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Abstract
In this paper we introduce new modified Mann iterative processes for computing
fixed points of an infinite family of BregmanW-mappings in reflexive Banach spaces.
LetWn be the BregmanW-mapping generated by Sn, Sn–1, . . . , S1 and
βn,n ,βn,n–1, . . . ,βn,1. We first express the set of fixed points ofWn as the intersection of
fixed points of {Si}ni=1. As a consequence, we show thatWn is a Bregman weak
relatively nonexpansive mapping if Si is a Bregman weak relatively nonexpansive
mapping for each i = 1, 2, . . . ,n. When specialized to the fixed point set of a Bregman
nonexpansive type mapping T , the required sufficient condition F̃(T ) = F(T ) is less
restrictive than the usual condition F̂(T ) = F(T ) which is based on the demiclosedness
principle. We then prove some strong convergence theorems for these mappings.
Some application of our results to convex feasibility problem is also presented. Our
results improve and generalize many known results in the current literature.
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1 Introduction
Throughout this paper, we denote the set of real numbers and the set of positive integers
by R and N, respectively. Let E be a Banach space with the norm ‖ · ‖ and the dual space
E∗. For any x ∈ E, we denote the value of x∗ ∈ E∗ at x by 〈x, x∗〉. Let {xn}n∈N be a sequence
in E, we denote the strong convergence of {xn}n∈N to x ∈ E as n → ∞ by xn → x and the
weak convergence by xn ⇀ x. The modulus δ of convexity of E is denoted by

δ(ε) = inf

{
 –

‖x + y‖


: ‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε

}

for every ε with  ≤ ε ≤ . A Banach space E is said to be uniformly convex if δ(ε) >  for
every ε > . Let SE = {x ∈ E : ‖x‖ = }. The norm of E is said to be Gâteaux differentiable if
for each x, y ∈ SE , the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)
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exists. In this case, E is called smooth. If the limit (.) is attained uniformly for all x, y ∈
SE , then E is called uniformly smooth. The Banach space E is said to be strictly convex if
‖ x+y

 ‖ <  whenever x, y ∈ SE and x �= y. It is well known that E is uniformly convex if and
only if E∗ is uniformly smooth. It is also known that if E is reflexive, then E is strictly convex
if and only if E∗ is smooth; for more details, see [, ].

Let C be a nonempty subset of E. Let T : C → E be a mapping. We denote the set of
fixed points of T by F(T), i.e., F(T) = {x ∈ C : Tx = x}. A mapping T : C → E is said to be
nonexpansive if ‖Tx–Ty‖ ≤ ‖x–y‖ for all x, y ∈ C. A mapping T : C → E is said to be quasi-
nonexpansive if F(T) �= ∅ and ‖Tx – y‖ ≤ ‖x – y‖ for all x ∈ C and y ∈ F(T). The mapping T
is called closed, if for any sequence {xn}n∈N ⊂ C with limn→∞ xn = x and limn→∞ Txn = y,
we have Tx = y. The concept of nonexpansivity plays an important role in the study of
Mann-type iteration [] for finding fixed points of a mapping T : C → C. Recall that the
Mann-type iteration is given by the following formula:

xn+ = γnTxn + ( – γn)xn, x ∈ C. (.)

Here, {γn}n∈N is a sequence of real numbers in [, ] satisfying some appropriate condi-
tions. The construction of fixed points of nonexpansive mappings via Mann’s algorithm
[] has been extensively investigated recently in the current literature (see, for example,
[] and the references therein). In [], Reich proved that the sequence {xn}n∈N generated
by Mann’s algorithm (.) converges weakly to a fixed point of T . However, the conver-
gence of the sequence {xn}n∈N generated by Mann’s algorithm (.) is in general not strong
(see a counterexample in []; see also [, ]). Some attempts to modify the Mann iteration
method (.) so that strong convergence is guaranteed have recently been made. Bauschke
and Combettes [] proposed another modification of the Mann iteration process for a sin-
gle nonexpansive mapping T in a Hilbert space H . Then they proved that if the sequence
{αn}n∈N is bounded above from one, then the sequence {xn}n∈N generated by (.) con-
verges strongly to a fixed point of T , see also Nakajo and Takahashi [].

Let E be a smooth, strictly convex and reflexive Banach space and let J be the normalized
duality mapping of E. Let C be a nonempty, closed and convex subset of E. The generalized
projection �C from E onto C is defined and denoted by

�C(x) = arg min
y∈C

φ(y, x), (.)

where φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖. For more details, see [].
Let C be a nonempty, closed and convex subset of a smooth Banach space E, let T be

a mapping from C into itself. A point p ∈ C is said to be an asymptotic fixed point []
of T if there exists a sequence {xn}n∈N in C which converges weakly to p and limn→∞ ‖xn

– Txn‖ = . We denote the set of all asymptotic fixed points of T by F̂(T). A point p ∈
C is called a strong asymptotic fixed point of T if there exists a sequence {xn}n∈N in C
which converges strongly to p and limn→∞ ‖xn – Txn‖ = . We denote the set of all strong
asymptotic fixed points of T by F̃(T).

Following Matsushita and Takahashi [], a mapping T : C → C is said to be relatively
nonexpansive if the following conditions are satisfied:

() F(T) is nonempty;
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() φ(u, Tx) ≤ φ(u, x), ∀u ∈ F(T), x ∈ C;
() F̂(T) = F(T).
In , Matsushita and Takahashi [] proved the following strong convergence theo-

rem for relatively nonexpansive mappings in a Banach space.

Theorem . Let E be a uniformly convex and uniformly smooth Banach space, let C be
a nonempty, closed and convex subset of E, let T be a relatively nonexpansive mapping
from C into itself, and let {αn}n∈N be a sequence of real numbers such that  ≤ αn <  and
lim supn→∞ αn < . Suppose that {xn}n∈N is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C,

yn = J–(αnJxn + ( – αn)JTxn),

Hn = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},
Wn = {z ∈ C : 〈xn – z, Jx – Jxn〉 ≥ },
xn+ = �Hn∩Wn x.

(.)

If F(T) is nonempty, then {xn}n∈N converges strongly to �F(T)x.

1.1 Some facts about gradients
For any convex function g : E → (–∞, +∞], we denote the domain of g by dom g = {x ∈ E :
g(x) < ∞}. For any x ∈ int dom g and any y ∈ E, the right-hand derivative of g at x in the
direction y is defined by

go(x, y) = lim
t↓

g(x + ty) – g(x)
t

. (.)

The function g is said to be Gâteaux differentiable at x if limt→
g(x+ty)–g(x)

t exists for any y.
In this case go(x, y) coincides with ∇g(x), the value of the gradient ∇g of g at x. The func-
tion g is said to be Gâteaux differentiable if it is Gâteaux differentiable everywhere. The
function g is said to be Fréchet differentiable at x if this limit is attained uniformly in
‖y‖ = . The function g is said to be Fréchet differentiable if it is Fréchet differentiable
everywhere. It is well known that if a continuous convex function g : E → R is Gâteaux
differentiable, then ∇g is norm-to-weak∗ continuous (see, for example, []). Also, it is
known that if g is Fréchet differentiable, then ∇g is norm-to-norm continuous (see []).
The mapping ∇g is said to be weakly sequentially continuous if xn ⇀ x as n → ∞ implies
that ∇g(xn) ⇀∗ ∇g(x) as n → ∞ (for more details, see [] or []). The function g is said
to be strongly coercive if

lim‖xn‖→∞
g(xn)
‖xn‖ = ∞.

It is also said to be bounded on bounded subsets of E if g(U) is bounded for each bounded
subset U of E. Finally, g is said to be uniformly Fréchet differentiable on a subset X of E if
the limit (.) is attained uniformly for all x ∈ X and ‖y‖ = .
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Let A : E → E∗ be a set-valued mapping. We define the domain and range of A by
dom A = {x ∈ E : Ax �= Ø} and ran A =

⋃
x∈E Ax, respectively. The graph of A is denoted

by G(A) = {(x, x∗) ∈ E × E∗ : x∗ ∈ Ax}. The mapping A ⊂ E × E∗ is said to be monotone []
if 〈x – y, x∗ – y∗〉 ≥  whenever (x, x∗), (y, y∗) ∈ A. It is also said to be maximal monotone
[] if its graph is not contained in the graph of any other monotone operator on E. If
A ⊂ E × E∗ is maximal monotone, then we can show that the set A– = {z ∈ E :  ∈ Az} is
closed and convex.

1.2 Some facts about Legendre functions
Let E be a reflexive Banach space. For any proper, lower semicontinuous and convex func-
tion g : E → (–∞, +∞], the conjugate function g∗ of g is defined by

g∗(x∗) = sup
x∈E

{〈
x, x∗〉 – g(x)

}

for all x∗ ∈ E∗. It is well known that g(x) + g∗(x∗) ≥ 〈x, x∗〉 for all (x, x∗) ∈ E × E∗. It is also
known that (x, x∗) ∈ ∂g is equivalent to

g(x) + g∗(x∗) =
〈
x, x∗〉. (.)

Here, ∂g is the subdifferential of g [, ]. We also know that if g : E → (–∞, +∞] is a
proper, lower semicontinuous and convex function, then g∗ : E∗ → (–∞, +∞] is a proper,
weak∗ lower semicontinuous and convex function; see [] for more details on convex anal-
ysis.

Let g : E → (–∞, +∞] be a mapping. The function g is said to be:
(i) Essentially smooth if ∂g is both locally bounded and single-valued on its domain.

(ii) Essentially strictly convex if (∂g)– is locally bounded on its domain and g is strictly
convex on every convex subset of dom ∂g .

(iii) Legendre if it is both essentially smooth and essentially strictly convex (for more
details, we refer to []).

If E is a reflexive Banach space and g : E → (–∞, +∞] is a Legendre function, then in
view of []

∇g∗ = (∇g)–, ran∇g = dom g∗ = int dom g∗, and ran∇g = int dom g.

Examples of Legendre functions are given in [, ]. The most notable example of a
Legendre function is 

s ‖ · ‖s ( < s < ∞), where the Banach space E is smooth and strictly
convex and, in particular, a Hilbert space.

1.3 Some facts about Bregman distances
Let E be a Banach space and let E∗ be the dual space of E. Let g : E → R be a convex and
Gâteaux differentiable function. Then the Bregman distance [, ] corresponding to g
is the function Dg : E × E →R defined by

Dg(x, y) = g(x) – g(y) –
〈
x – y,∇g(y)

〉
, ∀x, y ∈ E. (.)
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It is clear that Dg(x, y) ≥  for all x, y ∈ E. It is well known [] that for x ∈ E and x ∈ C,
Dg(x, x) = miny∈C Dg(y, x) if and only if

〈
y – x,∇g(x) – ∇g(x)

〉≤ , ∀y ∈ C. (.)

In that case when E is a smooth Banach space, setting g(x) = ‖x‖ for all x ∈ E, we obtain
that ∇g(x) = Jx for all x ∈ E and hence Dg(x, y) = φ(x, y) for all x, y ∈ E.

A Bregman projection [, ] of x ∈ int(dom g) onto the nonempty, closed and convex
set C ⊂ dom g is the unique vector projg

C(x) := x ∈ C satisfying

Dg(x, x) = min
y∈C

Dg(y, x).

It is well known that projg
C has the following property:

Dg
(
y, projg

C x
)

+ Dg
(
projg

C x, x
)≤ Dg(y, x) (.)

for all y ∈ C and x ∈ E (see [] for more details).

1.4 Some facts about uniformly convex functions
Let E be a Banach space and let Br := {z ∈ E : ‖z‖ ≤ r} for all r > . Then a function g : E →
R is said to be uniformly convex on bounded subsets of E [] if ρr(t) >  for all r, t > ,
where ρr : [, +∞) → [,∞] is defined by

ρr(t) = inf
x,y∈Br ,‖x–y‖=t,α∈(,)

αg(x) + ( – α)g(y) – g(αx + ( – α)y)
α( – α)

(.)

for all t ≥ . The function ρr is called the gauge of uniform convexity of g . The function
g is also said to be uniformly smooth on bounded subsets of E [] if limt↓

σr (t)
t =  for all

r > , where σr : [, +∞) → [,∞] is defined by

σr(t) = sup
x∈Br ,y∈SE ,α∈(,)

αg(x + ( – α)ty) + ( – α)g(x – αty) – g(x)
α( – α)

for all t ≥ . The function g is said to be uniformly convex if the function δg : [, +∞) →
[, +∞], defined by

δg(t) := sup

{



g(x) +



g(y) – g
(

x + y


)
: ‖y – x‖ = t

}
,

satisfies that limt↓
σr (t)

t = .

1.5 Some facts about resolvents
Let E be a reflexive Banach space with the dual space E∗ and let g : E → (–∞, +∞] be a
proper, lower semicontinuous and convex function. Let A be a maximal monotone oper-
ator from E to E∗. For any r > , let the mapping Resg

rA : E → dom A be defined by

Resg
rA = (∇g + rA)–∇g.
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The mapping Resg
rA is called the g-resolvent of A (see []). It is well known that A–() =

F(Resg
rA) for each r >  (for more details, see, for example, []).

Examples and some important properties of such operators are discussed in [].

1.6 Some facts about Bregman quasi-nonexpansive mappings
Let C be a nonempty, closed and convex subset of a reflexive Banach space E. Let g : E →
(–∞, +∞] be a proper, lower semicontinuous and convex function. Recall that a mapping
T : C → C is said to be Bregman quasi-nonexpansive if F(T) �= Ø and

Dg(p, Tx) ≤ Dg(p, x), ∀x ∈ C, p ∈ F(T).

A mapping T : C → C is said to be Bregman relatively nonexpansive if the following con-
ditions are satisfied:

() F(T) is nonempty;
() Dg(p, Tv) ≤ Dg(p, v), ∀p ∈ F(T), v ∈ C;
() F̂(T) = F(T).

A mapping T : C → C is said to be Bregman weak relatively nonexpansive if the following
conditions are satisfied:

() F(T) is nonempty;
() Dg(p, Tv) ≤ Dg(p, v), ∀p ∈ F(T), v ∈ C;
() F̃(T) = F(T).

It is clear that any Bregman relatively nonexpansive mapping is a Bregman quasi-
nonexpansive mapping. It is also obvious that every Bregman relatively nonexpansive
mapping is a Bregman weak relatively nonexpansive mapping, but the converse in not
true in general; see, for example, []. Indeed, for any mapping T : C → C, we have
F(T) ⊂ F̃(T) ⊂ F̂(T). If T is Bregman relatively nonexpansive, then F(T) = F̃(T) =
F̂(T).

The concept of W -mapping was first introduced by Atsushiba and Takahashi []
in  and ever since has been extensively investigated for a finite family of map-
pings (see [] and the references therein). Now, we are in a position to introduce
the concept of Bregman W -mapping in a Banach space. Let C be a nonempty, closed
and convex subset of a reflexive Banach space E. Let {Sn}n∈N be an infinite family of
Bregman weak relatively nonexpansive mappings of C into itself, and let {βn,k : k, n ∈
N,  ≤ k ≤ n} be a sequence of real numbers such that  ≤ βi,j ≤  for every i, j ∈
N with i ≥ j. Then, for any n ∈ N, we define a mapping Wn of C into itself as fol-
lows:

Un,n+x = x,

Un,nx = projg
C
(∇g∗[βn,n∇g(SnUn,n+x) + ( – βn,n)∇g(x)

])
,

Un,n–x = projg
C
(∇g∗[βn,n–∇g(Sn–Un,nx) + ( – βn,n–)∇g(x)

])
,

...

Un,kx = projg
C
(∇g∗[βn,k∇g(SkUn,k+x) + ( – βn,k)∇g(x)

])
,

...
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Un,x = projg
C
(∇g∗[βn,∇g(SUn,x) + ( – βn,)∇g(x)

])
,

Wnx = Un,x = ∇g∗[βn,∇g(SUn,x) + ( – βn,)∇g(x)
]

for all x ∈ C, where projg
C is the Bregman projection from E onto C. Such a mapping Wn

is called the Bregman W -mapping generated by Sn, Sn–, . . . , S and βn,n,βn,n–, . . . ,βn,.
The theory of fixed points with respect to Bregman distances has been studied in the

last ten years and much intensively in the last four years. For some recent articles on the
existence of fixed points for Bregman nonexpansive type mappings, we refer the readers
to [–, , ]. But it is worth mentioning that, in all the above results for Bregman
nonexpansive type mappings, the assumption F̂(T) = F(T) is imposed on the map T . So,
the following question arises naturally in a Banach space setting.

Question . Is it possible to obtain strong convergence of modified Mann-type schemes
to a common fixed point of an infinite family of Bregman W -mappings {Sj}j∈N without
imposing the assumption F̂(Sj) = F(Sj) on Sj?

In this paper we introduce new modified Mann iterative processes for computing fixed
points of an infinite family of Bregman W -mappings in reflexive Banach spaces. Let Wn

be the Bregman W -mapping generated by Sn, Sn–, . . . , S and βn,n,βn,n–, . . . ,βn,. We first
express the set of fixed points of Wn as the intersection of fixed points of {Si}n

i=. As a
consequence, we show that Wn is a Bregman weak relatively nonexpansive mapping if Si

is a Bregman weak relatively nonexpansive mapping for each i = , , . . . , n. We then prove
some strong convergence theorems for these mappings. Some application of our results
to convex feasibility problem is also presented. No assumption F̂(T) = F(T) is imposed
on the mapping T . Consequently, the above question is answered in the affirmative in a
reflexive Banach space setting. Our results improve and generalize many known results in
the current literature; see, for example, [, , , –].

2 Preliminaries
In this section, we begin by recalling some preliminaries and lemmas which will be used
in the sequel.

The following definition is slightly different from that in Butnariu and Iusem [].

Definition . ([]) Let E be a Banach space. The function g : E → R is said to be a
Bregman function if the following conditions are satisfied:

() g is continuous, strictly convex and Gâteaux differentiable;
() the set {y ∈ E : Dg(x, y) ≤ r} is bounded for all x ∈ E and r > .

The following lemma follows from Butnariu and Iusem [] and Zălinescu [].

Lemma . Let E be a reflexive Banach space and g : E →R be a strongly coercive Bregman
function. Then

() ∇g : E → E∗ is one-to-one, onto and norm-to-weak∗ continuous;
() 〈x – y,∇g(x) – ∇g(y)〉 =  if and only if x = y;
() {x ∈ E : Dg(x, y) ≤ r} is bounded for all y ∈ E and r > ;
() dom g∗ = E∗, g∗ is Gâteaux differentiable and ∇g∗ = (∇g)–.
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We know the following two results from [].

Theorem . Let E be a reflexive Banach space and g : E →R be a convex function which
is bounded on bounded subsets of E. Then the following assertions are equivalent:

() g is strongly coercive and uniformly convex on bounded subsets of E;
() dom g∗ = E∗, g∗ is bounded on bounded subsets and uniformly smooth on bounded

subsets of E∗;
() dom g∗ = E∗, g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-norm

continuous on bounded subsets of E∗.

Theorem . Let E be a reflexive Banach space and g : E → R be a continuous convex
function which is strongly coercive. Then the following assertions are equivalent:

() g is bounded on bounded subsets and uniformly smooth on bounded subsets of E;
() g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-norm continuous on

bounded subsets of E∗;
() dom g∗ = E∗, g∗ is strongly coercive and uniformly convex on bounded subsets of E∗.

Let E be a Banach space and let g : E →R be a convex and Gâteaux differentiable func-
tion. Then the Bregman distance [] (see also [, ]) satisfies the three point identity
that is

Dg(x, z) = Dg(x, y) + Dg(y, z) +
〈
x – y,∇g(y) – ∇g(z)

〉
, ∀x, y, z ∈ E. (.)

In particular, it can be easily seen that

Dg(x, y) = –Dg(y, x) +
〈
y – x,∇g(y) – ∇g(x)

〉
, ∀x, y ∈ E. (.)

The following result was proved in [].

Lemma . Let E be a Banach space and g : E → R be a Gâteaux differentiable function
which is uniformly convex on bounded subsets of E. Let {xn}n∈N and {yn}n∈N be bounded
sequences in E. Then

lim
n→∞ Dg(xn, yn) =  ⇐⇒ lim

n→∞‖xn – yn‖ = .

The following result was first proved in [] (see also []).

Lemma . Let E be a reflexive Banach space, g : E → R be a strongly coercive Bregman
function and V be the function defined by

Vg
(
x, x∗) = g(x) –

〈
x, x∗〉 + g∗(x∗), x ∈ E, x∗ ∈ E∗.

Then the following assertions hold:
() Dg(x,∇g∗(x∗)) = Vg(x, x∗) for all x ∈ E and x∗ ∈ E∗.
() Vg(x, x∗) + 〈∇g∗(x∗) – x, y∗〉 ≤ Vg(x, x∗ + y∗) for all x ∈ E and x∗, y∗ ∈ E∗.

The following result was proved in [].
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Lemma . Let E be a Banach space, r >  be a constant, ρr be the gauge of uniform convex-
ity of g and g : E → R be a convex function which is uniformly convex on bounded subsets
of E. Then

(i) For any x, y ∈ Br and α ∈ (, ),

g
(
αx + ( – α)y

)≤ αg(x) + ( – α)g(y) – α( – α)ρr
(‖x – y‖).

(ii) For any x, y ∈ Br ,

ρr
(‖x – y‖)≤ Dg(x, y).

(iii) If, in addition, g is bounded on bounded subsets and uniformly convex on bounded
subsets of E then, for any x ∈ E, y∗, z∗ ∈ Br and α ∈ (, ),

Vg
(
x,αy∗ + ( – α)z∗)≤ αVg

(
x, y∗) + ( – α)Vg

(
x, z∗) – α( – α)ρ∗

r
(∥∥y∗ – z∗∥∥).

The following result was proved in [].

Lemma . Let E be a Banach space, r >  be a constant and g : E →R be a convex func-
tion which is uniformly convex on bounded subsets of E. Then

g

( n∑
k=

αkxk

)
≤

n∑
k=

αkg(xk) – αiαjρr
(‖xi – xj‖

)

for all i, j ∈ {, , , . . . , n}, xk ∈ Br , αk ∈ (, ) and k = , , , . . . , n with
∑n

k= αk = , where
ρr is the gauge of uniform convexity of g .

Now we prove the following important result.

Proposition . Let E be a reflexive Banach space and g : E → R be a convex, continu-
ous, strongly coercive and Gâteaux differentiable function which is bounded on bounded
subsets and uniformly convex on bounded subsets of E. Let C be a nonempty, closed and
convex subset of E. Let S, S, . . . , Sn be Bregman weak relatively nonexpansive mappings of
C into itself such that

⋂n
i= F(Si) �= Ø, and let {βn,k : k, n ∈N,  ≤ k ≤ n} be a sequence of real

numbers such that  < βn, ≤  and  < βn,i <  for every i = , , . . . , n. Let Wn be the Breg-
man W -mapping generated by Sn, Sn–, . . . , S and βn,n,βn,n–, . . . ,βn,. Then the following
assertions hold:

(i) F(Wn) =
⋂n

i= F(Si);
(ii) for every k = , , . . . , n, x ∈ C and z ∈ F(Wn), Dg(z, Un,kx) ≤ Dg(z, x) and

Dg(z, SkUn,k+x) ≤ Dg(z, x);
(iii) for every n ∈N, Wn is a Bregman weak relatively nonexpansive mapping.

Proof (i) It is clear that
⋂n

i= F(Si) ⊂ F(Wn). For the converse inclusion, take any w ∈⋂n
i= F(Si) and z ∈ F(Wn).
Let r = sup{‖∇g(z)‖,‖∇g(Skz)‖,‖∇g(SkUn,k+z)‖ : k = , , . . . , n} and ρ∗

r : E∗ →R be the
gauge of uniform convexity of the conjugate function g∗. In view of (.) and Lemma .,



Naraghirad and Timnak Fixed Point Theory and Applications  (2015) 2015:149 Page 10 of 28

we obtain

Dg(w, z) = Dg(w, Wnz)

= Dg
(
w,∇g∗[βn,∇g(SUn,z) + ( – βn,)∇g(z)

])
= g(w) –

〈
w,βn,βn,∇g(SUn,z) + ( – βn,)∇g(z)

〉
+ g∗(βn,∇g(SUn,z) + ( – βn,)∇g(z)

)
≤ βn,g(w) + ( – βn,)g(w) + βn,g∗(∇g(SUn,z)

)
+ ( – βn,)g∗(∇g(z)

)
– βn,( – βn,)ρ∗

r

(∥∥∇g(SUn,z) – ∇g(z)
∥∥)

= βn,Vg
(
w,∇g(SUn,z)

)
+ ( – βn,)Vg

(
w,∇g(z)

)
– βn,( – βn,)ρ∗

r

(∥∥∇g(SUn,z) – ∇g(z)
∥∥)

= βn,Dg(w, SUn,z) + ( – βn,)Dg(w, z)

– βn,( – βn,)ρ∗
r

(∥∥∇g(SUn,z) – ∇g(z)
∥∥)

≤ βn,Dg(w, Un,z) + ( – βn,)Dg(w, z)

– βn,( – βn,)ρ∗
r

(∥∥∇g(SUn,z) – ∇g(z)
∥∥)

= βn,
[
βn,Dg(w, Un,z) + ( – βn,)Dg(w, z)

– βn,( – βn,)ρ∗
r

(∥∥∇g(SUn,z) – ∇g(z)
∥∥)] + ( – βn,)Dg(w, z)

– βn,( – βn,)ρ∗
r

(∥∥∇g(SUn,z) – ∇g(z)
∥∥)

≤ · · ·
≤ Dg(w, z) – βn,( – βn,)ρ∗

r

(∥∥∇g(SUn,z) – ∇g(z)
∥∥)

– βn,βn,( – βn,)ρ∗
r

(∥∥∇g(SUn,z) – ∇g(z)
∥∥) – · · ·

– βn,βn, · · ·βn,n( – βn,n)ρ∗
r

(∥∥∇g(Snz) – ∇g(z)
∥∥).

This implies that

ρ∗
r

(∥∥∇g(SUn,z) – ∇g(z)
∥∥) = · · · = ρ∗

r

(∥∥∇g(Snz) – ∇g(z)
∥∥) = 

and hence, from the properties of ρ∗
r , we conclude that

Skz = z, Un,kz = z (k = , , . . . , n).

If βn, < , then we get from ‖∇g(SUn,z) – ∇g(z)‖ =  that Sz = z. And if βn, = , then we
obtain from z = Wnz = SUn,z that Sz = z. Thus we have z ∈⋂n

i= F(Si). This shows that
F(Wn) ⊂⋂n

i= F(Si).
(ii) Let k = , , . . . , n, x ∈ C and z ∈ F(Wn). By a similar way as in the proof of (i), we arrive

at

Dg(z, Un,kx) ≤ βn,kDg(z, SkUn,k+x) + ( – βn,k)Dg(z, x)

≤ βn,kDg(z, Un,k+x) + ( – βn,k)Dg(z, x)
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≤ βn,k
[
βn,k+Dg(z, Un,k+x) + ( – βn,k+)Dg(z, x)

]
+ ( – βn,k)Dg(z, x)

≤ · · · ≤ Dg(z, x).

This implies that

Dg(z, SkUn,k+x) ≤ Dg(z, x).

(iii) Since we have already proved that F(Wn) =
⋂n

i= F(Si), then the fact that Wn is a Breg-
man weak relatively nonexpansive mapping is a consequence of each Si being Bregman
weak relatively nonexpansive. Indeed, let {zm}m∈N be a sequence in C such that zm → z ∈ C
and ‖zm –Wnzm‖ →  as m → ∞. We will show that z ∈ F(Wn). To this end, let w ∈ F(Wn).
In view of Lemma ., we get that

lim
m→∞ Dg(Wnzm, zm) = .

On the other hand, we have from (.) that

Dg(w, zm) – Dg(w, Wnzm) = Dg(w, Wnzm) + Dg(Wnzm, zm)

+
〈
w – Wnzm,∇g(Wnzm) – ∇g(zm)

〉
– Dg(w, Wnzm)

= Dg(Wnzm, zm) +
〈
w – Wnzm,∇g(Wnzm) – ∇g(zm)

〉
.

This, together with (.), implies that

lim
m→∞

∣∣Dg(w, zm) – Dg(w, Wnzm)
∣∣ = .

Let r = sup{‖∇g(zm)‖,‖∇g(Skzm)‖,‖∇g(SkUn,k+zm)‖ : m ∈ N, k = , , . . . , n} and ρ∗
r :

E∗ → R be the gauge of uniform convexity of the conjugate function g∗. By the same ar-
guments as in (ii), we conclude that

Dg(w, Wnzm) = Dg
(
w,∇g∗[βn,∇g(SUn,zm) + ( – βn,)∇g(zm)

])
= g(w) –

〈
w,βn,βn,∇g(SUn,zm) + ( – βn,)∇g(zm)

〉
+ g∗(βn,∇g(SUn,zm) + ( – βn,)∇g(zm)

)
≤ βn,g(w) + ( – βn,)g(w) + βn,g∗(∇g(SUn,zm)

)
+ ( – βn,)g∗(∇g(zm)

)
– βn,( – βn,)ρ∗

r

(∥∥∇g(SUn,zm) – ∇g(zm)
∥∥)

= βn,Vg
(
w,∇g(SUn,zm)

)
+ ( – βn,)Vg

(
w,∇g(zm)

)
– βn,( – βn,)ρr

(∥∥∇g(SUn,zm) – ∇g(zm)
∥∥)

= βn,Dg(w, SUn,zm) + ( – βn,)Dg(u, zm)

– βn,( – βn,)ρ∗
r

(∥∥∇g(SUn,zm) – ∇g(zm)
∥∥)

≤ βn,Dg(w, Un,zm) + ( – βn,)Dg(w, zm)

– βn,( – βn,)ρ∗
r

(∥∥∇g(SUn,zm) – ∇g(zm)
∥∥)
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= βn,
[
βn,Dg(w, Un,zm) + ( – βn,)Dg(w, zm)

– βn,( – βn,)ρ∗
r

(∥∥∇g(SUn,zm) – ∇g(zm)
∥∥)] + ( – βn,)Dg(w, zm)

– βn,( – βn,)ρ∗
r

(∥∥∇g(SUn,zm) – ∇g(zm)
∥∥)

≤ · · ·
≤ Dg(w, zm) – βn,( – βn,)ρ∗

r

(∥∥∇g(SUn,zm) – ∇g(zm)
∥∥)

– βn,βn,( – βn,)ρ∗
r

(∥∥∇g(SUn,zm) – ∇g(zm)
∥∥) – · · ·

– βn,βn, · · ·βn,n( – βn,n)ρ∗
r

(∥∥∇g(Snzm) – ∇g(zm)
∥∥).

This implies that

lim
m→∞ρ∗

r

(∥∥∇g(SUn,zm) – ∇g(zm)
∥∥) = · · ·

= lim
m→∞ρ∗

r

(∥∥∇g(Snzm) – ∇g(zm)
∥∥) = .

Therefore, from the property of ρ∗
r we deduce that

lim
m→∞

∥∥∇g(Szm) – ∇g(Skzm)
∥∥ = , ∀k ∈ {, . . . , n}

and hence

Skz = z, Un,kz = z (k = , , . . . , n).

If βn, < , then we get from ‖∇g(SUn,z) – ∇g(z)‖ =  that Sz = z. And if βn, = , then
we obtain from z = Wnz = SUn,z that Sz = z. Thus we have z ∈⋂n

i= F(Si) and hence Wn

is a Bregman weak relatively nonexpansive mapping for every n ∈ N. This completes the
proof. �

Next we prove the following convex combination of Bregman weak relatively nonexpan-
sive mappings in a Banach space.

Proposition . Let E be a reflexive Banach space and g : E →R be a convex, continuous,
strongly coercive and Gâteaux differentiable function which is bounded on bounded subsets
and uniformly convex on bounded subsets of E. Let C be a nonempty, closed and convex
subset of E. Let {Sn}n∈N be a family of Bregman weak relatively nonexpansive mappings of
C into itself such that F :=

⋂∞
n= F(Sn) �= Ø, and let Tnx = ∇g∗(

∑n
j= βn,j∇g(Sjx)) for every

n ∈ N and x ∈ C, where  ≤ βn,j ≤  (n ∈ N, j = , , . . . , n) with
∑n

j= βn,j =  for all n ∈ N

and lim infn→∞ βn,j >  for each j ∈N. Then the following assertions hold:
(i)

⋂∞
n= F(Tn) = F ;

(ii) for every n ∈N, x ∈ C and z ∈ F , Dg(z, Tnx) ≤ Dg(z, x);
(iii) for every n ∈N, Tn is a Bregman weak relatively nonexpansive mapping.

Proof (i) It is clear that F ⊂ ⋂∞
n= F(Tn) �= Ø. For the converse inclusion, take w ∈ F

and z ∈ ⋂∞
n= F(Tn). Let n ∈ N be large enough and l, m ∈ N with  ≤ l ≤ m ≤ n. Let

r = sup{‖∇g(z)‖,‖∇g(Skz)‖,‖∇g(SkUn,k+zm)‖ : m ∈ N, k = , , . . . , n} and ρ∗
r : E∗ → R be
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the gauge of uniform convexity of the conjugate function g∗. In view of Lemma ., we
obtain

Dg(w, z) = Dg(w, Tnz)

= Dg

(
w,∇g∗

( n∑
j=

βn,j∇g(Sj)(z)

))

= Dg

(
w,∇g∗

[ n∑
j=

βn,j∇g(Sjz)

])

= Vg

(
w,

n∑
j=

βn,j∇g(Sjz)

)

= g(w) –

〈
w,

n∑
j=

βn,j∇g(Sjz)

〉

+ g∗
(

(βn,l + βn,m)
(βn,l∇g(Slz)) + βn,m∇g(Smz)

βn,l + βn,m

× (
 – (βn,l + βn,m)

)∑n
j=,,...,n,j �=l,m βn,j∇g(Sjz)

 – (βn,l + βn,m)

)

≤ g(w) –
n∑

j=

βn,j
〈
w,∇g(Sjz)

〉

+ (βn,l + βn,m)
[

βn,l

(βn,l + βn,m)
g∗(∇g(Slz)

)
+

βn,l

(βn,l + βn,m)
g∗(∇g(Smz)

)

–
βn,l

(βn,l + βn,m)
βn,m

(βn,l + βn,m)
ρ∗

r

(∥∥∇g(Slz) – ∇g(Smz)
∥∥)]

+
n∑

j=,,...,n,j �=l,m

βn,jg∗(∇g(Sjz)
)

=
n∑

j=,,...,n

βn,j
[
g(w) –

〈
w,∇g(Sjz)

〉
+ g∗(∇g(Sjz)

)]

–
βn,lβn,m

(βn,l + βn,m)
ρ∗

r

(∥∥∇g(Slz) – ∇g(Smz)
∥∥)

=
n∑

j=,,...,n

βn,jV
(
w,∇g(Sjz)

)

–
βn,lβn,m

(βn,l + βn,m)
ρ∗

r

(∥∥∇g(Slz) – ∇g(Smz)
∥∥)

=
n∑

j=,,...,n

βn,jDg(w, Sjz)

–
βn,lβn,m

(βn,l + βn,m)
ρ∗

r

(∥∥∇g(Slz) – ∇g(Smz)
∥∥)

= Dg(w, z) –
βn,lβn,m

(βn,l + βn,m)
ρ∗

r

(∥∥∇g(Slz) – ∇g(Smz)
∥∥).
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This implies that for any l, m ∈N,

βn,lβn,mρ∗
r

(∥∥∇g(Slz) – ∇g
(
Sm(z)

)∥∥) = 

for large enough n ∈N.
Therefore, from the property of ρ∗

r we deduce that

∥∥∇g(Slz) – ∇g(Smz)
∥∥ = , ∀l, m ∈N.

Since ∇g∗ is uniformly norm-to-norm continuous on bounded subsets of E∗, we arrive at

∥∥Sl(z) – Sm(z)
∥∥ = , ∀l, m ∈N.

This implies that

lim
n→∞

∥∥Sl(z) – Smz
∥∥ = , ∀l, m ∈N.

Therefore, Slz = Sm for every l, m ∈N, that is, z ∈ F . This completes the proof. �

3 Strong convergence theorems
In this section, we prove strong convergence theorems in a reflexive Banach space. We
start with the following simple lemma which was proved in [].

Lemma . Let E be a reflexive Banach space and g : E → R be a convex, continuous,
strongly coercive and Gâteaux differentiable function which is bounded on bounded subsets
and uniformly convex on bounded subsets of E. Let C be a nonempty, closed and convex
subset of E. Let T : C → C be a Bregman quasi-nonexpansive mapping. Then F(T) is closed
and convex.

Theorem . Let E be a reflexive Banach space and g : E → R be a convex, continuous,
strongly coercive and Gâteaux differentiable function which is bounded on bounded subsets
and uniformly convex on bounded subsets of E. Let C be a nonempty, closed and convex
subset of E. Let {Sn}n∈N be a family of Bregman weak relatively nonexpansive mappings of
C into itself such that F :=

⋂∞
n= F(Sn) �= Ø, and let {βn,k : k, n ∈ N,  ≤ k ≤ n} be a sequence

of real numbers such that  < βi,j ≤  and  < βi,j <  for all i ∈ N and every j = , , . . . , n.
Let Wn be the Bregman W -mapping generated by Sn, Sn–, . . . , S and βn,n,βn,n–, . . . ,βn,.
Let {αn}n∈N∪{} be a sequence in [, ) such that lim infn→∞ αn( – αn) > . Let {xn}n∈N be a
sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrarily,

C = C,

yn = ∇g∗[αn∇g(xn) + ( – αn)∇g(Wnxn)],

Cn+ = {z ∈ Cn : Dg(z, yn) ≤ Dg(z, xn)},
xn+ = projg

Cn+
x and n ∈N∪ {},

(.)

where ∇g is the gradient of g . Then {xn}n∈N converges strongly to projg
F x as n → ∞.
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Proof We divide the proof into several steps.
Step . We show that Cn is closed and convex for each n ∈N∪ {}.
We proceed by the mathematical induction. It is clear that C = C is closed and convex.

Let Cm be closed and convex for some m ∈N. For z ∈ Cm, we see that

Dg(z, ym) ≤ Dg(z, xm)

is equivalent to

〈
z,∇g(xm) – ∇g(ym)

〉≤ g(ym) – g(xm) +
〈
xm,∇g(xm)

〉
–
〈
ym,∇g(ym)

〉
.

An easy argument shows that Cm+ is closed and convex. Hence Cn is closed and convex
for each n ∈ N∪ {}.

Step . We claim that F ⊂ Cn for all n ∈N∪ {}.
It is obvious that F ⊂ C = C. Assume now that F ⊂ Cm for some m ∈ N. Take any w ∈

F ⊂ Cm. Employing Lemma ., we obtain

Dg(w, ym) = Dg
(
w,∇g∗[αm∇g(xm) + ( – αm)∇g(Wmxm)

])
= Vg

(
w,αm∇g(xm) + ( – αm)∇g(Wmxm)

)
= g(w) –

〈
w,αm∇g(xm) +

(
 – αm∇g(Wmxm)

)〉
+ g∗(αm∇g(xm) + ( – αm)∇g(Wmxm)

)
≤ αmg(w) + ( – αm)g(w)

+ αmg∗(∇g(xm)
)

+ ( – αm)g∗(∇g(Wmxm)
)

= αmVg
(
w,∇g(xm)

)
+ ( – αm)Vg

(
w,∇g(Wmxm)

)
= αmDg(w, xm) + ( – αm)Dg(w, Wmxm)

≤ αmDg(w, xm) + ( – αm)Dg(w, xm)

= Dg(w, xm). (.)

This proves that w ∈ Cm+. Thus, we have F ⊂ Cn for all n ∈N∪ {}.
Step . We prove that {xn}n∈N, {yn}n∈N and {Wnxn}n∈N are bounded sequences in C.
It is then easily seen from (.) that

Dg(xn, x) = Dg
(
projg

Cn x, x
)

≤ Dg(w, x) – Dg(w, xn) ≤ Dg(w, x), ∀w ∈ F ⊂ Cn, n ∈N∪ {}.

This leads immediately to the boundedness of {Dg(xn, x)}n∈N. So, there exists M >  such
that

Dg(xn, x) ≤ M, ∀n ∈ N. (.)

Using Lemma .() and (.), we have the boundedness of {xn}n∈N. Since {Wn}n∈N is an
infinite family of Bregman weak relatively nonexpansive mappings from C into itself, we
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have for any q ∈ F that

Dg(q, Wnxn) ≤ Dg(q, xn), ∀n ∈N. (.)

Then by Definition ., (.) and observing that {xn}n∈N is bounded, we are led to the
boundedness of {Wnxn}n∈N.

Step . We show that xn → u for some u ∈ F , where u = projg
F x.

By Step , we have that {xn}n∈N is bounded. By the construction of Cn, we conclude that
Cm ⊂ Cn and xm = projg

Cm x ∈ Cm ⊂ Cn for any positive integer m ≥ n. This, together with
(.), implies that

Dg(xm, xn) = Dg
(
xm, projg

Cn x
)≤ Dg(xm, x) – Dg

(
projg

Cn x, x
)

= Dg(xm, x) – Dg(xn, x). (.)

In view of (.), we conclude that

Dg(xn, x) ≤ Dg(xn, x) + Dg(xm, xn) ≤ Dg(xm, x), ∀m ≥ n.

This proves that {Dg(xn, x)}n∈N is an increasing sequence in R and hence by (.) the limit
limn→∞ Dg(xn, x) exists. Letting m, n → ∞ in (.), we deduce that Dg(xm, xn) → . In view
of Lemma ., we obtain that ‖xm – xn‖ →  as m, n → ∞. This means that {xn}n∈N is a
Cauchy sequence. Since E is a Banach space and C is closed and convex, we conclude that
there exists u ∈ C such that

lim
n→∞‖xn – u‖ = . (.)

Now, we show that u ∈ F . In view of Lemma ., (.) and (.), we obtain

lim
n→∞ Dg(xn+, xn) = . (.)

Since xn+ ∈ Cn+, we conclude that

Dg(xn+, yn) ≤ Dg(xn+, xn).

This, together with (.), implies that

lim
n→∞ Dg(xn+, yn) = . (.)

Employing Lemma . and (.)-(.), we deduce that

lim
n→∞‖xn+ – xn‖ =  and lim

n→∞‖xn+ – yn‖ = .

In view of (.), we get

lim
n→∞‖yn – u‖ = . (.)
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From (.) and (.), it follows that

lim
n→∞‖xn – yn‖ = .

Since ∇g is uniformly norm-to-norm continuous on any bounded subset of E, we obtain

lim
n→∞

∥∥∇g(xn) – ∇g(yn)
∥∥ = . (.)

Applying Lemma . we derive that

lim
n→∞ Dg(yn, xn) = 

and hence

lim
n→∞

∣∣g(xn) – g(yn)
∣∣ = lim

n→∞
∣∣Dg(yn, xn) –

〈
xn – yn,∇g(xn)

〉∣∣ = .

It follows from the definition of Bregman distance that

∣∣Dg(w, xn) – Dg(w, yn)
∣∣

= |g(w) – g(xn) +
〈
w – xn,∇g(xn)

〉
–
(
g(w) – g(yn) +

〈
w – yn,∇g(yn)

〉)
=
∣∣g(yn) – g(xn) +

〈
w – xn,∇g(xn) – ∇g(xn)

〉
+
〈
xn – yn,∇g(xn)

〉∣∣
≤ ∣∣g(yn) – g(xn)

∣∣ + ‖w – xn‖
∥∥∇g(yn) – ∇g(xn)

∥∥ + ‖xn – yn‖
∥∥∇g(yn)

∥∥
→  (.)

as n → ∞.
The function g is bounded on bounded subsets of E and, thus, ∇g is also bounded on

bounded subsets of E∗ (see, for example, [] for more details). This implies that the se-
quences {∇g(xn)}n∈N, {∇g(yn)}n∈N and {∇g(Wnxn) : n ∈N∪ {}} are bounded in E∗.

In view of Theorem .(), we know that dom g∗ = E∗ and g∗ is strongly coercive and
uniformly convex on bounded subsets. Let r = sup{‖∇g(xn)‖,‖∇g(Wnxn)‖ : n ∈ N ∪ {}}
and ρ∗

r : E∗ →R be the gauge of uniform convexity of the conjugate function g∗. We prove
that for any w ∈ F

Dg(w, yn) ≤ Dg(w, xn) – αn( – αn)ρ∗
r

(∥∥∇g(xn) – ∇g(Wnxn)
∥∥). (.)

Let us show (.). For any given w ∈ F , in view of the definition of Bregman distance (see
(.)), (.), Lemma ., we obtain

Dg(w, yn) = Dg
(
w,∇g∗[αn∇g(xn) + ( – αn)∇g(Wnxn)

])
= Vg

(
w,αn∇g(xn) + ( – αn)∇g(Wnxn)

)
= g(w) –

〈
w,αn∇g(xn) + ( – αn)∇g(Wnxn)

〉
+ g∗(αn∇g(xn) + ( – αn)∇g(Wnxn)

)
≤ αng(w) + ( – αn)g(w) – αn

〈
w,∇g(xn)

〉
– ( – αn)

〈
w,∇g(Wnxn)

〉
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+ αng∗(∇g(xn)
)

+ ( – αn)g∗(∇g(Wnxn)
)

– αn( – αn)ρ∗
r

(∥∥∇g(xn) – ∇g(Wnxn)
∥∥)

= αnVg
(
w,∇g(xn)

)
+ ( – αn)Vg

(
w,∇g(Wnxn)

)
– αn( – αn)ρ∗

r

(∥∥∇g(xn) – ∇g(Wnxn)
∥∥)

= αnDg(w, xn) + ( – αn)Dg(w, Wnxn) – αn( – αn)ρ∗
r

(∥∥∇g(xn) – ∇g(Wnxn)
∥∥)

≤ αnDg(w, xn) + ( – αn)Dg(w, xn) – αn( – αn)ρ∗
r

(∥∥∇g(xn) – ∇g(Wnxn)
∥∥)

= Dg(w, xn) – αn( – αn)ρ∗
r

(∥∥∇g(xn) – ∇g(Wnxn)
∥∥).

In view of (.), we obtain

Dg(w, xn) – Dg(w, yn) →  as n → ∞. (.)

In view of (.) and (.), we conclude that

αn( – αn)ρ∗
r

(∥∥∇g(xn) – ∇g(Wnxn)
∥∥)≤ Dg(w, xn) – Dg(w, yn) → 

as n → ∞. From the assumption lim infn→∞ αn( – αn) > , we have

lim
n→∞ρ∗

r

∥∥∇g(xn) – ∇g(Wnxn)
∥∥ = .

Therefore, from the property of ρ∗
r we deduce that

lim
n→∞

∥∥∇g(xn) – ∇g(Wnxn)
∥∥ = .

Since ∇g∗ is uniformly norm-to-norm continuous on bounded subsets of E∗, we arrive at

lim
n→∞‖xn – Wnxn‖ = . (.)

Dg(w, Un,kxn)

= Dg
(
w, projg

C
(∇g∗[βn,k∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)

]))
≤ Dg

(
w,∇g∗[βn,k∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)

])
– Dg

(
Un,kxn,∇g∗[βn,k∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)

])
= g(w) –

〈
u,∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)

〉
+ g∗(βn,k∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)

)
– Dg

(
Un,kxn,∇g∗[βn,k∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)

])
≤ βn,kg(w) + ( – βn,)g(w) + βn,kg∗(∇g(SkUn,xn)

)
+ ( – βn,)g∗(∇g(xn)

)
– βn,k( – βn,k)ρ∗

r

(∥∥∇g(SkUn,xn) – ∇g(xn)
∥∥)

– Dg
(
Un,kxn,∇g∗[βn,k∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)

])
= βn,kVg

(
v,∇g(SkUn,xn)

)
+ ( – βn,k)Vg

(
u,∇g(xn)

)
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– Dg
(
Un,kxn,∇g∗[βn,k∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)

])
– βn,k( – βn,k)ρ∗

r

(∥∥∇g(SkUn,xn) – ∇g(xn)
∥∥)

– Dg
(
Un,kxn,∇g∗[βn,k∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)

])
= βn,kDg(w, SkUn,k+xn) + ( – βn,)Dg(w, xn)

– βn,k( – βn,k)ρ∗
r

(∥∥∇g(SUn,k+xn) – ∇g(xn)
∥∥)

– Dg
(
Un,kxn,∇g∗[βn,k∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)

])
≤ βn,kDg(w, Un,k+xn) + ( – βn,)Dg(w, xn)

– βn,k( – βn,k)ρ∗
r

(∥∥∇g(SkUn,k+xn) – ∇g(xn)
∥∥)

– Dg
(
Un,kzn,∇g∗[βn,k∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)

])
≤ βn,kDg(w, Un,k+xn) + ( – βn,k)Dg(w, xn)

– βn,k( – βn,k)ρs

(∥∥∇g(SkUn,k+xn) – ∇g(xn)
∥∥)

– Dg
(
Un,kxn,∇g∗[βn,k∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)

])
.

Let r = sup{‖∇g(xn)‖,‖∇g(Wnxn)‖ : n ∈N∪{}} and ρ∗
r

: E∗ →R be the gauge of uniform
convexity of the conjugate function g∗. Then we have

Dg(w, Wnxn)

= Dg(w, Un,xn)

≤ βn,Dg(w, Un,xn) + ( – βn,)Dg(w, xn)

– βn,( – βn,)ρ∗
r

(∥∥∇g(SUn,xn) – ∇g(xn)
∥∥)

≤ βn,
[
βn,Dg(w, Un,xn) + ( – βn,)Dg(w, xn)

– βn,( – βn,)ρ∗
r

(∥∥∇g(SUn,xn) – ∇g(xn)
∥∥)

– Dg
(
Un,xn,∇g∗[βn,∇g(SUn,xn) + ( – βn,)∇g(xn)

])]
+ ( – βn,)Dg(w, xn) – βn,( – βn,)ρ∗

r

(∥∥∇g(SUn,xn) – ∇g(xn)
∥∥)

– βn,( – βn,)ρ∗
r

(∥∥∇g(SUn,xn) – ∇g(xn)
∥∥)

≤ · · ·
≤ Dg(w, xn) – βn,( – βn,)ρ∗

r

(∥∥∇g(SUn,xn) – ∇g(xn)
∥∥)

– βn,βn,( – βn,)ρ∗
r

(∥∥∇g(SUn,xn) – ∇g(xn)
∥∥)

– βn,Dg
(
Un,xn,∇g∗[βn,∇g(SUn,xn) + ( – βn,)∇g(xn)

])
– · · ·

– βn,βn, · · ·βn,n–Dg
(
Un,nxn,∇g∗[βn,n∇g(SnUn,n+xn) + ( – βn,n)∇g(xn)

])
(.)

for all n ∈ N. Since ∇g is uniformly norm-to-norm continuous on bounded subsets of E,
we obtain

lim
n→∞βn,

∥∥∇g(SUn,xn) – ∇g(xn)
∥∥ = lim

n→∞
∥∥∇g(Wnxn) – ∇g(xn)

∥∥ = .
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This implies that

lim
n→∞

∥∥∇g(SUn,xn) – ∇g(xn)
∥∥ = .

Now, in view of (.) and (.), we conclude that

lim
n→∞

∥∥∇g(SkUn,k+xn) – ∇g(xn)
∥∥ = , ∀k ∈N. (.)

Since ∇g∗ is uniformly norm-to-norm continuous on bounded subsets of E∗, we deduce
that

lim
n→∞‖SkUn,k+xn – xn‖ = , ∀k ∈N. (.)

On the other hand, we have

lim
n→∞ Dg

(
Un,kxn,∇g∗[βn,k∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)

])
= , ∀k ∈N with k ≥ .

This, together with Lemma ., implies that

lim
n→∞

∥∥Un,kxn – ∇g∗[βn,k∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)
]∥∥ = ,

∀k ∈N with k ≥ . (.)

In view of (.), we obtain

lim
n→∞

∥∥[βn,k∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)
]

– ∇g(xn)
∥∥ = , ∀k ∈N.

Therefore,

lim
n→∞

∥∥∇g∗[βn,k∇g(SkUn,k+xn) + ( – βn,k)∇g(xn)
]

– xn
∥∥ = , ∀k ∈ N.

From (.) and (.), we get

lim
n→∞‖Un,kxn – xn‖ = , ∀k ∈ N.

This, together with (.), implies that

lim
n→∞‖SkUn,k+xn – Un,k+xn‖ = , ∀k ∈N.

Since Un,k+xn → u and Sk is Bregman weak relatively nonexpansive, we obtain u ∈ F(Sk)
for every k ∈N. Thus, xn → projg

F x as n → ∞.
Finally, we show that u = projg

F x. From xn = projg
Cn x, we conclude that

〈
z – xn,∇g(xn) – ∇g(x)

〉≥ , ∀z ∈ Cn.

Since F ⊂ Cn for each n ∈N, we obtain

〈
z – xn,∇g(xn) – ∇g(x)

〉≥ , ∀z ∈ F . (.)
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Letting n → ∞ in (.), we deduce that

〈
z – u,∇g(u) – ∇g(x)

〉≥ , ∀z ∈ F .

In view of (.), we have u = projg
F x, which completes the proof. �

Theorem . Let E be a reflexive Banach space and g : E → R be a convex, continuous,
strongly coercive and Gâteaux differentiable function which is bounded on bounded subsets
and uniformly convex on bounded subsets of E. Let C be a nonempty, closed and convex
subset of E. Let {Sn}n∈N be a family of Bregman weak relatively nonexpansive mappings of
C into itself such that

⋂∞
n= F(Sn) �= Ø, and let Tnx = ∇g∗(

∑n
j= βn,j∇g(Sjx)) for every n ∈ N

and x ∈ C, where  ≤ βn,j ≤  (n ∈ N, j = , , . . . , n) with
∑n

j= βn,j =  for all n ∈ N and
lim infn→∞ βn,j >  for each j ∈ {, , . . . , n}. Let {αn}n∈N∪{} and {βn}n∈N∪{} be sequences in
[, ) such that lim infn→∞ αn( – αn) > . Let {xn}n∈N be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrarily,

C = C,

yn = ∇g∗[αn∇g(xn) + ( – αn)∇g(Tnxn)],

Cn+ = {z ∈ Cn : Dg(z, yn) ≤ Dg(z, xn)},
xn+ = projg

Cn+
x and n ∈N∪ {},

(.)

where ∇g is the gradient of g . Then {xn}n∈N converges strongly to projg
F x as n → ∞.

Remark . Theorem . improves Theorem . in the following aspects.
() For the structure of Banach spaces, we extend the duality mapping to a more general

case, that is, a convex, continuous and strongly coercive Bregman function which is
bounded on bounded subsets, and uniformly convex and uniformly smooth on
bounded subsets.

() For the mappings, we extend the mapping from a relatively nonexpansive mapping
to a countable family of Bregman W -mappings. We remove the assumption
F̂(T) = F(T) on the mapping T and extend the result to a countable family of
Bregman weak relatively nonexpansive mappings, where F̂(T) is the set of
asymptotic fixed points of the mapping T .

() For the algorithm, we remove the set Wn in Theorem ..

The following result was proved in [].

Lemma . Let E be a reflexive Banach space and g : E → R be a strongly coercive Breg-
man function which is bounded on bounded subsets, and uniformly convex and uniformly
smooth on bounded subsets of E. Let A be a maximal monotone operator from E to E∗ such
that A–() �= Ø. Let r >  and Resg

rA = (∇g + rA)–∇g be the g-resolvent of A. Then Resg
rA is

a Bregman weak relatively nonexpansive mapping.

As an application of our main result, we include a concrete example in support of The-
orem .. Using Theorem ., we obtain the following strong convergence theorem for
maximal monotone operators.
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Theorem . Let E be a reflexive Banach space and g : E →R be a strongly coercive Breg-
man function which is bounded on bounded subsets, and uniformly convex and uniformly
smooth on bounded subsets of E. Let {An}n∈N be an infinite family of maximal monotone op-
erators from E to E∗ such that Z =

⋂∞
n= A–

n () �= Ø. Let r >  and Resg
rAn

= (∇g + rAn)–∇g
be the g-resolvent of An. Let {xn}n∈N be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ E chosen arbitrarily,

C = E,

yn = ∇g∗[αn∇g(xn) + ( – αn)∇g(Wnxn)],

Cn+ = {z ∈ Cn : Dg(z, yn) ≤ Dg(z, xn)},
xn+ = projg

Cn+
x and n ∈N∪ {},

(.)

where ∇g is the right-hand derivative of g and Wn is the W -mapping generated by Resg
rAn

,
Resg

rAn–
, . . . , Resg

rA
and βn,n,βn,n–, . . . ,βn,. Let {αn}n∈N∪{} and {βn}n∈N∪{} be sequences in

[, ) satisfying the following control conditions:
() lim infn→∞ αn( – αn) > ;
()  ≤ βn <  for all n ∈N∪ {} and lim infn→∞ βn < .

Then the sequence {xn}n∈N defined in (.) converges strongly to projg
Z x as n → ∞.

Proof Letting Sn = Resg
rAn

, ∀n ∈ N, in Theorem ., from (.) we obtain (.). We need
only to show that Sn satisfies all the conditions in Theorem . for all n ∈ N. In view of
Lemma ., we conclude that Sn is a Bregman relatively nonexpansive mapping for each
n ∈N. Thus, we obtain

Dg
(
p, Resg

rAn
v
)≤ Dg(p, v), ∀v ∈ E, p ∈ F

(
Resg

rAn

)

and

F̃
(
Resg

rA
)

= F
(
Resg

rAn

)
= A–

n (),

where F̃(Resg
rAn

) is the set of all strong asymptotic fixed points of Resg
rAn

. Therefore, in view
of Theorem ., we have the conclusions of Theorem .. This completes the proof. �

Below we include a nontrivial example of an infinite family of Bregman weak relatively
nonexpansive mappings in order to reconstruct a Bregman W -mapping in the setting of
Hilbert spaces.

Example . Let E = l, where

l =

{
σ = (σ,σ, . . . ,σn, . . .) :

∞∑
n=

‖σn‖ < ∞
}

, ‖σ‖ =

( ∞∑
n=

‖σn‖

) 


,∀σ ∈ l,

〈σ ,η〉 =
∞∑

n=

σnηn, ∀δ = (σ,σ, . . . ,σn, . . .),η = (η,η, . . . ,ηn, . . .) ∈ l.
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Let {xn}n∈N∪{} ⊂ E be a sequence defined by

x = (, , , , . . .),

x = (, , , , , . . .),

x = (, , , , , , . . .),

x = (, , , , , , , . . .),

. . .

xn = (σn,,σn,, . . . ,σn,k , . . .),

. . . ,

where

σn,k =

⎧⎨
⎩

 if k = , n + ,

 if k �= , k �= n + ,

for all n ∈ N. It is clear that the sequence {xn}n∈N converges weakly to x. Indeed, for any
� = (λ,λ, . . . ,λn, . . .) ∈ l = (l)∗, we have

�(xn – x) = 〈xn – x,�〉

=
∞∑

k=

λkσn,k → 

as n → ∞. It is also obvious that ‖xn – xm‖ =
√

 for any n �= m with n, m sufficiently large.
Thus, {xn}n∈N is not a Cauchy sequence. Let k be an even number in N and let g : E → R

be defined by

g(x) =

k
‖x‖k , x ∈ E.

It is easy to show that ∇g(x) = Jk(x) for all x ∈ E, where

Jk(x) =
{

x∗ ∈ E∗ :
〈
x, x∗〉 = ‖x‖∥∥x∗∥∥,

∥∥x∗∥∥ = ‖x‖k–}.

It is also obvious that

Jk(λx) = λk–Jk(x), ∀x ∈ E,λ ∈R.

We define a countable family of mappings Sj : E → E by

Sj(x) =

⎧⎨
⎩

n
n+ x if x = xn;
–j
j+ x if x �= xn,
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for all j ≥  and n ≥ . It is clear that F(Sj) = {} for all j ≥ . Choose j ∈ N, then for any
n ∈N

Dg(, Sjxn) = g() – g(Sjxn) –
〈
 – Sjxn,∇g(Sjxn)

〉

= –
nk

(n + )k g(xn) +
nk

(n + )k

〈
xn,∇g(xn)

〉

=
nk

(n + )k

[
–g(xn) +

〈
xn,∇g(xn)

〉]

=
nk

(n + )k

[
Dg(, xn)

]

≤ Dg(, xn).

If x �= xn, then we have

Dg(, Sjx) = g() – g(Sjx) –
〈
 – Sjx,∇g(Sjx)

〉

= –
jk

(j + )k g(x) –
jk

(j + )k

〈
x, –∇g(x)

〉

=
jk

(j + )k

[
–g(x) –

〈
–x,∇g(x)

〉]

≤ Dg(, x).

Therefore, Sj is a Bregman quasi-nonexpansive mapping. Next, we claim that Sj is a Breg-
man weak relatively nonexpansive mapping. Indeed, for any sequence {zn}n∈N ⊂ E such
that zn → z and ‖zn – Sjzn‖ →  as n → ∞, there exists a sufficiently large number
N ∈ N such that zn �= xm for any n, m > N. This implies that Sjzn = – j

j+ zn for all n > N.
It follows from ‖zn – Sjzn‖ →  that j+

j+ zn →  and hence zn → z = . Since z ∈ F(Sj),
we conclude that Sj is a Bregman weak relatively nonexpansive mapping. It is clear that⋂∞

j= F̃(Sj) =
⋂∞

j= F(Sj) = {}. Thus {Sj}j∈N is a countable family of Bregman weak relatively
nonexpansive mappings. Next, we show that {Sj}j∈N is not a countable family of Bregman
relatively nonexpansive mappings. In fact, though xn ⇀ x and

‖xn – Sjxn‖ =
∥∥∥∥xn –

n
n + 

xn

∥∥∥∥ =


n + 
‖xn‖ → 

as n → ∞, but x /∈ F(Sj) for all j ∈ N. Therefore, F̂(Sj) �= F(Sj) for all j ∈ N. This implies
that

⋂∞
j= F̂(Sj) �= ⋂∞

j= F(Sj). Let {βn,k : k, n ∈ N,  ≤ k ≤ n} be a sequence of real numbers
such that  < βn, ≤  and  < βn,i <  for every i = , , . . . , n. Let Wn be the Bregman W -
mapping generated by Sn, Sn–, . . . , S and βn,n,βn,n–, . . . ,βn,. Finally, it is obvious that the
family {Sj}j∈N satisfies all the aspects of the hypothesis of Theorem ..

4 Applications to convex feasibility problems
Let {Dn}n∈N be a family of nonempty, closed and convex subsets of a Banach space E. The
convex feasibility problem is to find an element in the assumed nonempty intersection
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⋂∞
n= Dn (see []). In the following, we prove a strong convergence theorem concerning

convex feasibility problems in a reflexive Banach space.

Theorem . Let E be a reflexive Banach space and g : E → R be a convex, continuous,
strongly coercive and Gâteaux differentiable function which is bounded on bounded sub-
sets and uniformly convex on bounded subsets of E. Let C be a nonempty, closed and convex
subset of E. Let F := {Dn}n∈N be an infinite family of nonempty, closed and convex subsets
of E such that

⋂∞
n= Dn �= Ø, and let {βn,k : k, n ∈ N,  ≤ k ≤ n} be a sequence of real num-

bers such that  < βi,j ≤  and  < βi,j <  for every i = , , . . . , n. Let Wn be the Bregman
W -mapping generated by projg

Dn , projg
Dn–

, . . . , projg
D

and βn,n,βn,n–, . . . ,βn,. Let {αn}n∈N∪{}
and {βn}n∈N∪{} be sequences in [, ) such that lim infn→∞ αn( – αn) > . Let {xn}n∈N be a
sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrarily,

C = C,

yn = ∇g∗[αn∇g(xn) + ( – αn)∇g(Wnxn)],

Cn+ = {z ∈ Cn : Dg(z, yn) ≤ Dg(z, xn)},
xn+ = projg

Cn+
x and n ∈N∪ {},

(.)

where ∇g is the gradient of g . Then {xn}n∈N defined in (.) converges strongly to projg
F x as

n → ∞.

Proof For each j ∈ N, let Sj = projg
Dj

. We will prove that Sj is a Bregman weak relatively
nonexpansive mapping. Indeed, for any sequence {zn}n∈N ⊂ E such that zn → z and ‖zn –
Sjzn‖ →  as n → ∞, in view of Lemma ., we conclude that

lim
n→∞ Dg(zn, Sjzn) = ,

lim
n→∞ Dg(zn, z) = .

(.)

It follows from (.) that

Dg
(
zn, projg

Dj
zn
)

+ Dg
(
projg

Dj
zn, z

)≤ Dg(zn, z).

This, together with (.), amounts to

lim
n→∞ Dg

(
projg

Dj
zn, z

)
= 

and hence by Lemma .

lim
n→∞

∥∥projg
Dj

zn – z
∥∥ = .

Thus we obtain z ∈ F(Sj) = Dj and hence Sj is a Bregman weak relatively nonexpansive
mapping. By a similar argument as in the proof of Theorem ., we get the desired con-
clusion, which completes the proof. �
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5 Numerical example
In this section, in order to demonstrate the effectiveness, realization and convergence of
algorithm of Theorem ., we consider the following simple example.

Example . Let S : [, ] → [, ] be defined by

Sx =

⎧⎨
⎩

 if x �= ,

 if x = .

Then T is a quasi-nonexpansive mapping. Indeed, for any x ∈ [, ), we have that Sx = .
Thus,

|Sx – | =  ≤ |x – |.

The other cases can be verified similarly. It is worth mentioning that S is neither nonexpan-
sive nor continuous. Let βn,k =  and αn = 

 for all n, k ≥ . Under the above assumptions,
the given algorithm (.) in Theorem . is simplified as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ [, ] chosen arbitrarily,

C = [, ],

yn = 
 xn + 

 Sxn,

Cn+ = {z ∈ Cn : |z – yn| ≤ |z – xn|},
xn+ = PCn+ x and n ∈N∪ {}.

(.)

We know that, in a one-dimensional case, the set Cn+ is a closed interval. If we set
[an+, bn+] := Cn+, then the projection point xn+ of x ∈ C onto Cn+ can be expressed
as

xn+ := PCn+ x =

⎧⎪⎪⎨
⎪⎪⎩

x if x ∈ [an+, bn+];

bn+ if x > bn+;

an+ if x < an+.

Choose x = x = . Then the iteration process (.) becomes

C = [, ], un =



xn, yn =



xn,

Cn+ =
[

,



xn

]
, xn+ =

(



)n

.
(.)

In this section, we give some numerical experiment results (based on Matlab) as follows.

6 Conclusion
Table  and Figure  show that the sequence {xn}n∈N generated by (.) converges to ,
which solves the fixed point problem.
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Table 1 This table shows the values of the sequence {xn}n∈N on 30th iteration steps (initial
value x0 = 1)

n xn un yn

1 1.000000000000000e+000 5.000000000000000e–001 2.500000000000000e–001
2 6.250000000000000e–001 3.125000000000000e–001 1.562500000000000e–001
3 3.906250000000000e–001 1.953125000000000e–001 9.765625000000000e–002
4 2.441406250000000e–001 1.220703125000000e–001 6.103515625000000e–002
5 1.525878906250000e–001 7.629394531250000e–002 3.814697265625000e–002
6 9.536743164062500e–002 4.768371582031250e–002 2.384185791015625e–002
7 5.960464477539063e–002 2.980232238769531e–002 1.490116119384766e–002
8 3.725290298461914e–002 1.862645149230957e–002 9.313225746154785e–003
9 2.328306436538696e–002 1.164153218269348e–002 5.820766091346741e–003
10 1.455191522836685e–002 7.275957614183426e–003 3.637978807091713e–003
11 9.094947017729282e–003 4.547473508864641e–003 2.273736754432321e–003
12 5.684341886080802e–003 2.842170943040401e–003 1.421085471520200e–003
13 3.552713678800501e–003 1.776356839400251e–003 8.881784197001252e–004
14 2.220446049250313e–003 1.110223024625157e–003 5.551115123125783e–004
15 1.387778780781446e–003 6.938893903907228e–004 3.469446951953614e–004
16 8.673617379884036e–004 4.336808689942018e–004 2.168404344971009e–004
17 5.421010862427522e–004 2.710505431213761e–004 1.355252715606881e–004
18 3.388131789017201e–004 1.694065894508601e–004 8.470329472543003e–005
19 2.117582368135751e–004 1.058791184067875e–004 5.293955920339377e–005
20 1.323488980084844e–004 6.617444900424221e–005 3.308722450212111e–005
21 8.271806125530277e–005 4.135903062765138e–005 2.067951531382569e–005
22 5.169878828456423e–005 2.584939414228212e–005 1.292469707114106e–005
23 3.231174267785264e–005 1.615587133892632e–005 8.077935669463161e–006
24 2.019483917365790e–005 1.009741958682895e–005 5.048709793414475e–006
25 1.262177448353619e–005 6.310887241768094e–006 3.155443620884047e–006
26 7.888609052210119e–006 3.944304526105059e–006 1.972152263052530e–006
27 4.930380657631324e–006 2.465190328815662e–006 1.232595164407831e–006
28 3.081487911019577e–006 1.540743955509789e–006 7.703719777548944e–007
29 1.925929944387236e–006 9.629649721936179e–007 4.814824860968089e–007
30 1.203706215242023e–006 6.018531076210113e–007 3.009265538105056e–007

Figure 1 Iteration chart of the sequence {xn}n∈N in Example 5.1 with initial value x0 = 1.
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