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Abstract
In this paper, we study the existence of solutions to a variational inequality involving
nonlocal elliptic operators, and the problem studied here is not variational in nature.
The proof of the main result is based on Schauder’s fixed point theorem combined
with adequate variational arguments and a penalization technique.
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1 Introduction
In the last years, great attention has been devoted to the study of fractional and nonlocal
problems. However, the interest in nonlocal elliptic problems goes beyond the mathemat-
ical curiosity. Indeed, this type of problems arises in a quite natural way in many different
applications, such as continuum mechanics, phase transition phenomena, population dy-
namics, minimal surfaces and game theory, as they are the typical outcome of stochastic
stabilization of Lévy processes, see [–] and the references therein. The literature on
nonlocal operators and their applications is very interesting and quite large, we refer the
interested readers to [–].

In [] the existence of two nontrivial solutions for hemivariational inequalities driven by
nonlocal elliptic operators is obtained by using critical point theory for non-differentiable
functionals. In [] the Lewy-Stampacchia type estimates for variational inequalities
driven by nonlocal operators are discussed. In [] the obstacle problem is considered for
a linear elliptic operator perturbed by a nonlinearity having at most a quadratic growth on
the gradient, and the existence of weak solutions of the variational inequality is obtained
by using a penalization method, Schauder’s fixed point theorem and a priori estimates. In
[], the existence of nontrivial solutions for a semilinear elliptic variational inequalities
with gradient-dependent nonlinearity is discussed by using variational methods combined
with a penalization technique and an iterative scheme.

Motivated by the above mentioned works, we study a variational inequality involving
nonlocal elliptic operators. To introduce our problem precisely, we first give some nota-
tion. Let � be a bounded domain of RN with smooth boundary ∂�. Denote Q = R

N\O,
where O = C(�)×C(�) ⊂R

N and C(�) = R
N\�. W is a linear space of Lebesgue measur-

able functions from R
N to R such that the restriction to � of any function u in W belongs
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to Lp(�) and
∫
Q |u(x) – u(y)|p|x – y|–N–ps dx dy < ∞. The space W is equipped with the

norm

‖u‖W = ‖u‖Lp(�) +
(∫

Q

∣
∣u(x) – u(y)

∣
∣p|x – y|–N–ps dx dy

)/p

.

Then (W ,‖ ·‖W ) is a uniformly convex Banach space, see []. We shall work on the closed
linear subspace

W =
{

u ∈ W : u(x) =  a.e. in R
N\�}

.

A norm of W is given by ‖u‖ = (
∫∫

Q
|u(x)–u(y)|p
|x–y|N+ps dx dy)/p for all u ∈ W. Set Lp

(�) = {u ∈
Lp(�) : u =  a.e. on R

N \ �}. Obviously, (Lp
(�),‖ · ‖Lp(�)) is a Banach space.

In the present paper, we adapt the methods in [] and [] in order to prove the existence
of solutions of the following variational inequality:

u ∈ W, u ≤ ψ a.e. in �,
∫

Q

a(x, y, u(x), u(y))|u(x) – u(y)|p–(u(x) – u(y))
|x – y|N+ps

(
ϕ(x) – u(x) – ϕ(y) + u(y)

)
dx dy

≥
∫

�

f (ϕ – u) dx, ∀ϕ ∈ W,ϕ ≤ ψ a.e. in �, (.)

where N > sp,  < p < ∞, ψ : � → [,∞) is the obstacle with ψ ∈ Lp(�), and functions a,
f satisfy the following assumptions:

(a) a : Q×R×R →R is a Carathéodory function, i.e., for each (t, t) ∈R×R,
a(x, y, t, t) is measurable with respect to (x, y) ∈Q; for each (x, y) ∈Q, a(x, y, t, t)
is continuous with respect to (t, t) ∈ R×R. There exist two constants a, a > 
such that a ≤ a(x, y, t, t) ≤ a for all (x, y, t, t) ∈Q×R×R.

(f ) f : � →R is a measurable function with f ∈ Lp′ (�) and p′ = p/(p – ).

Remark . If a ≡ , the variational inequality (.) is governed by the following fractional
p-Laplacian problem:

(–�)s
pu = f in �,

u =  in R
N \ �,

where N > ps with s ∈ (, ), and (–�)s
p is the fractional p-Laplacian defined for each x ∈

R
N as

(–�)s
pv(x) =  lim

ε↘

∫

RN \Bε (x)

|v(x) – v(y)|p–(v(x) – v(y))
|x – y|N+ps dx dy,

along any v ∈ C∞
 (RN ), where Bε(x) denotes the ball in R

N with radius ε >  centered at
x ∈R

N . Actually, we can define the fractional p-Laplacian as follows:

〈
(–�)s

pu, v
〉

=
∫∫

Q

|u(x) – u(y)|p–(u(x) – u(y))(v(x) – v(y))
|x – y|N+ps dx dy
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for all u, v ∈ W. For more details about the fractional p-Laplacian, we refer to [] and
[]. When a ≡ , it is natural to consider the nonlocal operator L defined as

〈Lu, v〉 =
∫

Q

a(x, y, u(x), u(y))|u(x) – u(y)|p–(u(x) – u(y))(v(x) – v(y))
|x – y|N+ps dx dy

for all u, v ∈ W. Hence, the variational inequality (.) can be written as

〈Lu,ϕ – u〉 ≥
∫

�

f (ϕ – u) dx.

Note that the function a depends on the state variable u. Generally, problem (.) is not
variational.

Firstly, we ‘freeze’ the state variable u on the function a, that is, we fix v ∈ Lp
(�). Let

ε ∈ (, ) be fixed and consider the following penalization problem:

∫

Q

a(x, y, v(x), v(y))|u(x) – u(y)|p–(u(x) – u(y))
|x – y|N+ps

(
ϕ(x) – ϕ(y)

)
dx dy

+

ε

∫

�

∣
∣(u – ψ)+∣

∣p–
ϕ dx =

∫

�

f ϕ dx, ∀ϕ ∈ W, (.)

where u+ = max{u, }. To get the solutions of problem (.), we apply variational methods
to the energy functional

I(u) =

p

∫∫

Q

a(x, y, v(x), v(y))|u(x) – u(y)|p
|x – y|N+ps dx dy +


εp

∫

�

(
(u – ψ)+)p dx –

∫

RN
fu dx,

associated to (.), for all u ∈ W. Note that the condition f ∈ Lp′ (�) implies that I ∈
C(W,R) and

〈
I ′(u),ϕ

〉
=

∫∫

Q

a(x, y, v(x), v(y))|u(x) – u(y)|p–(u(x) – u(y))
|x – y|N+ps

(
ϕ(x) – ϕ(y)

)
dx dy

+

ε

∫

�

(
(u – ψ)+)p–

ϕ dx –
∫

�

f ϕ dx

for all ϕ ∈ W. Hence a critical point of functional I is a solution of penalization prob-
lem (.). Note that such penalization technique can be found in [], and we study the
penalized problem (.) through variational methods, see [], Theorem ..

Secondly, for v ∈ Lp
(�) fixed, we deduce from (.) that there exists uv ∈ W with uv ≤ ψ

a.e. in � such that
∫

Q

a(x, y, v(x), v(y))|uv(x) – uv(y)|p–(uv(x) – uv(y))
|x – y|N+ps

(
ϕ(x) – uv(x) – ϕ(y) + uv(y)

)
dx dy

≥
∫

�

f (ϕ – uv) dx, ∀ϕ ∈ W,ϕ ≤ ψ . (.)

Finally, starting from (.) and using Schauder’s fixed point theorem (see [], Theo-
rem .), we get our main result.

Theorem . Let ψ ∈ Lp(�), (a) and (f) hold. Then problem (.) has a solution in W.
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2 The associated problem (1.3)
We start by proving some auxiliary results which will be useful in establishing the existence
result of problem (.). In the following, we shortly denote by ‖ · ‖q the norm of Lq(�).

Lemma . For each v ∈ Lp
(�) and ε ∈ (, ), problem (.) has a solution in W.

Proof Fix v ∈ Lp
(�) and ε ∈ (, ). By (a), the Hölder inequality and the continuous em-

bedding from W to Lp(�) (see [], Lemma .), it follows that for each u ∈ W we have

I(u) ≥ a

p

∫∫

Q

|u(x) – u(y)|p
|x – y|N+ps dx dy –

∫

�

fu dx

≥ a

p

∫∫

Q

|u(x) – u(y)|p
|x – y|N+ps dx dy – ‖f ‖p′ ‖u‖p ≥ a

p
‖u‖p – C∗‖f ‖p′ ‖u‖,

where C∗ >  is the embedding constant of W ↪→ Lp(�). The above estimate shows that
I is coercive on W, being  < p < ∞.

On the other hand, it is easy to verify that I is convex and, consequently, weakly lower
semi-continuous. Hence, we conclude via the direct method of variational methods (see
[], Theorem .) that there exists a global minimum point of I in W and, consequently,
a solution of problem (.). �

Lemma . Let v ∈ Lp
(�) and let uε

v be the solution of (.) given by Lemma .. If
ψ ∈ Lp(�), then the family {uε

v}ε is bounded in W, i.e., there exists a positive constant
C independent of ε and v such that ‖uε

v‖ ≤ C and ‖(uε
v – ψ)+‖p ≤ Cε/p for all ε > .

Proof Taking ϕ = uε
v as a test function in (.), we have

∫∫

Q

a(x, y, v(x), v(y))|uε
v(x) – uε

v(y)|p
|x – y|N+ps dx dy +


ε

∫

�

∣
∣
(
uε

v – ψ
)+∣

∣p dx =
∫

�

fuε
v dx.

It follows from the Hölder inequality, the embedding W ↪→ Lp(�) and (a) that

a

∫∫

Q

|uε
v(x) – uε

v(y)|p
|x – y|N+ps dx dy +


ε

∫

�

∣
∣
(
uε

v – ψ
)+∣

∣p dx ≤ ‖f ‖p′
∥
∥uε

v
∥
∥

p ≤ C∗‖f ‖p′
∥
∥uε

v
∥
∥,

this implies that
∫∫

Q

|uε
v(x) – uε

v(y)|p
|x – y|N+ps dx dy +


ε

∫

�

∣
∣
(
uε

v – ψ
)+∣

∣p dx ≤ C,

where C >  denotes various constants independent of ε and v. Hence ‖uε
v‖ ≤ C and ‖(uε

v –
ψ)+‖p ≤ Cε/p. �

Theorem . Let v ∈ Lp
(�) be fixed and let conditions (a) and (f) hold true. Furthermore,

let ψ ∈ Lp(�). Then the variational inequality (.) has a unique solution uv ∈ W.

Proof By Lemma ., there exist a subsequence of {uε
v} still denoted by {uε

v} and uv ∈ W

such that uε
v ⇀ uv in W as ε → . It follows from ‖(uε

v –ψ)+‖p ≤ Cε/p that (uε
v –ψ)+ → 

in Lp(�) as ε → . By the compact embedding W ↪→↪→ Lp(�) (see [], Lemma .), we
obtain that uε

v → uv strongly in Lp(�) as ε → . Furthermore, (uε
v – ψ)+ → (uv – ψ)+ in

Lp(�) as ε → . Hence (uv – ψ)+ =  a.e. in �, that is, uv ≤ ψ a.e. in �.
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Now we show that uε
v → uv strongly in W as ε → . For each fixed ω ∈ W, we introduce

a linear operator Fa(ω, ·) : W →R defined by

Fa(ω,ϕ) =
∫∫

Q

a(x, y, v(x), v(y))|ω(x) – ω(y)|p–(ω(x) – ω(y))
|x – y|N+ps

(
ϕ(x) – ϕ(y)

)
dx dy

for each ϕ ∈ W. Obviously, Fa(ω, ·) is a continuous linear functional on W by the follow-
ing inequality:

∣
∣Fa(ω,ϕ)

∣
∣ ≤ a‖ω‖p–‖ϕ‖, ∀ϕ ∈ W,

thanks to assumption (a) and the Hölder inequality. Hence uε
v ⇀ uv in W as ε →  implies

that

lim
ε→

Fa
(
uv, uε

v – uv
)

= . (.)

Taking uε
v – uv as a test function in (.), we obtain

Fa
(
uε

v , uε
v – uv

)
+


ε

∫

�

∣
∣
(
uε

v – ψ
)+∣

∣p–(uε
v – uv

)
dx =

∫

�

f
(
uε

v – uv
)

dx. (.)

Note that


ε

∫

�

∣
∣(uε

v – ψ
)+∣

∣p–(uε
v – uv

)
dx

=

ε

∫

�

∣
∣
(
uε

v – ψ
)+∣

∣p dx +

ε

∫

�

∣
∣
(
uε

v – ψ
)+∣

∣p–(ψ – uv) dx ≥ ,

by uv ≤ ψ a.e. in �. Putting this into (.), we have

Fa
(
uε

v , uε
v – uv

) ≤
∫

�

f
(
uε

v – uv
)

dx. (.)

Using uε
v → uv strongly in Lp(�), (.) and (.), we deduce

lim sup
ε→

[
Fa

(
uε

v , uε
v – uv

)
– Fa

(
uv, uε

v – uv
)] ≤ . (.)

On the other hand, by the following well-known inequalities (see []):

|ξ – η|p ≤
{

Cp(|ξ |p–ξ – |η|p–η) · (ξ – η) for p ≥ ,
C̃p[(|ξ |p–ξ – |η|p–η) · (ξ – η)]p/(|ξ |p + |η|p)(–p)/ for  < p < 

for all ξ ,η ∈R
N , where Cp and C̃p are positive constants depending only on p, we get

[
Fa

(
uε

v , uε
v – uv

)
– Fa

(
uv, uε

v – uv
)] ≥ .

Hence, we conclude from (.) that limε→[Fa(uε
v , uε

v – uv) – Fa(uv, uε
v – uv)] = . A similar

discussion as in [] gives that uε
v → uv strongly in W as ε → .



Xiang Fixed Point Theory and Applications  (2015) 2015:148 Page 6 of 9

Now we are ready to show that uv is a solution of (.). Taking ϕ – uε
v , with ϕ ∈ W and

ϕ ≤ ψ a.e. in �, as a test function in (.), we have

Fa
(
uε

v ,ϕ – uε
v
)

+

ε

∫

�

∣
∣(uε

v – ψ
)+∣

∣p–(
ϕ – uε

v
)

dx =
∫

�

f
(
ϕ – uε

v
)

dx. (.)

Thanks to the choice of ϕ, one has 
ε

∫
�

|(uε
v – ψ)+|p–(ϕ – uε

v) dx ≤ , so that we deduce
from (.) that

Fa
(
uε

v ,ϕ – uε
v
) ≥

∫

�

f
(
ϕ – uε

v
)

dx, ∀ϕ ∈ W,ϕ ≤ ψ . (.)

By the boundedness of a and the stronger convergence of uε
v in W and Lp(�), we conclude

from (.) that

Fa(uv,ϕ – uv) ≥
∫

�

f (ϕ – uv) dx, ∀ϕ ∈ W,ϕ ≤ ψ .

This means that uv is a solution of (.).
It remains to prove the uniqueness of uv. Now we suppose that there exist u

v and u
v

such that (.) holds, that is,

Fa
(
u

v,ϕ – u
v
) ≥

∫

�

f
(
ϕ – u

v
)

dx (.)

and

Fa
(
u

v ,ϕ – u
v
) ≥

∫

�

f
(
ϕ – u

v
)

dx (.)

for all ϕ ∈ W with ϕ ≤ ψ a.e. in �. Taking ϕ = u
v and ϕ = u

v in (.) and (.), respectively,
we have Fa(u

v, u
v – u

v) ≥ ∫
�

f (u
v – u

v) dx and Fa(u
v , u

v – u
v) ≥ ∫

�
f (u

v – u
v) dx. From these

two inequalities, we get Fa(u
v, u

v – u
v) – Fa(u

v , u
v – u

v) ≤ , this implies that u
v = u

v a.e.
in �. Thus we complete the proof. �

3 The proof of main result
For each v ∈ Lp

(�), let u = T(v) ∈ W be the weak solution of problem (.) given by The-
orem .. Thus, we can actually introduce an application T : Lp

(�) → W associating to
each v ∈ Lp

(�), the solution of problem (.), T(v) ∈ W.

Lemma . There exists a constant C >  such that
∫

Q

|T(v(x)) – T(v(y))|p
|x – y|N+ps dx dy ≤ C, ∀v ∈ Lp

(�).

Proof For each v ∈ Lp
(�), T(v) is a solution of problem (.). Let uε

v be the solution
of problem (.). By Lemma . and Theorem ., we have ‖uε

v‖p ≤ C and uε
v → T(v)

strongly in W as ε → , where C >  is a constant independent of ε and v. Hence
‖T(v)‖p ≤ C. �

Remark . By Lemma . and the fractional Sobolev embedding W ↪→ Lp(�), it clearly
follows that there exists C >  such that

∫
�

|T(v)|p dx ≤ C, ∀v ∈ Lp
(�).
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Lemma . The map T : Lp
(�) → W is continuous.

Proof Let {vn}n ⊂ Lp
(�) and v ∈ Lp

(�) be such that vn converges to v in Lp
(�) as n → ∞.

Without loss of generality, we assume that vn → v a.e. in �. Set un := T(vn) for all n ≥ .
By Lemma ., we have

∫∫

Q

|un(x) – un(y)|p
|x – y|N+ps dx dy =

∫

Q

|T(vn(x)) – T(vn(y))|p
|x – y|N+ps dx dy ≤ C, ∀n ≥ ,

i.e., {un}n is bounded in W. It follows that up to a subsequence we can deduce that un

converges weakly to some u in W. By the compact embedding W ↪→ Lp(�), up to a
subsequence, we have un → u strongly in Lp(�) and a.e. in �. Obviously, we also have un

converges to u strongly in Lp
(�). Since un (n ≥ ) is a solution of problem (.), we have

un ≤ ψ a.e. in �. Hence, u ≤ ψ a.e. in �.
On the other hand, for each n, we have

∫∫

Q

a(x, y, vn(x), vn(y))|un(x) – un(y)|p–(un(x) – un(y))
|x – y|N+ps

× (
ϕ(x) – un(x) – ϕ(y) + un(y)

)
dx dy

≥
∫

�

f (ϕ – un) dx (.)

for all ϕ ∈ W with ϕ ≤ ψ . Taking ϕ = u in (.), we obtain

∫∫

Q

a(x, y, vn(x), vn(y))|un(x) – un(y)|p–(un(x) – un(y))
|x – y|N+ps

× (
un(x) – u(x) – un(y) + u(y)

)
dx dy

≤
∫

�

f (un – u) dx. (.)

It follows from un converges to u in Lp(�) and (.) that

lim sup
n→∞

∫∫

Q

a(x, y, vn(x), vn(y))|un(x) – un(y)|p–(un(x) – un(y))
|x – y|N+ps

× (
un(x) – u(x) – un(y) + u(y)

)
dx dy

≤ . (.)

Note that

∣
∣
∣
∣a

(
x, y, vn(x), vn(y)

) |u(x) – u(y)|p–(u(x) – u(y))
|x – y|(N+ps)/p′

∣
∣
∣
∣

p′

≤ ap′


|u(x) – u(y)|p
|x – y|N+ps ∈ L(Q, dx dy)

and

a
(
x, y, vn(x), vn(y)

) |u(x) – u(y)|p–(u(x) – u(y))
|x – y|(N+ps)/p′

→ a
(
x, y, v(x), v(y)

) |u(x) – u(y)|p–(u(x) – u(y))
|x – y|(N+ps)/p′
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a.e. on Q. Hence the Lebesgue dominated convergence theorem implies that

a
(
x, y, vn(x), vn(y)

) |u(x) – u(y)|p–(u(x) – u(y))
|x – y|(N+ps)/p′

→ a
(
x, y, v(x), v(y)

) |u(x) – u(y)|p–(u(x) – u(y))
|x – y|(N+ps)/p′

strongly in Lp′ (Q, dx dy). Thus, we deduce from the Hölder inequality that

lim
n→∞

∫∫

Q

[a(x, y, vn(x), vn(y)) – a(x, y, v(x), v(y))]|u(x) – u(y)|p–(u(x) – u(y))
|x – y|N+ps

× (
un(x) – u(x) – un(y) + u(y)

)
dx dy = . (.)

Notice that

lim
n→∞

∫∫

Q

a(x, y, v(x), v(y))|u(x) – u(y)|p–(u(x) – u(y))
|x – y|N+ps

× (
un(x) – u(x) – un(y) + u(y)

)
dx dy = .

Hence, from (.), it yields

lim
n→∞

∫∫

Q

a(x, y, vn(x), vn(y))|u(x) – u(y)|p–(u(x) – u(y))
|x – y|N+ps

× (
un(x) – u(x) – un(y) + u(y)

)
dx dy = .

Therefore, by (.) and (.), we get limn→∞[Fa(un, un – u) – Fa(u, un – u)] = . Further,
we can conclude that un → u strongly in W. Consequently, T : Lp

(�) → W is contin-
uous. �

Now we define an operator L : Lp
(�) → Lp

(�), with L = i ◦ T , where i : W → Lp
(�) is

the inclusion operator. Since W is compactly embedded in Lp
(�), the inclusion operator

i is compact. It follows by Lemma . that the operator L = i ◦ T is compact.

Proof of Theorem . Let C be the constant given in Remark ., i.e.,
∫
�

|L(v)|p dx ≤ C,
∀v ∈ Lp

(�). Consider the ball BC () := {v ∈ Lp
(�) :

∫
�

|v|p dx ≤ C}. Clearly, BC () is a
convex closed subset of Lp

(�) and L(BC ()) ⊂ BC (). Moreover, L(BC ()) is relatively
compact in BC ().

Hence, by Lemma ., we have L : BC () → BC () is a continuous map. Therefore, we
can apply Schauder’s fixed point theorem (see [], Theorem .) to obtain L with a fixed
point. This means that problem (.) has a solution, and thus the proof of Theorem . is
complete. �
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