
n→∞

∥
∥T(xφ(n)) – T(ω)

∥
∥ ≤ k(ω) lim inf

n→∞ ‖xφ(n) – ω‖.

Using Theorem ., we conclude that

lim inf
n→∞

∥
∥xφ(n) – T(ω)

∥
∥ ≤ k(ω) lim inf

n→∞ ‖xφ(n) – ω‖.

The large Opial property will imply

lim inf
n→∞ ‖xφ(n) – ω‖ ≤ lim inf

n→∞
∥∥xφ(n) – T(ω)

∥∥ ≤ k(ω) lim inf
n→∞ ‖xφ(n) – ω‖.

Since k(ω) < , we obtain lim infn→∞ ‖xφ(n) – ω‖ = . Combined with the conclusion of
Theorem ., we get T(ω) = ω, i.e., ω is a fixed point of T . In other words, we proved the
following result.

Theorem . Let (X,‖ · ‖) be a Banach space and G be a reflexive digraph defined on X.
Assume that E(G) has properties (∗) and (CG). Assume X satisfies the large Opial property.
Let C be a weakly compact nonempty convex subset of X. Let T : C → C be a G-monotone
pointwise contraction. Assume that there exists x ∈ C such that (x, T(x)) ∈ E(G). Then T
has a fixed point.

We do not know whether the conclusion of Theorem . holds if X does not satisfy the
large Opial condition. However, if the digraph G is transitive, we may get the conclusion
of Theorem . without such condition. Indeed instead of assuming property (∗), we will
assume that G-intervals are closed. Recall that a G-interval is any subset of the form

(i) [a,→) = {x ∈ X; (a, x) ∈ E(G)},
(ii) (←, a] = {x ∈ X; (x, a) ∈ E(G)}
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for any a ∈ X. Using the convexity properties of G, we conclude that G-intervals are convex
and closed. Therefore they are also weakly-closed. Under these assumptions, we have the
following result which is the analogue to Theorem ..

Theorem . Let (X,‖ · ‖) be a Banach space and G be a reflexive transitive digraph de-
fined on X. Assume that E(G) has property (CG) and G-intervals are closed. Let C be a
weakly compact nonempty convex subset of X . Let T : C → C be a G-monotone pointwise
contraction. Assume that there exists x ∈ C such that (x, T(x)) ∈ E(G̃). Then T has a fixed
point.

Proof Without loss of any generality, we may assume that (x, T(x)) ∈ E(G). Let (xn) be the
sequence generated by x and defined by (KIS). Since C is weakly compact, then (xn) has a
weak-cluster point ω ∈ C. Since G is transitive, then we have (xn,ω) ∈ E(G) for any n ≥ .
Since T is G-monotone, we get (T(xn), T(ω)) ∈ E(G) for any n ≥ . Using the conclusion of
Theorem ., we know that ω is also a weak-cluster point of (T(xn)). Since the G-intervals
are weakly closed, we conclude that (ω, T(ω)) ∈ E(G). Consider the set

Cω = [ω,→) ∩ C =
{

x ∈ C; (ω, x) ∈ E(G)
}

.

Then Cω is a nonempty closed convex subset of C. Hence Cω is weakly compact. Let x ∈
Cω , then we have (T(ω), T(x)) ∈ E(G) since T is G-monotone. Using the transitivity of
G, we get (ω, T(x)) ∈ E(G), i.e., T(x) ∈ Cω . Next we consider the type function τ : Cω →
[, +∞) defined by

τ (x) = lim sup
n→+∞

‖xn – x‖.

It is obvious that τ is convex and continuous. Since Cω is weakly compact and convex, we
conclude that there exists z ∈ Cω such that τ (z) = inf{τ (x); x ∈ Cω}. Since (xn,ω) ∈ E(G), by
the transitivity of G, we get (xn, z) ∈ E(G) for any n ≥ . Since T is a G-monotone pointwise
contraction, we get

∥∥T(xn) – T(z)
∥∥ ≤ k(z)‖xn – z‖, n = , , . . . .

Hence

lim sup
n→+∞

∥∥T(xn) – T(z)
∥∥ ≤ k(z) lim sup

n→+∞
‖xn – z‖.

Using the conclusion of Theorem ., we get

lim sup
n→+∞

∥∥xn – T(z)
∥∥ = lim sup

n→+∞

∥∥T(xn) – T(z)
∥∥ ≤ k(z) lim sup

n→+∞
‖xn – z‖,

i.e., τ (T(z)) ≤ k(z)τ (z). Since τ (z) ≤ τ (T(z)) and k(z) < , we get τ (z) = , i.e.,
lim supn→+∞ ‖xn – z‖ = . So (xn) converges to z. Since τ (T(z)) ≤ k(z)τ (z), we get τ (T(z)) =
 which implies also that (xn) converges to T(z). Therefore we must have T(z) = z, i.e., z is
a fixed point of T . �
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