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Abstract
In this paper the fixed point of multivalued mapping is considered. A generalization
of the well-known Nadler contraction principle, the Khan contraction theorem and
the fixed point theorem in complete metric space with a convex structure is proved.
The main result of the paper is formulated by three theorems where the mappings,
defined over the complete metric space, are assumed to satisfy some integral type of
contraction.
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1 Introduction
Fixed point theory in the framework of metric spaces is one of the most powerful and
useful tools in nonlinear functional analysis. The intrinsic subject of this theory is con-
cerned with the conditions for the existence, uniqueness and exact methods of evaluation
of fixed point of a mapping. The application of fixed point theorems is remarkable in a
wide scale of mathematical, engineering, economic, physical, computer science and other
fields of science. The Banach contraction principle [] is a simplest and limelight result in
this direction. In many papers, following the Banach contraction principle, the existence
of weaker contractive conditions combined with stronger additional assumptions on the
mapping or on the space is investigated. Moreover, since all these results are based on an
iteration process, they can be implemented in almost all branches of quantitative sciences.

Nadler [] initiated the study of fixed point for multivalued contraction mappings. On
the other hand, Branciari [] generalized the Banach contraction principle for a single-
valued mapping by using an integral type of contraction. Both of these results were ex-
tended and applied by many authors, and we quote some of them [–]. Also, we refer to
the paper of Khan et al. [] which improved the metric fixed point theory by introducing
a control function called an altering distance function.

In this paper we present the generalizations of the Banach contraction principle on mul-
tivalued mappings which satisfy integral type of contraction condition. These theorems
are inspired by Nadler’s and Khan’s results. Also, the theorem for nonexpansive integral
type multivalued mapping in a complete metric space with convex structure (introduced
by Takahashi in []) is proved.
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2 Preliminaries
Throughout the paper, the standard notations and terminology of fixed point theory are
used. For the convenience of the reader, we recall some definitions and statements which
will be used in what follows.

Let (X, d) be a metric space. We denote by B(X) the set of all nonempty bounded subsets
of X, by CB(X) the set of all nonempty closed and bounded subsets of X, by CC(X) the set of
all nonempty compact subsets of X. The Hausdorff distance H : CB(X) × CB(X) → [,∞)
is defined by

H(A, B) = max
{

sup
x∈B

d(x, A), sup
y∈A

d(y, B)
}

,

where d(x, A) = infy∈A d(x, y). The function δ : B(X) × B(X) → [,∞) is defined by

δ(A, B) = sup
{

d(a, b) : a ∈ A, b ∈ B
}

.

If A = {a} is a singleton, we write δ(A, B) = δ(a, B), and if B = {b}, then δ(A, B) = δ(a, b) =
d(a, b). It is easy to show that for all A, B, C ∈ B(X) the following is satisfied:

δ(A, B) = δ(B, A) ≥ , δ(A, B) ≤ δ(A, C) + δ(C, B),

δ(A, A) = diam A, δ(A, B) =  ⇔ A = B = {a}.

Definition . Let (X, d) be a metric space, P(X) be the partitive set of X, and T : X →
P(X)\∅. The mapping T is proximal if and only if for every x ∈ X there exists x′ ∈ Tx such
that d(x, Tx) = d(x, x′).

Definition . Let (X, d) be a metric space, P(X) be the partitive set of X, and T : X →
P(X) \ ∅. The mapping T is weakly demicompact if and only if for every sequence {xn}n∈N
from X such that xn+ ∈ Txn, n ∈ N and limn→∞ d(xn+, xn) = , there exists a convergent
subsequence {xnk }k∈N.

Definition . Ultrametric space (X, d) is a special kind of metric space in which the
triangle inequality is replaced by the stronger one

d(x, y) ≤ max
{

d(x, z), d(z, y)
}

.

Khan et al. [] improved the fixed point theory in metric spaces by introducing a control
function called an altering distance function.

Definition . A function ψ : [,∞) → [,∞) is an altering distance function if
(i) ψ is increasing and continuous,

(ii) ψ(t) =  if and only if t = .
Let � = {ψ : [,∞) → [,∞),ψ is an altering distance function} be the class of functions
which satisfy conditions (i) and (ii).

Definition . A metric space (X, d) has a convex structure in the sense of Takahashi if
there exists a mapping W : X × X × [, ] → X such that for every x, y, u ∈ X and every
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s ∈ [, ],

d
(
u, W (x, y, s)

) ≤ sd(u, x) + ( – s)d(u, y), ()

W (x, y, ) = x and W (x, y, ) = y.

We denote a metric space (X, d) with a convex structure W by (X, d, W ).

Definition . By � we denote the class of functions ϕ : [,∞) → [,∞) which satisfy
the following conditions:

(i) ϕ is Lebesgue integrable, summable on each compact subset of [, +∞),
(ii)

∫ ε

 ϕ(t) dt >  for each ε > .

Lemma . [] Let {rn}n∈N be a nonnegative sequence and ϕ ∈ �. Then

lim
n→∞

∫ rn


ϕ(t) dt = 

if and only if limn→∞ rn = .

3 Contraction of Nadler type
Before we formulate the theorem which is a generalization of Nadler q-contraction using
integral type of contraction, we present a few lemmas which will be used in that theorem.

Lemma . Let (X, d) be a metric space and T : X → B(X), and let there exist q ∈ (, )
such that for every x, y ∈ X and every δ > ,

∫ H(Tx,Ty)+δ


ϕ(t) dt ≤ q

∫ d(x,y)+δ/q


ϕ(t) dt, ()

where ϕ ∈ �. Then there exists a sequence {xn}n∈N, xn+ ∈ Txn such that limn→∞ d(xn,
xn+) = .

Proof For any x ∈ X, x ∈ Tx, there exists x ∈ Tx such that

d(x, x) ≤ H(Tx, Tx) + q. ()

From () we have

∫ d(x,x)


ϕ(t) dt ≤

∫ H(Tx,Tx)+q


ϕ(t) dt ≤ q

∫ d(x,x)+q


ϕ(t) dt.

Further, there exists x ∈ Tx such that d(x, x) ≤ H(Tx, Tx) + q and, consequently,

∫ d(x,x)


ϕ(t) dt ≤

∫ H(Tx,Tx)+q


ϕ(t) dt ≤ q

∫ d(x,x)+q


ϕ(t) dt. ()

By ()

d(x, x) + q ≤ H(Tx, Tx) + q + q,
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and by ()

∫ d(x,x)


ϕ(t) dt ≤ q

∫ H(Tx,Tx)+q+q


ϕ(t) dt ≤ q

∫ d(x,x)+q+q


ϕ(t) dt.

Continuing the process, we form the sequence {xn}n∈N , xn+ ∈ Txn such that

∫ d(xn ,xn+)


ϕ(t) dt ≤ qn

∫ d(x,x)+q+q+···+qn


ϕ(t) dt ≤ · · ·

≤ qn
∫ d(x,x)+q/(–q)


ϕ(t) dt, n ∈N.

Letting n → ∞ we conclude that

lim
n→∞

∫ d(xn ,xn+)


ϕ(t) dt = ,

and using Lemma ., limn→∞ d(xn, xn+) = . �

Remark . Notice that for ϕ(t) ≡  we get a Nadler q-contraction. Also, if we suppose
that T : X → B(X) is a proximal mapping, the condition in Lemma . expressed by the
inequality () can be reduced to

∫ H(Tx,Ty)


ϕ(t) dt ≤ q

∫ d(x,y)


ϕ(t) dt.

In the next three lemmas, imposing some additional assumptions on mapping T
(Lemma .), space X (Lemma .) or function ϕ (Lemma .), we can prove that the
sequence {xn}n∈N from the last lemma has a Cauchy subsequence or is a Cauchy sequence
itself. The proofs are elementary, so they are omitted.

Lemma . Let all conditions of Lemma . be satisfied and the mapping T be weakly
demicompact. Then the sequence {xn}n∈N has a Cauchy subsequence {xnk }k∈N.

Lemma . Let (X, d) be an ultrametric space and all conditions of Lemma . be satisfied.
Then the sequence {xn}n∈N is a Cauchy sequence.

Lemma . Let all conditions of Lemma . be satisfied and the function ϕ ∈ � be such
that

∫ a+b
 ϕ(t) dt ≤ ∫ a

 ϕ(t) dt +
∫ b

 ϕ(t) dt for all a, b ∈ [,∞). Then the sequence {xn}n∈N is
a Cauchy sequence.

Finally, in order to prove the fixed point result for the integral type of contraction map-
ping satisfying (), we use the last three lemmas.

Theorem . Let (X, d) be a complete metric space. If the conditions of Lemma .,
Lemma . or Lemma . are satisfied, then the mapping T has a fixed point.

Proof Let us consider the first case when all the conditions of Lemma . are satisfied.
Then the sequence {xn}n∈N has a Cauchy subsequence {xnk }k∈N and limk→∞ xnk = x∗. It
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remains to prove that x∗ ∈ Tx∗. Suppose the contrary, i.e., d(x∗, Tx∗) = η > . Using

d
(
x∗, Tx∗) ≤ d

(
x∗, xnk +

)
+ d

(
xnk +, Tx∗) ≤ d

(
x∗, xnk

)
+ d(xnk +, xnk ) + d

(
xnk +, Tx∗),

d
(
xnk +, Tx∗) ≤ H

(
Txnk , Tx∗) ≤ H

(
Txnk , Tx∗) + δ, δ > 

and (), putting δ = qη, we have

∫ d(xnk +,Tx∗)


ϕ(t) dt ≤

∫ H(Txnk ,Tx∗)+qη


ϕ(t) dt ≤ q

∫ d(xnk ,x∗)+η


ϕ(t) dt, n ∈N. ()

Letting k → ∞ in () we have

∫ η


ϕ(t) dt ≤ q

∫ η


ϕ(t) dt,

which contradicts the assumption that d(x∗, Tx∗) = η > . Hence d(x∗, Tx∗) = . Since Tx∗

is a closed set, x∗ ∈ Tx∗.
The proof for other two cases is similar, so it is omitted. �

4 Contraction via altering distance function
The next theorem is a generalization of the well-known and most cited result presented
in []. The mapping we consider is multivalued and the contraction inequality is of inte-
gral type.

Theorem . Let (X, d) be a metric space, T : X → B(X) and ψ ∈ � . Let k be a decreasing
function, k : [,∞) → [, ) such that for every x, y ∈ X, x �= y,

ψ

(∫ δ(Tx,Ty)


ϕ(t) dt

)
≤ k

(
d(x, y)

)
ψ

(∫ d(x,y)


ϕ(t) dt

)
, ()

where ϕ ∈ �. Then T has a unique fixed point x∗ ∈ X, {x∗} = Tx∗.

Proof Let x ∈ X. If {x} = Tx, then x = x∗. If {x} �= Tx, then there exists x ∈ Tx,
x �= x. Condition () implies that

ψ

(∫ δ(Tx,Tx)


ϕ(t) dt

)
≤ k

(
d(x, x)

)
ψ

(∫ d(x,x)


ϕ(t) dt

)
< ψ

(∫ d(x,x)


ϕ(t) dt

)
. ()

By the same arguments if {x} = Tx, then x = x∗, otherwise there exists x ∈ Tx, x �= x.
Since d(x, x) ≤ δ(Tx, Tx), from increasingness of ψ and () we obtain that

d(x, x) < d(x, x).

Repeating this procedure, we construct the sequence {xn}n∈N such that xn+ ∈ Txn and

 < d(xn, xn+) < d(xn–, xn) < · · · < d(x, x).
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Since the sequence {d(xn, xn+)}n∈N is decreasing and bounded from below, it is convergent
and

lim
n→∞ d(xn, xn+) = p,

where p ≤ d(xn, xn+) for all n ∈ N. If we assume that p > , then relation () and decreas-
ingness of the function k yields

ψ

(∫ d(xn ,xn+)


ϕ(t) dt

)

≤ ψ

(∫ δ(Txn–,Txn)


ϕ(t) dt

)

≤ k
(
d(xn–, xn)

)
ψ

(∫ d(xn–,xn)


ϕ(t) dt

)

≤ k(p)ψ
(∫ d(xn–,xn)


ϕ(t) dt

)
. ()

Letting n → ∞ in () gives

ψ

(∫ p


ϕ(t) dt

)
≤ k(p)ψ

(∫ p


ϕ(t) dt

)
< ψ

(∫ p


ϕ(t) dt

)
, ()

which is a contradiction. So p = .
It remains to prove that the sequence {xn}n∈N is a Cauchy sequence. Suppose the con-

trary. Then there exist ε >  and infinitely many pairs (xi, xj), d(xi, xj) ≥ ε. The subsequence
of pairs {(xim , xjm)}m∈N, where im < jm for all m ∈N, is chosen to satisfy the following prop-
erty:

d(xim , xjm ) ≥ ε, d(xim , xs) < ε, for all s ∈ {im + , . . . , jm – }. ()

Then

ε ≤ d(xim , xjm ) ≤ d(xim , xim–) + d(xim–, xjm ) < ε + d(xim , xim–), ()

and letting m → ∞ we obtain

ε ≤ lim
m→∞ d(xim , xjm ) ≤ ε,

i.e.,

lim
m→∞ d(xim , xjm ) = ε.

Using

d(xim , xjm ) ≤ d(xim , xim–) + d(xim–, xjm–) + d(xjm–, xjm ),
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we deduce that

ε = lim
m→∞ d(xim , xjm ) =  + lim

m→∞ d(xim–, xjm–) + , ()

that is, limm→∞ d(xim–, xjm–) = ε. Consequently, there exists m ∈N such that for all m >
m, d(xim–, xjm–) ≥ ε

 . Hence k(d(xim–, xjm–)) ≤ k( ε
 ) for all m > m. Recalling that xim ∈

Txim– and xjm ∈ Txjm–, we have

ψ

(∫ d(xim ,xjm )


ϕ(t) dt

)

≤ ψ

(∫ δ(Txim–,Txjm–)


ϕ(t) dt

)

≤ k
(
d(xim–, xjm–)

)
ψ

(∫ d(xim–,xjm–)


ϕ(t) dt

)

≤ k
(

ε



)
ψ

(∫ d(xim–,xjm–)


ϕ(t) dt

)

for all m > m, and when m → ∞ we get

ψ

(∫ ε


ϕ(t) dt

)
≤ k

(
ε



)
ψ

(∫ ε


ϕ(t) dt

)
< ψ

(∫ ε


ϕ(t) dt

)
.

Obviously, the last inequality cannot be true. So, the sequence {xn}n∈N is a Cauchy se-
quence, and since the space is complete, there exists x∗ ∈ X such that limn→∞ xn = x∗.

Next we prove that δ(x∗, Tx∗) = . Let ρn = d(xn, x∗). Since for all n ∈ N, xn+ ∈ Txn, we
conclude that

ψ

(∫ δ(xn+,Tx∗)


ϕ(t) dt

)
≤ ψ

(∫ δ(Txn ,Tx∗)


ϕ(t) dt

)

≤ k(ρn)ψ
(∫ ρn


ϕ(t) dt

)
< ψ

(∫ ρn


ϕ(t) dt

)
. ()

Knowing that ρn converges to  when n → ∞, by (), limn→∞ δ(xn+, Tx∗) = . The rela-
tion

δ
(
x∗, Tx∗) ≤ d

(
x∗, xn+

)
+ δ

(
xn+, Tx∗) = ρn + δ

(
xn+, Tx∗) ()

together with previous conclusion gives {x∗} = Tx∗.
Uniqueness of the fixed point x∗ follows from condition (). �

5 Nonexpansive mapping in a space with a convex structure
Definition . A metric space with a convex structure (X, d, W ) defined by () satisfies
condition (∗) if for every x, y, z,∈ X and every s ∈ [, ],

(∗)
∫ d(W (x,z,s),W (y,z,s))


ϕ(t) dt ≤ s

∫ d(x,y)


ϕ(t) dt, ()

where ϕ ∈ �.
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Theorem . Let a complete metric space with a convex structure (X, d, W ) satisfy condi-
tion (∗), and let T : X → CB(X) be such that for every x, y ∈ X,

∫ δ(Tx,Ty)


ϕ(t) dt ≤

∫ d(x,y)


ϕ(t) dt, ()

ϕ ∈ �. If a convex structure W is continuous with respect to the first variable and if T(X)
is compact, then there exists z∗ ∈ X such that {z∗} = Tz∗.

Proof Fix any x ∈ X. Let {kn}n∈N be a sequence from (, ) such that limn→∞ kn = , and
let

Tnx =
⋃
z∈Tx

W (z, x, kn) = W (Tx, x, kn) ⊆ X.

We split the proof into four steps.
Step . First we show that the set Tnx is a compact subset of X for every x ∈ X. The

set Tnx is a union of W (z, x, kn) ⊂ X, z ∈ Tx, which implies that Tnx ⊆ X. To prove the
compactness of Tnx, let {αi}i∈N ⊂ Tnx. The definition of the set Tnx provides the existence
of the sequence {βi}i∈N ⊂ Tx, where αi = W (βi, x, kn). Since T(X) is compact, the set Tx ⊂
T(X) is compact too, which implies the existence of a convergent subsequence {βim}m∈N ⊂
{βi}i∈N ⊂ Tx, limm→∞ βim = β ∈ Tx. Recalling () and the continuity of W with respect to
the first variable, the related subsequence {αim}m∈N ⊂ {αi}i∈N ⊂ Tnx is also convergent and

lim
m→∞αim = lim

m→∞ W (βim , x, kn) = α = W (β , x, kn) ∈ Tnx.

Step . To prove that for all x, y ∈ X and for all n ∈N the following inequality is true,

∫ δ(Tnx,Tny)


ϕ(t) dt ≤ kn

∫ d(x,y)


ϕ(t) dt, ()

let u ∈ Tnx = W (Tx, x, kn) and v ∈ Tny = W (Ty, x, kn). Then there exist p ∈ Tx and q ∈ Ty
such that u = W (p, x, kn) and v = W (q, x, kn). Now, using () and () we obtain

∫ d(u,v)


ϕ(t) dt =

∫ d(W (p,x,kn),W (q,x,kn))


ϕ(t) dt ≤ kn

∫ d(p,q)


ϕ(t) dt

≤ kn

∫ δ(Tx,Ty)


ϕ(t) dt ≤ kn

∫ d(x,y)


ϕ(t) dt. ()

As () is satisfied for every u ∈ Tnx and v ∈ Tny, inequality () is satisfied too.
Step . In order to prove that the mapping Tn has a unique fixed point xn such that {xn} =

Tnxn, we form an iterative sequence {yi}i∈N by choosing any y ∈ X, y ∈ Tny and y ∈
Tny. Obviously, d(y, y) ≤ δ(Tny, Tny). Continuing that process, we get the sequence
{yi}i∈N with the property that for every i ∈ N, yi ∈ Tnyi– and d(yi, yi+) ≤ δ(Tnyi–, Tnyi).
Using the last inequality and (), we get

∫ d(yi ,yi+)


ϕ(t) dt ≤

∫ δ(Tnyi–,Tnyi)


ϕ(t) dt

≤ kn

∫ d(yi–,yi)


ϕ(t) dt ≤ · · · ≤ ki

n

∫ d(y,y)


ϕ(t) dt.
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If i → ∞, by Lemma ., we see that limi→∞ d(yi, yi+) =  and limi→∞ δ(Tnyi–, Tnyi) = .
We claim that {yi}i∈N is a Cauchy sequence. Assumption that {yi}i∈N is not a Cauchy

sequence implies that we can form a subsequence of pairs {(yim , yjm )}m∈N using the same
procedure as in the proof of Theorem . and with same properties formulated in ().
Repeating the arguments from (), we get

ε ≤ lim
m→∞ d(yim , yjm ) ≤ lim

m→∞
(
d(yim , yjm–) + d(yjm–, yjm )

) ≤ ε ⇒

lim
m→∞ d(yim , yjm ) = ε,

and by () we deduce that limm→∞ δ(Tnyim , Tnyjm ) < ε. Finally, the following relation

ε = lim
m→∞ d(yim , yjm )

≤ lim
m→∞

(
δ(yim , Tnyim ) + δ(Tnyim , Tnyjm ) + δ(Tnyjm , yjm )

)
<  + ε +  = ε

contradicts the assumption that {yi}i∈N is not a Cauchy sequence. Therefore, limi→∞ yi =
xn ∈ Tnx.

Next, we show that xn is a fixed point of Tn. Since

δ(xn, Tnxn) ≤ d(xn, yi+) + δ(yi+, Tnxn)

≤ d(xn, yi+) + δ(Tnyi, Tnxn) ()

and

∫ δ(Tnyi ,Tnxn)


ϕ(t) dt ≤ kn

∫ d(yi ,xn)


ϕ(t) dt

i→∞−→  �⇒ δ(Tnyi, Tnxn)
i→∞−→ , ()

letting i → ∞ in () and using the conclusion from (), we get δ(xn, Tnxn) = , i.e., {xn} =
Tnxn. Observe that, according to (), xn is a unique fixed point of Tn.

Step . To finish the proof, it remains to establish the existence of a fixed point of the
mapping T . The fact (from the last step) that {xn} = Tnxn = W (Txn, x, kn), n ∈ N, yields
the existence of zn ∈ Txn such that xn = W (zn, x, kn), n ∈ N. By the compactness of the set⋃

n∈N Txn ⊆ T(X), there exists a convergent subsequence {znp}p∈N ⊂ {zn}n∈N, limp→∞ znp =
z∗ ∈ X. The following relation

d
(
xnp , z∗) ≤ d(xnp , znp ) + d

(
znp , z∗)

= d
(
znp , W (znp , x, knp )

)
+ d

(
znp , z∗)

≤ knp d(znp , znp ) + ( – knp )d(znp , x) + d
(
znp , z∗), p ∈N,

when p → ∞ (recall that limn→∞ kn = ), leads to

lim
p→∞ d

(
xnp , z∗) = , i.e., lim

p→∞ xnp = z∗.

Our assertion is that {z∗} = Tz∗. To confirm that, we consider the following inequality:

δ
(
z∗, Tz∗) ≤ d

(
z∗, znp

)
+ δ

(
znp , Tz∗).
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From znp ∈ Txnp , we have δ(znp , Tz∗) ≤ δ(Txnp , Tz∗) and therefore

∫ δ(znp ,Tz∗)


ϕ(t) dt ≤

∫ δ(Txnp ,Tz∗)


ϕ(t) dt ≤

∫ d(xnp ,z∗)


ϕ(t) dt

p→∞−→ .

By Lemma . we obtain δ(z∗, Tz∗) = , that is, {z∗} = Tz∗. �
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