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Abstract
The aim of the paper is to provide, by an approach based on the Mönch fixed point
theorem, existence results for the semilinear evolution problem with distributed
measures

{
dx = (–Ax + f (t, x))dt + dg, t ∈ [0, 1],

x(0) = x0,
()

where –A is the infinitesimal generator of a (uniformly or strongly) continuous
semigroup {T (t), t ≥ 0} of bounded linear operators, f is not necessarily continuous
and g : [0, 1] → X is a regulated function.
Working with Kurzweil-Stieltjes integrals and using a measure of non-compactness

allows us to relax the assumptions on the semigroup, on f and g comparing to some
already known results.
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1 Introduction
The aim of the paper is to provide existence results for the semilinear evolution problem
with distributed measures (), where –A is the infinitesimal generator of a continuous
semigroup {T(t), t ≥ } of bounded linear operators, f : [, ] × X → X and g : [, ] → X.

This problem was firstly considered in [] for a continuous function f and a bounded
variation function g , {T(t), t ≥ } being a compact C semigroup of contractions. The
importance of allowing the occurrence of the very general term dg on the right-hand side
of the equation was clearly exposed and exemplified in []; the equation models situations
that arise, e.g., in optimal control problems with state constraints.

We are now interested in discussing the matter of existence of mild solutions (defined
in a similar way to the classical case) for the above problem under less restrictive assump-
tions: a regulated function g (not necessarily of bounded variation) and a possibly discon-
tinuous function f .
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At the first step, {T(t), t ≥ } is a uniformly continuous semigroup of bounded linear op-
erators. The proof is based on a fixed point argument, via the Mönch fixed point theorem,
using the Hausdorff measure of non-compactness. We would like to mention that our ap-
proach uses the Kurzweil-Stieltjes integral in a Banach space and this allows us to relax
the assumptions on f and g comparing to the already known results (such as Theorem .
in []).

An illustrating example (Example ), of a parabolic problem with dynamic boundary
conditions showing the applicability of the main result, is also described.

Finally, we discuss the more general case when –A is the infinitesimal generator of a
strongly continuous semigroup {T(t), t ≥ } of bounded linear operators. In this setting,
the problem becomes complicated due to the possibility for the Stieltjes integral to be
not well defined in the Banach space. Working with Kurzweil-type integration theory we
are able to prove that if the semigroup has bounded B-variation and the Banach space is
reflexive, then an existence theory can be developed by the same method.

Our results extend and generalize some other recent theorems in the literature as well,
see [, ] or [–] (for the linear case).

2 Kurzweil integration in Banach spaces
Let [a, b] be an interval of the real line equipped with the usual topology and the Lebesgue
measure dt. Throughout this paper X is a Banach space with norm ‖ · ‖.

Let us now introduce the definition of Kurzweil integral in Banach spaces, which is one of
the possible extensions of the notion of Henstock-Kurzweil integral for real-valued func-
tions (the reader is referred to [, ] or []).

A partition of [a, b] is a finite collection of pairs {([ti–, ti], ci), i = , . . . , n}, where [ti–, ti]
are non-overlapping subintervals of [a, b], ci ∈ [ti–, ti], i = , . . . , n, and

⋃n
i=[ti–, ti] = [a, b].

A gauge δ on [a, b] is a positive function on [a, b]. For a given gauge δ, we say that a partition
is δ-fine if [ti–, ti] ⊂ (ci – δ(ci), ci + δ(ci)) for any i ∈ {, . . . , n}.

Definition  ([]) A function f : [a, b] → X is said to be Kurzweil-integrable on [a, b] if
there exists a vector (K)

∫ b
a f (s) ds ∈ X such that, for every ε > , there is a gauge δε on [a, b]

satisfying

∥∥∥∥∥
n∑

i=

f (ci)(ti – ti–) – (K)
∫ b

a
f (s) ds

∥∥∥∥∥ < ε

for every δε-fine partition {([ti–, ti], ci), i = , . . . , n} of [a, b].
If f is Kurzweil-integrable, then it has the same feature on any sub-interval of [a, b]. The

function t �→ (K)
∫ t

a f (s) ds is called the Kurzweil-primitive of f on [a, b].

Remark  The Kurzweil primitive is continuous (see []). The connection between this
integral, other gauge integrals (Henstock-Lebesgue and Henstock-Kurzweil-Pettis inte-
grals) and the classical ones (namely, Bochner and Pettis integrals) can be found in [, ]
or [].

Endowed with the Alexiewicz-norm

‖f ‖A = sup
t∈[a,b]

∥∥∥∥(K)
∫ t

a
f (s) ds

∥∥∥∥,
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the space K([a, b], X) of Kurzweil-integrable functions on [a, b] is non-complete (for the
particular real-valued case, see []).

3 Kurzweil integration for bounded linear operators
Let L(X) be the space of bounded linear operators mapping X in X which is a Banach space
with respect to the operator norm ‖ · ‖op defined by

‖A‖op = sup
‖x‖≤

‖Ax‖.

The continuity in the operator norm topology of a semigroup {T(t), t ≥ } of bounded
linear operators is called uniform continuity in []. Also, if for every x ∈ X the func-
tion t �→ T(t)x is continuous, then the semigroup is called strongly continuous (or C-
semigroup) (see [], p.) or B-continuous (by the terminology in [] and the references
therein).

Let us recall the following concepts.

Definition 
(i) ([] or []) A function g : [a, b] → X is regulated if it has at most discontinuities of

the first kind on [a, b], i.e., for every t ∈ [a, b) there exists g(t+) ∈ X such that
lims→t,s>t ‖g(s) – g(t+)‖ =  and for every t ∈ (a, b] there exists g(t–) ∈ X such that
lims→t,s<t ‖g(s) – g(t–)‖ = .

(ii) ([, ]) Likewise, an operator-valued function T : [a, b] → L(X) is regulated if for
every t ∈ [a, b) there exists T(t+) ∈ L(X) and for every t ∈ (a, b] there exists
T(t–) ∈ L(X) in the operator norm topology;

(iii) An operator-valued function T : [a, b] → L(X) is said to be B-regulated ([, ,
]) if t ∈ [a, b] �→ T(t)x is regulated for each x ∈ X with ‖x‖ ≤ .

By G([a, b], X) we denote the space of regulated X-valued functions endowed with its
natural (Banach space) norm ‖f ‖C = supt∈[a,b]‖f (t)‖.

One of the main tools in our work is the following concept.

Definition  ([]) A set A⊂ G([a, b], X) is said to be equi-regulated if for every ε >  and
every t ∈ [a, b] there exists δ >  such that:

(i) for any t – δ < t′ < t: ‖x(t′) – x(t–)‖ < ε;
(ii) for any t < t′′ < t + δ: ‖x(t′′) – x(t+)‖ < ε

for all x ∈A.

A useful version of Ascoli’s theorem for regulated functions was proved in [] (see also
[] in finite dimensional setting).

Lemma  Let A ⊂ G([a, b], X) be equi-regulated and, for every t ∈ [a, b], A(t) = {x(t),
x ∈A} be relatively compact. Then A is relatively compact in G([a, b], X).

Definition 
(i) A function g : [a, b] → X is of bounded variation if its total variation on [a, b] is
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finite, i.e.,

V b
a (g) = sup

{ n∑
i=

∥∥g(ti) – g(ti–)
∥∥}

< ∞,

where the supremum is taken over all finite partitions of the interval [a, b].
(ii) Likewise, an operator-valued function T : [a, b] → L(X) is said to be of bounded

variation if its total variation

V b
a (T) = sup

{ n∑
i=

∥∥T(ti) – T(ti–)
∥∥

op

}

is finite, where the supremum has the same meaning as above.
(iii) An operator-valued function T : [a, b] → L(X) is of B-bounded variation (see [])

or of bounded semi-variation (as in []) if

(B)V b
a (T) = sup sup

‖xi‖≤

{∥∥∥∥∥
n∑

i=

(
T(ti) – T(ti–)

)
xi

∥∥∥∥∥
}

< ∞,

where the supremum is taken over all finite partitions of the interval [a, b].

It is well known that any bounded variation vector-valued or operator-valued function is
regulated. As for the corresponding B-notions of bounded variation and regularity, notice
that if X is a uniformly convex space, then all operator-valued functions of B-bounded
variation are B-regulated (see Theorem  in []). In fact, in [] (Theorem ) even more
was proved: that every function T : [a, b] → L(X) of B-bounded variation is B-regulated
if and only if X does not contain any copy of c.

Remark  In [, ] it is shown that for operator-valued functions the regularity (resp.
bounded variation property) is stronger than the B-regularity (resp. than B-bounded vari-
ation property) and that they respectively coincide if X is finite dimensional.

It is not difficult to check ([] or []) that (B)V b
a (·) defines a seminorm on the linear

space (with usual operations) of operator-valued functions of B-bounded variation on
[a, b] and that ‖A‖SV = ‖A(a)‖op + (B)V b

a (A) is a norm on this space (that becomes, in
this way, a Banach space).

Similarly, ‖A‖op
BV = ‖A(a)‖op + V b

a (A) is a (Banach space) norm on the space of operator-
valued functions of bounded variation.

The Kurzweil-Stieltjes integral for operator-valued functions is defined as follows.

Definition  ([, ]) Let T : [a, b] → L(X) and h : [a, b] → X.
(i) We say that h is Kurzweil-Stieltjes integrable with respect to T if there exists an

element
∫ b

a d[T(t)]h(t) ∈ X such that for every ε >  there exists a gauge δε satisfying

∥∥∥∥∥
n∑

i=

[
T(ti) – T(ti–)

]
h(ci) –

∫ b

a
d
[
T(t)

]
h(t)

∥∥∥∥∥ ≤ ε

for every δε-fine partition {([ti–, ti], ci), i = , n} of [a, b];
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(ii) The operator-valued function T is said to be Kurzweil-Stieltjes integrable with
respect to h if there exists an element

∫ b
a T(t) dh(t) ∈ X such that for every ε > 

there exists a gauge δε satisfying

∥∥∥∥∥
n∑

i=

T(ci)
(
h(ti) – h(ti–)

)
–

∫ b

a
T(t) dh(t)

∥∥∥∥∥ ≤ ε

for every δε-fine partition of [a, b].

If the gauge δε in the preceding Definition (i) can be chosen as a positive constant,
then the function h is called Riemann-Stieltjes integrable with respect to T (and likewise
for Definition (ii)). Theorem . in [] contains a particular case of Proposition . in []:
if T is uniformly continuous and h is of bounded variation, then the integral

∫ b
a T(t) dh(t)

exists as Riemann-Stieltjes integral.

Remark  As it can be seen in [], Proposition , if T is B-regulated and of B-bounded
variation and h : [a, b] → X is regulated, the Kurzweil-Stieltjes integral

∫ b
a d[T(t)]h(t) ∈ X

exists. In particular, this happens when T has bounded variation.
Also, Proposition . in [] states that if T is regulated and h has bounded variation,

then the integral
∫ b

a T(t) dh(t) is well defined. The same is available if T has B-bounded
variation and h is regulated (Theorem . in []).

Remark  in [] asserts that if T is (B)-regulated, then the KS-primitive
∫ ·

a d[T(t)]h(t)
is also regulated (and similar for

∫ b
a T(t) dh(t) if h is regulated).

We shall need the following evaluation formulas.

Proposition 
(i) (Proposition  in []) If the function h : [a, b] → X is Kurzweil-Stieltjes integrable

with respect to the operator-valued function T : [a, b] → L(X) of B-bounded
variation, then

∥∥∥∥
∫ b

a
d
[
T(t)

]
h(t)

∥∥∥∥ ≤ (B)V b
a (T) · ‖h‖C .

(ii) (Theorem . in []) If T : [a, b] → L(X) has B-bounded variation and h is
regulated, then

∥∥∥∥
∫ b

a
T(t) dh(t)

∥∥∥∥ ≤ (∥∥T(a)
∥∥ +

∥∥T(b)
∥∥ + (B)V b

a (T)
) · ‖h‖C .

We now present an integration by parts theorem that comes from some related results
given in [] and [] (it can also be proved by combining Theorem . in [] and Corol-
lary . in []).

Theorem  Let T : [a, b] → L(X) and g : [a, b] → X satisfy the following assumptions:
(i) T is of B-bounded variation;

(ii) g is Kurzweil-integrable.
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Then Tg is also Kurzweil-integrable and

(K)
∫ b

a
T(s)g(s) ds = T(b)(K)

∫ b

a
g(s) ds –

∫ b

a
d
[
T(t)

](
(K)

∫ t

a
g(s) ds

)
.

Proof Notice first that the primitive in Kurzweil sense [a, b] � t �→ (K)
∫ t

a g(s) ds ∈ X is
continuous (see []).

Theorem . in [] asserts (for the specific bilinear triple (L(X), X, X)) that T is Riemann-
Stieltjes integrable with respect to (K)

∫ t
a g(s) ds, (K)

∫ t
a g(s) ds is Riemann-Stieltjes inte-

grable with respect to T and that

∫ b

a
T(s) d

(
(K)

∫ t

a
g(s) ds

)

= T(b)(K)
∫ b

a
g(s) ds – T(a)(K)

∫ a

a
g(s) ds –

∫ b

a
d
[
T(t)

](
(K)

∫ t

a
g(s) ds

)
.

But Corollary  in [] yields that the Kurzweil-Stieltjes integrability of T with respect
to (K)

∫ t
a g(s) ds implies the Kurzweil integrability of Tg (for the map t ∈ [a, b] �→ Tg(t) =

T(t)g(t) ∈ X we can consider an integration in the sense described for vector functions in
the previous section) and the equality

∫ b

a
T(s) d

(
(K)

∫ t

a
g(s) ds

)
= (K)

∫ b

a
T(s)g(s) ds,

and thus the result is proved. �

Lemma  If {T(t), t ≥ } is a uniformly continuous semigroup, then T is of bounded vari-
ation on any compact interval and for any t′ ≤ t′′,

V t′

(
T

(
t′ – ·) – T

(
t′′ – ·)) ≤ ∥∥T

(
t′′ – t′) – I

∥∥
op · V t′


(
T

(
t′ – ·)).

Proof Let A be the infinitesimal generator of the semigroup T(t) (that is a bounded lin-
ear operator, see []). Note that ‖T(t)‖op ≤ et‖A‖op for all t. Then, for all partitions of a
compact interval [a, b],

n∑
i=

∥∥T(ti) – T(ti–)
∥∥

op =
n∑

i=

∥∥T(ti–)T(ti – ti–) – T(ti–)
∥∥

op

≤ eb‖A‖op
n∑

i=

∥∥T(ti – ti–) – I
∥∥

op

and from here, since T(t) = etA, it follows, by an estimation of the power series, that

n∑
i=

∥∥T(ti) – T(ti–)
∥∥

op ≤ eb‖A‖op
n∑

i=

(ti – ti–)‖A‖ope(ti–ti–)‖A‖op

≤ eb‖A‖op‖A‖ope(b–a)‖A‖op (b – a)

and the bounded variation property is proved.
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Concerning the second assertion, let t′ ≤ t′′. For any partition t < · · · < tn of [, t′], we
have

n∑
i=

∥∥(
T

(
t′ – ti

)
– T

(
t′′ – ti

))
–

(
T

(
t′ – ti–

)
– T

(
t′′ – ti–

))∥∥
op

=
n∑

i=

∥∥(
T

(
t′ – ti

)
– T

(
t′ – ti–

))
–

(
T

(
t′′ – ti

)
– T

(
t′′ – ti–

))∥∥
op

=
n∑

i=

∥∥(
T

(
t′ – ti

)
– T

(
t′ – ti–

))
– T

(
t′′ – t′)(T

(
t′ – ti

)
– T

(
t′ – ti–

))∥∥
op

≤
n∑

i=

∥∥T
(
t′′ – t′) – I

∥∥
op

∥∥T
(
t′ – ti

)
– T

(
t′ – ti–

)∥∥
op

≤ ∥∥T
(
t′′ – t′) – I

∥∥
op · V t′


(
T

(
t′ – ·)),

and so

V t′

(
T

(
t′ – ·) – T

(
t′′ – ·)) ≤ ∥∥T

(
t′′ – t′) – I

∥∥
op · V t′


(
T

(
t′ – ·)). �

Lemma  If {T(t), t ≥ } is a uniformly continuous semigroup and h : [a, b] → X is regu-
lated, then

∫ ·
a T(· – s) dh(s) is regulated.

Proof Applying the integration by parts Corollary . in [], we get

∫ t

a
T(t – s) dh(s) +

∫ t

a
d
[
T(t – s)

]
h(s) = h(t) – T(t – a)h(a),

and so it is sufficient to prove that
∫ ·

a d[T(· – s)]h(s) is regulated. To this purpose, fix t ∈
[a, b) and let t′ > t tend to t (the case t′ < t can be treated in the same way). Then, by
Proposition (i),

∥∥∥∥
∫ t′

a
d
[
T

(
t′ – s

)]
h(s) –

∫ t

a
d
[
T(t – s)

]
h(s)

∥∥∥∥
≤

∥∥∥∥
∫ t

a
d
[
T

(
t′ – s

)
– T(t – s)

]
h(s)

∥∥∥∥ +
∥∥∥∥
∫ t′

t
d
[
T

(
t′ – s

)]
h(s)

∥∥∥∥
≤ V t

a
(
T

(
t′ – ·) – T(t – ·)) · ‖h‖C + V t′

t
(
T

(
t′ – ·)) · ‖h‖C .

Using Lemma  one gets

∥∥∥∥
∫ t′

a
d
[
T

(
t′ – s

)]
h(s) –

∫ t

a
d
[
T(t – s)

]
h(s)

∥∥∥∥
≤ ∥∥T

(
t′ – t

)
– I

∥∥
op · V t


(
T(t – ·)) · ‖h‖C + V t′

t
(
T

(
t′ – ·)) · ‖h‖C

≤ ∥∥T
(
t′ – t

)
– I

∥∥
op · V b

 (T) · ‖h‖C + V t′
t
(
T

(
t′ – ·)) · ‖h‖C .
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As in the first part of the proof of Lemma , it can be shown that V t′
t (T(t′ – ·)) ≤

eb‖A‖op‖A‖ope(t′–t)‖A‖op (t′ – t), and so V t′
t (T(t′ – ·)) →  when t′ → t, and so the regular-

ity property is immediate. �

We end this section with a mean value result that comes in an obvious manner (taking
into account that the integral is a limit of integral sums).

Lemma  Let T : [a, b] → L(X) and g : [a, b] → X be such that Tg is Kurzweil-integrable.
Then, for each t ∈ [a, b],

(K)
∫ t

a
T(s)g(s) ds ∈ (t – a)conv

(
T

(
[a, t]

)
g
(
[a, t]

))
.

4 Solutions for semilinear evolution equations with distributed measures
using Kurzweil-Stieltjes integration

Our goal is to obtain an existence result for the semilinear evolution problem with dis-
tributed measures

⎧⎨
⎩dx = (–Ax + f (t, x)) dt + dg, t ∈ [, ],

x() = x,
()

where –A is the infinitesimal generator of a uniformly continuous semigroup {T(t), t ≥ }
of bounded linear operators, g : [, ] → X is a regulated function, and x ∈ X.

We begin by clarifying the concept of solution that we are searching for. Notice that, in
the sequel, the integrals are taken in Kurzweil sense.

Definition  A function x : [, ] → X is called a L∞-solution on [,α] of this problem
if it is a regulated solution of the integral equation

x(t) = T(t)x + (K)
∫ t


T(t – s)f

(
s, x(s)

)
ds + (K)

∫ t


T(t – s) dg(s), t ∈ [,α].

Remark that the functions on the right-hand side of the equality in this definition are
regulated as a consequence of Corollary  and Lemma .

Remark  When the above integrals exist in Riemann, respectively Riemann-Stieltjes
sense (e.g., when f is continuous and g has bounded variation), we get the notion of solu-
tion used in [] (p.).

If, moreover, dg = Gdt is defined by a density G ∈ L([, ], X) (e.g., when X has the
Radon-Nikodym property and g is absolutely continuous), the previous definition con-
cerns classical mild solutions.

In order to simplify the proof of the main theorem, we first present some auxiliary re-
sults.

Lemma  Let G be a family of X-valued Kurzweil-integrable functions on [a, b] such that
the set of their primitives is equi-continuous, and let {T(t), t ≥ } be a uniformly continuous
semigroup. Then the family {(K)

∫ ·
a T(· – s)g(s) ds, g ∈ G} is equi-continuous on [a, b].
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Proof By hypothesis, the collection of primitives of functions in G is ‖ · ‖C-bounded
(by M).

Fix now t ∈ [a, b] and let t ∈ [a, t]. Applying Theorem  we obtain

∥∥∥∥(K)
∫ t

a
T(t – s)g(s) ds – (K)

∫ t

a
T(t – s)g(s) ds

∥∥∥∥
≤

∥∥∥∥(K)
∫ t

a

(
T(t – s) – T(t – s)

)
g(s) ds

∥∥∥∥ +
∥∥∥∥(K)

∫ t

t

T(t – s)g(s) ds
∥∥∥∥

≤
∥∥∥∥(

I – T(t – t)
)
(K)

∫ t

a
g(s) ds

∥∥∥∥ +
∥∥∥∥
∫ t

a
d
[
T(t – t) – T(t – t)

]
(K)

∫ t

a
g(s) ds

∥∥∥∥
+

∥∥∥∥(K)
∫ t

t

g(s) ds
∥∥∥∥ +

∥∥∥∥
∫ t

t

d
[
T(t – t)

]
(K)

∫ t

t

g(s) ds
∥∥∥∥.

From Proposition  it follows that

∥∥∥∥(K)
∫ t

a
T(t – s)g(s) ds – (K)

∫ t

a
T(t – s)g(s) ds

∥∥∥∥
≤ ∥∥I – T(t – t)

∥∥
op ·

∥∥∥∥(K)
∫ t

a
g(s) ds

∥∥∥∥ + (B)V t
a

(
T(t – ·) – T(t – ·)) · ‖g‖A

+
∥∥∥∥(K)

∫ t

t

g(s) ds
∥∥∥∥ + (B)V t

a
(
T(t – ·)) · sup

t∈[t,t]

∥∥∥∥(K)
∫ t

t

g(s) ds
∥∥∥∥

and, by Lemma , that

∥∥∥∥(K)
∫ t

a
T(t – s)g(s) ds – (K)

∫ t

a
T(t – s)g(s) ds

∥∥∥∥
≤ (∥∥I – T(t – t)

∥∥
op +

∥∥T(t – t) – I
∥∥

op · V t
a

(
T(t – ·))) · M

+
(
 + V t

a
(
T(t – ·))) · sup

t∈[t,t]

∥∥∥∥(K)
∫ t

t

g(s) ds
∥∥∥∥

≤ ∥∥I – T(t – t)
∥∥

op

(
 + V b–a

 (T)
) · M +

(
 + V b–a

 (T)
) · sup

t∈[t,t]

∥∥∥∥(K)
∫ t

t

g(s) ds
∥∥∥∥

that can be made less than some positive ε for t close to t (independently of g ∈ G). �

For a singleton G , we get the following.

Corollary  If g : [a, b] → X is Kurzweil-integrable and T : [a, b] → L(X) as in the pre-
ceding lemma, then (K)

∫ ·
a T(· – s)g(s) ds is continuous.

Since we allow the occurrence of discontinuous functions, we shall use instead a mea-
sure of non-compactness. Recall that the Hausdorff measure of non-compactness βH is
defined, for any A⊂X, by the infimum of all r >  such that there exists a finite number of
balls covering A, of radius smaller than r (we refer the reader to [] or []).
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Lemma  Let {T(t), t ≥ } be a strongly continuous semigroup of bounded linear opera-
tors. Then, for every bounded M ⊂ X and any interval [a, b],

βH
(
T

(
[a, b]

)
M

) ≤ sup
t∈[a,b]

∥∥T(t)
∥∥

op · βH (M).

Proof Note first that for each t ∈ [a, b], T(t) maps a ball B(x̃, r) ⊂ X into the ball
B(T(t)x̃, r‖T(t)‖op) since

∥∥T(t)x – T(t)x̃
∥∥ ≤ ∥∥T(t)

∥∥
op · ‖x – x̃‖, ∀x ∈ B(x̃, r).

Let now r be a positive number such that the set M can be covered by a finite number of
balls of radius (smaller than) r, centered at x, . . . , xN ∈ X, and let ε > .

Since t �→ T(t)xi, i = , . . . , N , are, by Corollary . in [], continuous maps (therefore
uniformly continuous), there exists δε such that |t′ – t′′| < δε implies

∥∥T
(
t′)xi – T

(
t′′)xi

∥∥ < ε, ∀i = , . . . , N .

We choose tε
 , . . . , tε

Nε
∈ [a, b] with distance less than δε between them and to points a and b.

Taking now an arbitrary t, there exists tε
j ∈ [a, b] such that |t – tε

j | < δε . As noted, T(t)M
can be covered by the balls of radius smaller than r‖T(t)‖op centered at T(t)x, . . . , T(t)xN .
So, for each x ∈ X, one can find xi, i ∈ {, . . . , N}, such that

∥∥T(t)x – T(t)xi
∥∥ ≤ r

∥∥T(t)
∥∥

op ≤ r sup
t∈[a,b]

∥∥T(t)
∥∥

op.

It follows that

∥∥T(t)x – T
(
tε
j
)
xi

∥∥ ≤ ∥∥T(t)x – T(t)xi
∥∥ +

∥∥T(t)xi – T
(
tε
j
)
xi

∥∥ < r sup
t∈[a,b]

∥∥T(t)
∥∥

op + ε.

Therefore T([a, b])M is contained in the union of balls centered at the points {T(tε
j )xi, j =

, . . . , Nε , i = , . . . , N}, of radius smaller than r supt∈[a,b] ‖T(t)‖op + ε, which yields that

βH
(
T

(
[a, b]

)
M

) ≤ sup
t∈[a,b]

∥∥T(t)
∥∥

op · βH (M). �

The Mönch fixed point theorem that we recall below will be the main tool in obtaining
the existence result.

Theorem  ([]) Let D be a closed, convex subset of a Banach space and N : D → D
be continuous with further property that for some x ∈ D one has: C ⊂ D countable, C =
conv({x} ∪ N(C)) �⇒ C compact. Then N has a fixed point.

We proceed now to presenting the main result of the paper.

Theorem  Let –A be the infinitesimal generator of a uniformly continuous semigroup
{T(t), t ≥ }, g : [, ] → X be regulated and f : [, ] × X → X satisfy the following condi-
tions:
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() for every x ∈ G([, ], X), the mapping f (·, x(·)) is Kurzweil-integrable and the
function

x ∈ G
(
[, ], X

) �→ f
(·, x(·)) ∈K

(
[, ], X

)
is ‖ · ‖A-continuous;

() the family {(K)
∫ ·

 f (s, x(s)) ds, x ∈ G([, ], X)} is equi-continuous;
() there exists a constant c >  such that βH (f ([, ] × D)) ≤ cβH (D) for every bounded

D ⊂ X .
Then the evolution problem () has at least one L∞-solution on some non-zero length

interval [,α] ⊂ [, ].

Proof By Lemma  we get the equi-continuity of the set

{
(K)

∫ ·


T(· – s)f

(
s, x(s)

)
ds, x ∈ G

(
[, ], X

)}
,

and so, by Lemma , the equi-regularity of

{
(K)

∫ ·


T(· – s)f

(
s, x(s)

)
ds + (K)

∫ ·


T(· – s) dg(s), x ∈ G

(
[, ], X

)}
.

Thus, for some fixed M > , there exists a positive α with the property that

∥∥∥∥(K)
∫ t


T(t – s)f

(
s, x(s)

)
ds + (K)

∫ t


T(t – s) dg(s)

∥∥∥∥ ≤ M,

∀t ∈ [,α],∀x ∈ G
(
[, ], X

)
.

Besides, A is a bounded linear operator and

∥∥T(t)
∥∥

op ≤ et‖A‖op , ∀t ∈ [, ].

Obviously, we can choose α such that αeα‖A‖op c < .
We shall prove that the preceding evolution problem has at least one L∞-solution on

[,α].
Consider the closed convex set

K =
{

x ∈ G
(
[,α], X

)
,
∥∥x(t)

∥∥ ≤ M + eα‖A‖op‖x‖,∀t ∈ [,α]
}

.

By definition, L∞-solution for our problem means solution of the integral equation

x(t) = T(t)x + (K)
∫ t


T(t – s)f

(
s, x(s)

)
ds + (K)

∫ t


T(t – s) dg(s),

and so it suffices to prove that the Nemitsky operator

N : K →K, Nx(t) = T(t)x + (K)
∫ t


T(t – s)f

(
s, x(s)

)
ds + (K)

∫ t


T(t – s) dg(s)
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possesses fixed points. Note first of all that, by Corollary  and Lemma , the values of
N are in G([,α], X), while the choice of α ensures that for all x ∈K and all t ∈ [,α],

∥∥(Nx)(t)
∥∥ ≤ M + eα‖A‖op‖x‖,

which certifies that N is well defined.
We assert that the Mönch fixed point result can be applied in this case.
Indeed, for the continuity of N , we use Theorem :

‖Nx – Nx‖C = sup
t∈[,α]

∥∥∥∥(K)
∫ t


T(t – s)

(
f
(
s, x(s)

)
– f

(
s, x(s)

))
ds

∥∥∥∥
≤ sup

t∈[,α]

∥∥∥∥(K)
∫ t


f
(
s, x(s)

)
– f

(
s, x(s)

)
ds

∥∥∥∥
+ sup

t∈[,α]

∥∥∥∥
∫ t


d
[
T(t – s)

]
(K)

∫ s


f
(
τ , x(τ )

)
– f

(
τ , x(τ )

)
dτ

∥∥∥∥
≤

(
 + sup

t∈[,α]
V t


(
T(t – ·)))∥∥f

(·, x(·)) – f
(·, x(·))∥∥A

≤ (
 + V α

 (T)
)∥∥f

(·, x(·)) – f
(·, x(·))∥∥A

whence the continuity of N .
Let us now prove that for an arbitrary x ∈ K, any countable collection C ⊂ K satisfying

the equality C = conv({x} ∪ N(C)) is relatively compact. We shall apply Lemma .
Let C be such a subset of K. Then N(C) is equi-regulated by Lemma , therefore all we

have to check is that for every t ∈ [,α], C(t) is relatively compact in X.
To this aim, one can see (using Lemma  together with the properties of the measure

of non-compactness) that

βH
(
C(t)

)
= βH

(
C(t)

)
= βH

({
x(t)

} ∪ N(C)(t)
)

= βH
(
N(C)(t)

)
= βH

({
(Nx)(t), x ∈ C

})
= βH

({
T(t)x + (K)

∫ t


T(t – s)f

(
s, x(s)

)
ds + (K)

∫ t


T(t – s) dg(s), x ∈ C

})

= βH

({
(K)

∫ t


T(t – s)f

(
s, x(s)

)
ds, x ∈ C

})

≤ βH
(
tconv

(
T

(
[, t]

)
f
(
[, t] × C

(
[, t]

))))
.

Remark that the hypothesis of Lemma  is satisfied and, applying it, we obtain that

βH
(
C(t)

) ≤ tet‖A‖opβH
(
f
(
[, t] × C

(
[, t]

)))
,

and so, by assumption (),

βH
(
C(t)

) ≤ tet‖A‖op cβH
(
C

(
[, t]

)) ≤ αeα‖A‖op cβH
(
C

(
[, t]

))
.

It follows that

βH
(
C

(
[, t]

)) ≤ αeα‖A‖op cβH
(
C

(
[, t]

))
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and, since αeα‖A‖op c < , it is immediate that βH (C([, t])) = . Of course it implies that
βH (C(t)) =  (so C(t) is relatively compact) and then the Ascoli type theorem Lemma 
applies to yield the relative compactness of C.

Finally, the Mönch fixed point theorem asserts that the operator N possesses fixed
points, which means that our evolution problem has L∞-solutions. �

Remark  Theorem . in [] presents a situation where f satisfies the integrability of
superpositions f (·, x(·)) in hypothesis (), namely when f is a Carathéodory function per-
turbed by a Kurzweil-integrable one. In fact, it is not difficult to see that in this case con-
ditions () and () are both satisfied.

In particular, we deduce Theorem . in [] as follows.

Corollary  If f is continuous and g has bounded variation, then the evolution problem
() has L∞-solutions (involving Riemann integral) on some non-empty interval.

Remark  Our study applied in the particular case dg =  gives a result more general
than those in [] or [] (when the measure driving the equation is the Lebesgue measure),
see also [].

We complete this section by giving an example (borrowed from []) in order to illustrate
the applicability of our result.

Example  Let � be a bounded domain in R
n with boundary � of class C∞ and such

that � is locally on one side of its boundary. Consider the parabolic problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx + (–	x + α(t, x)) dt = dη in QT ,

dx + (xν + α(t, x)) dt = dψ on T ,

x() = x�
 in �,

x() = x�
 in �,

where QT = (, T) ×�, T = (, T) ×�, α,α : [, T] ×R →R, x�
 ∈ L(�), x�

 ∈ L(�), xν

is the conormal derivative of x at points of �, while φ,ψ : [, T] → L(�) and η : [, T] →
L(�).

Theorem  allows us to get the existence of L∞-solutions when α and α are of the
form of a sum of a Carathéodory function with a Kurzweil-integrable one and φ, ψ , η are
regulated.

This can be done following the same steps as in the proof of Theorem . in [] (that
describe the way that our problem can be rewritten as a Cauchy problem of type ()) and
applying our main result. Finally, let us remark that here the conditions are weaker than
those in the existence Theorem . in [], which assumes that α and α are continuous
and φ, ψ , η have bounded variation.

5 Remarks on the same problem for strongly continuous semigroup
We are facing now the matter of existence of solutions when –A is the infinitesimal gen-
erator of a strongly continuous semigroup {T(t), t ≥ } of bounded linear operators.
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The starting point is the discussion presented in [], p. for bounded variation func-
tion g : when working with Riemann-Stieltjes integral, in order that the integral

∫ b
a T(t –

s) dg(s) be well defined in X, some extra assumptions must be imposed on X, on g or on the
semigroup (in general, the integral is an element of the sequential completion Xc of X in
the σ (X, X∗) topology). More precisely,

∫ b
a T(t – s) dg(s) ∈ X if X is reflexive (Remark .),

or if the semigroup is uniformly continuous (Theorem .).
When considering the Kurzweil-Stieltjes integral, even for regulated function g , this

problem can be solved for non-reflexive spaces and non-uniformly continuous semi-
groups: as recalled in Remark , if the semigroup has bounded B-variation and g is regu-
lated, then the Kurzweil-Stieltjes integral

∫ t
a T(t – s) dg(s) ∈ X.

As for our method of study, it can be extended to strongly continuous semigroups if
we require that the Banach space X is reflexive. Indeed, a closer look reveals that only
Lemma , Lemma  and Lemma  need to be generalized. Thus:

Lemma  If {T(t), t ≥ } is a strongly continuous semigroup with bounded B-variation
on compact intervals, then (B)V t′

 (T(t′′ – ·) – T(t′ – ·)) tends to  as t′′ > t′ → t′.

Proof Let t′ ≤ t′′. Then, for any partition t < · · · < tn of [, t′] and all ‖xi‖ ≤ ,

∥∥∥∥∥
n∑

i=

(
T

(
t′ – ti

)
– T

(
t′′ – ti

))
–

(
T

(
t′ – ti–

)
– T

(
t′′ – ti–

))
xi

∥∥∥∥∥
=

∥∥∥∥∥
n∑

i=

(
T

(
t′ – ti

)
– T

(
t′ – ti–

))
–

(
T

(
t′′ – ti

)
– T

(
t′′ – ti–

))
xi

∥∥∥∥∥
=

∥∥∥∥∥(
T

(
t′′ – t′) – I

) n∑
i=

(
T

(
t′ – ti

)
– T

(
t′ – ti–

))
xi

∥∥∥∥∥.

Now take into account that the semigroup is also weakly continuous ([], p.). Since
for all partitions and all ‖xi‖ ≤ , ‖∑n

i=(T(t′ – ti) – T(t′ – ti–))xi‖ ≤ (B)V t′
 (T(t′ – ·)), we

deduce that the set {∑n
i=(T(t′ – ti) – T(t′ – ti–))xi} is contained in a ball in X which is

weakly compact. So, for any ε > , there exists δε >  s.t. t′′ – t′ < δε implies that ‖(T(t′′ –
t′) – I)

∑n
i=(T(t′ – ti) – T(t′ – ti–))xi‖ < ε, and so the (B)V t′

 (T(t′′ – ·) – T(t′ – ·)) tends to
 as t′′ → t′. �

Lemma  If h : [a, b] → X is regulated and {T(t), t ≥ } is a strongly continuous semi-
group with bounded (B)-variation on compacts such that (B)V t′

t (T) →  whenever t′ → t,
then

∫ ·
a T(· – s) dh(s) is regulated.

Proof Let us consider t ∈ [a, b) and let t′ > t tend to t (the case t′ < t can be treated simi-
larly). One can write

∫ t′

a
T

(
t′ – s

)
dh(s) –

∫ t

a
T(t – s) dh(s)

=
∫ t

a
T

(
t′ – s

)
– T(t – s) dh(s) +

∫ t′

t
T

(
t′ – s

)
dh(s).
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Now let us see that each of these terms has limit when t′ → t. Concerning the first integral,
a usual calculus (by passing through integral sums, e.g., [], p.) gives us

∥∥∥∥
∫ t

a
T

(
t′ – s

)
– T(t – s) dh(s) –

((
T

(
t′ – t

)
– I

)
h(t) –

(
T

(
t′ – a

)
– T(t – a)

)
h(a)

)∥∥∥∥
≤ (B)V t

a
(
T

(
t′ – ·) – T(t – ·)) · ‖h‖C ,

which tends to  (by Lemma ) and, thanks to the strong continuity of T , the integral has
limit.

As for the second integral, from a similar calculus it comes that

∥∥∥∥
∫ t′

t
T

(
t′ – s

)
dh(s) –

(
h
(
t′) – T

(
t′ – t

)
h(t)

)∥∥∥∥
≤ (B)V t′

t
(
T

(
t′ – ·))‖h‖C ,

which tends to  by hypothesis, therefore the second integral has limit as well since h is
regulated and T is strongly continuous. �

Lemma  Let G be a family of X-valued Kurzweil-integrable functions on [a, b] such
that the set of their primitives is equi-continuous. Suppose that {T(t), t ≥ } is a strongly
continuous semigroup with bounded B-variation on [a, b]. Then the family {(K)

∫ ·
a T(· –

s)g(s) ds, g ∈ G} is equi-continuous.

Proof The collection of primitives of functions in G is ‖ · ‖C-bounded.
Fix now t ∈ [a, b] and let t ∈ [a, t]. By Theorem ,

∥∥∥∥(K)
∫ t

a
T(t – s)g(s) ds – (K)

∫ t

a
T(t – s)g(s) ds

∥∥∥∥
≤

∥∥∥∥(
I – T(t – t)

)
(K)

∫ t

a
g(s) ds

∥∥∥∥ +
∥∥∥∥
∫ t

a
d
[
T(t – t) – T(t – t)

]
(K)

∫ t

a
g(s) ds

∥∥∥∥
+

∥∥∥∥(K)
∫ t

t

g(s) ds
∥∥∥∥ +

∥∥∥∥
∫ t

t

d
[
T(t – t)

]
(K)

∫ t

t

g(s) ds
∥∥∥∥

≤
∥∥∥∥(

I – T(t – t)
)
(K)

∫ t

a
g(s) ds

∥∥∥∥ + (B)V t
a

(
T(t – ·) – T(t – ·)) · ‖g‖A

+
∥∥∥∥(K)

∫ t

t

g(s) ds
∥∥∥∥ + (B)V t

t

(
T(t – ·)) · sup

t∈[t,t]

∥∥∥∥(K)
∫ t

t

g(s) ds
∥∥∥∥

≤
∥∥∥∥(

I – T(t – t)
)
(K)

∫ t

a
g(s) ds

∥∥∥∥ + (B)V t
a

(
T(t – ·) – T(t – ·)) · ‖g‖A

+
∥∥∥∥(K)

∫ t

t

g(s) ds
∥∥∥∥ + (B)V b–a

 (T) · sup
t∈[t,t]

∥∥∥∥(K)
∫ t

t

g(s) ds
∥∥∥∥.

It can be made less than some positive ε for t close to t (independently of g ∈ G). Indeed,
only the first term of the second line from below needs a reasoning similar to that in the
previous proposition: the set of all (K)

∫ t
a g(s) ds, g ∈ G is contained in some ball, there-
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fore in a weakly compact set, and since the semigroup is weakly continuous, the assertion
follows in an obvious way. �

In the described framework (of strongly continuous semigroup of bounded linear oper-
ators on a reflexive space) the main result is given below.

Theorem  Let –A be the infinitesimal generator of a strongly continuous semigroup
{T(t), t ≥ } with bounded B-variation on compact intervals such that (B)V t′

t (T) → 
whenever t′ → t.

Let g : [, ] → X be regulated and f : [, ] × X → X satisfy the hypotheses (), (), () in
Theorem . Then the evolution problem () has at least one L∞-solution on some non-zero
length interval [,α] ⊂ [, ].

Proof Applying Lemma  brings us to the equi-continuity of the set {(K)
∫ ·

 T(· –
s)f (s, x(s)) ds, x ∈ G([, ], X)} whence, by Lemma , to the equi-regularity of

{
(K)

∫ ·


T(· – s)f

(
s, x(s)

)
ds + (K)

∫ ·


T(· – s) dg(s), x ∈ G

(
[, ], X

)}
.

Thus, for some fixed M > , there exists a positive α with the property that

∥∥∥∥(K)
∫ t


T(t – s)f

(
s, x(s)

)
ds + (K)

∫ t


T(t – s) dg(s)

∥∥∥∥ ≤ M,

∀t ∈ [,α],∀x ∈ G
(
[, ], X

)
.

As {T(t), t ≥ } is a strongly continuous semigroup, by Theorem . at p. in [], there
exist ω ≥  and MT ≥  such that

∥∥T(t)
∥∥ ≤ MT eωt , ∀t ≥ .

Obviously, we can choose α such that αMT eωαc < .
We shall prove that the preceding evolution problem has at least one L∞-solution on

[,α].
Consider the closed convex set

K =
{

x ∈ G
(
[,α], X

)
,
∥∥x(t)

∥∥ ≤ M + MT eωα‖x‖,∀t ∈ [,α]
}

.

It suffices to prove that the operator

N : K →K, Nx(t) = T(t)x + (K)
∫ t


T(t – s)f

(
s, x(s)

)
ds + (K)

∫ t


T(t – s) dg(s)

possesses fixed points. Note first of all that by Corollary  and Remark , the values of
N are in G([,α], X), while the choice of α ensures that for all x ∈ K and all t ∈ [,α],
‖(Nx)(t)‖ ≤ M + MT eωα‖x‖, which certifies that N is well defined.

We assert that the Mönch fixed point result is suitable in this case.
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Indeed, the continuity of N comes from Theorem :

‖Nx – Nx‖C = sup
t∈[,α]

∥∥∥∥(K)
∫ t


T(t – s)

(
f
(
s, x(s)

)
– f

(
s, x(s)

))
ds

∥∥∥∥
≤

(
 + sup

t∈[,α]
(B)V t


(
T(t – ·)))∥∥f

(·, x(·)) – f
(·, x(·))∥∥A

≤ (
 + (B)V α

 (T)
)∥∥f

(·, x(·)) – f
(·, x(·))∥∥A.

Let us show that for an arbitrary x ∈ K, any countable collection C ⊂ K satisfying the
equality C = conv({x}∪N(C)) is relatively compact. As in Theorem , all we have to check
is that for every t ∈ [,α], C(t) is relatively compact in X.

Again, one can see that

βH
(
C(t)

) ≤ βH
(
tconv

(
T

(
[, t]

)
f
(
[, t] × C

(
[, t]

))))
and remark that the hypothesis of Lemma  is satisfied; applying it, together with (), we
get

βH
(
C(t)

) ≤ tMT eωtβH
(
f
(
[, t] × C

(
[, t]

)))
≤ tMT eωtcβH

(
C

(
[, t]

)) ≤ αMT eωαcβH
(
C

(
[, t]

))
.

It follows that

βH
(
C

(
[, t]

)) ≤ αMT eωαcβH
(
C

(
[, t]

))
and, since αMT eωαc < , it is immediate that βH (C([, t])) = . Of course it implies that
βH (C(t)) =  (so C(t) is relatively compact), and then the Mönch fixed point theorem as-
serts that the operator N possesses fixed points, which means that our evolution problem
has L∞-solutions. �

6 Conclusions
We obtained the existence of mild solutions (in a generalized sense) for the semilinear
evolution problem with distributed measures () under less restrictive assumptions com-
paring to similar results in literature, where the involved semigroup of bounded linear
operators was a compact C semigroup, the function f in the semilinear part was contin-
uous, and g was supposed to have bounded variation.

More precisely, in a general Banach space the existence result works for a uniformly
continuous semigroup (Theorem ), while for a reflexive Banach space the existence of
solutions was proved for a C semigroup with bounded (B)-variation on compact intervals
(Theorem ). In both situations, the function f is allowed to be discontinuous and the
function g is only regulated (possibly with unbounded variation).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
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