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Abstract
In this paper, we prove strong and weak convergence theorems for a mapping
defined on a bounded, closed and convex subset of a uniformly convex Banach
space, satisfying the RCSC condition. This condition was introduced by Karapınar
(Dynamical Systems and Methods, 2012). We first establish the demiclosed principle
for the mapping satisfying the RCSC condition. Then, using this principle, we establish
the weak and strong convergence theorems. Results in the paper extend and
improve a number of important results in this literature such as Khan and Suzuki
(Nonlinear Anal. 80:211-215, 2013) and Reich (J. Math. Anal. Appl. 67:274-276, 1979).
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1 Introduction
Let C be a nonempty closed convex subset of a Banach space X. A mapping T : C → C
is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C. It is called quasi-
nonexpansive [] if F(T) �= ∅ and ‖Tx – p‖ ≤ ‖x – p‖ for all x ∈ C and for all p ∈ F(T),
where F(T) is the set of fixed points of T , i.e., F(T) = {x ∈ C : Tx = x}. Every nonexpansive
mapping with F(T) �= ∅ is a quasi-nonexpansive mapping.

In , Suzuki [] introduced a mapping satisfying condition (C). More accurately,
a mapping T : C → C is said to satisfy condition (C) if



‖x – Tx‖ ≤ ‖x – y‖ �⇒ ‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ C. Every nonexpansive mapping satisfies condition (C); also if a mapping sat-
isfies condition (C) and has a fixed point, then it is a quasi-nonexpansive mapping [].

Fixed point theorems for a mapping satisfying condition (C) were studied by Dhom-
pongsa et al. [] and Phuengrattana []. Khan and Suzuki [] proved a weak convergence
theorem for a mapping satisfying condition (C) in uniformly convex Banach spaces whose
dual has the Kadec-Klee property.

In , Karapınar [] suggested a new modification of mappings satisfying condition
(C) to a mapping satisfying (RCSC)-condition.
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Definition . Let T be a mapping on a subset C of a Banach space X. Then T is said to
satisfy Reich-Chatterjea-Suzuki-(C) condition ((RCSC)-condition) if



‖x – Tx‖ ≤ ‖x – y‖ �⇒ ‖Tx – Ty‖ ≤ 


(‖x – y‖ + ‖Tx – y‖ + ‖x – Ty‖)

for all x, y ∈ C.

Motivated by the above mentioned works, in this paper, we prove some weak and strong
convergence theorems for generalized nonexpansive ((RCSC)-condition) mappings in a
uniformly convex Banach space, which has the Kadec-Klee property. Our results general-
ize the results of Khan and Suzuki [], Reich [] to the case of a mapping satisfying (RCSC)-
condition. For other works in this direction, please see Mogbademu [], Saluja [], Thakur
[] and Zheng [].

2 Preliminaries
Throughout this paper, we denote by N the set of positive integers and by R the set of real
numbers.

We now recall some definitions and results useful for our main results.
A Banach space X is called uniformly convex [] if for each ε ∈ (, ] there is δ >  such

that for x, y ∈ X,

‖x‖ ≤ 
‖y‖ ≤ 

‖x – y‖ > ε

⎫
⎪⎬

⎪⎭
⇒

∥∥
∥∥

x + y


∥∥
∥∥ ≤ δ.

Lemma . ([]) Let X be a uniformly convex Banach space. Let {xn} and {yn} be se-
quences in X satisfying limn→∞ ‖xn‖ = , limn→∞ ‖yn‖ =  and limn→∞ ‖xn + yn‖ = . Then
limn→∞ ‖xn – yn‖ = .

Lemma . ([]) Let X be a uniformly convex Banach space and let {un}, {vn} and {wn}
be sequences in X. Let d and t be real numbers with d ∈ (,∞) and t ∈ (, ). Assume that
limn→∞ ‖un – vn‖ = d, lim supn→∞ ‖un – wn‖ ≤ ( – t)d and lim supn→∞ ‖vn – wn‖ ≤ td.
Then limn→∞ ‖tun + ( – t)vn – wn‖ = .

Proposition . Let C be a nonempty subset of a Banach space X and T : C → C be a
mapping satisfying (RCSC)-condition. Then T has the following properties:

(i) If T has a fixed point, then it is a quasi-nonexpansive mapping [], Proposition .
(ii) If C is closed, then F(T) is closed; further if X is strictly convex and C is convex, then

F(T) is also convex [], Proposition .

A Banach space X is said to have the Kadec-Klee property if, for every sequence {xn} in
X which converges weakly to a point x ∈ X with ‖xn‖ converging to ‖x‖, {xn} converges
strongly to x. Every uniformly convex Banach space has the Kadec-Klee property [].

Lemma . ([, ]) Let X be a reflexive Banach space whose dual has the Kadec-Klee
property. Let {xn} be a bounded sequence in X and let y, z ∈ X be weak subsequential limits
of {xn}. Assume that for every t ∈ [, ], limn→∞ ‖txn + ( – t)y – z‖ exists. Then y = z.
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Proposition . Let C be a nonempty subset of a Banach space X and T : C → C be a
mapping satisfying (RCSC)-condition. Then

() ‖x – Ty‖ ≤ ‖Tx – x‖ + ‖x – y‖,
() ‖y – Ty‖ ≤ ‖Tx – x‖ + ‖x – y‖

hold for all x, y ∈ C.

Proof () follows from [], Corollary .
For (), it follows from () that

‖y – Ty‖ ≤ ‖y – x‖ + ‖x – Ty‖
≤ ‖x – Tx‖ + ‖x – y‖.

Thus we have (). �

3 Main results
In this section, we prove weak and strong convergence theorems. First, we establish some
auxiliary results.

The following lemma is an extension of Lemma  of [] to the case of mappings satisfying
(RCSC)-condition.

Lemma . Let C be a nonempty bounded convex subset of a uniformly convex Banach
space X, and let T : C → C be a mapping satisfying (RCSC)-condition. Suppose that for
any ε > , there exists ξ (ε) >  such that ‖Tu – u‖ < ξ (ε), ‖Tv – v‖ < ξ (ε) for some u, v ∈ C.
Then, for any t ∈ [, ],

∥∥T
(
tu + ( – t)v

)
–

(
tu + ( – t)v

)∥∥ < ε.

Proof Assume to the contrary that there exist sequences {un}, {vn} ∈ C, {tn} ∈ [, ] and
ε >  such that

‖Tun – un‖ <

n

, ‖Tvn – vn‖ <

n

,

and

∥∥T
(
tnun + ( – tn)vn

)
–

(
tnun + ( – tn)vn

)∥∥ ≥ ε.

Setting xn = tnun + ( – tn)vn and wn = Txn, from Proposition .(ii), we get

 < ε ≤ lim inf
n→∞ ‖Txn – xn‖

≤ lim inf
n→∞

(
‖Tun – un‖ + ‖un – xn‖

)

=  lim inf
n→∞ ‖un – xn‖.

Similarly, we can show that

 < lim inf
n→∞ ‖vn – xn‖,
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and hence

 < lim inf
n→∞ ‖un – vn‖.

Since C is bounded and

 < lim inf
n→∞ ‖vn – xn‖ = lim inf

n→∞ tn‖un – vn‖ ≤ lim inf
n→∞ tn × sup

n∈N
‖un – vn‖,

we get  < lim infn→∞ tn.
Similarly, we can show that lim supn→∞ tn < .
So, without loss of generality, we may assume that ‖un – vn‖ converges to d ∈ (,∞) and

tn converges to t ∈ (, ) as n → ∞.
Since limn→∞ ‖Tun – un‖ =  and  < lim infn→∞ ‖un – xn‖, we obtain



‖Tun – un‖ ≤ ‖un – xn‖

for sufficiently large n ∈N.
Since T satisfies (RCSC)-condition, for sufficiently large n ∈N, we have

‖Tun – Txn‖ ≤ 

(‖un – xn‖ + ‖Tun – xn‖ + ‖un – Txn‖

)
.

By similar arguments, we have

‖Tvn – Txn‖ ≤ 

(‖vn – xn‖ + ‖Tvn – xn‖ + ‖vn – Txn‖

)

for sufficiently large n ∈N.
Now, using the triangular inequality and Proposition .(i), we have

lim sup
n→∞

‖un – wn‖

≤ lim sup
n→∞

(‖un – Tun‖ + ‖Tun – Txn‖
)

≤ lim sup
n→∞

(
‖un – Tun‖ +



(‖un – xn‖ + ‖Tun – xn‖ + ‖un – Txn‖

)
)

≤ lim sup
n→∞

(
‖un – Tun‖ +



(‖un – xn‖ + ‖un – Tun‖ + ‖un – xn‖

))

= ( – t)d,

and

lim sup
n→∞

‖vn – wn‖

≤ lim sup
n→∞

(‖vn – Tvn‖ + ‖Tvn – Txn‖
)

≤ lim sup
n→∞

(
‖vn – Tvn‖ +



(‖vn – xn‖ + ‖Tvn – xn‖ + ‖vn – Txn‖

))
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≤ lim sup
n→∞

(
‖vn – Tvn‖ +



(‖vn – xn‖ + ‖vn – Tvn‖ + ‖vn – xn‖

))

= td.

It then follows from Lemma . that

 < ε ≤ lim
n→∞‖xn – wn‖ = ,

which is a contradiction, and this completes the proof. �

We now establish the demiclosed principle for the mapping satisfying (RCSC)-condi-
tion.

Proposition . Let T be a mapping on a bounded and convex subset C of a uniformly
convex Banach space X. Assume that T satisfies (RCSC)-condition. Then I –T is demiclosed
at zero. That is, if {xn} ∈ C converges weakly to x ∈ C and limn→∞ ‖Txn – xn‖ = , then
Tx = x.

Proof Let ξ : (,∞) → (,∞) be a function satisfying the conclusion of Lemma .. Let
{xn} be a sequence converging weakly to x ∈ C and limn→∞ ‖Txn – xn‖ = . For arbitrarily
chosen ε > , define a strictly decreasing sequence {εn} in (,∞) by

ε = ε and εn+ =
min{εn, ξ (εn)}


.

It is obvious that εn+ < ξ (εn). Choose a subsequence {xf (n)} of {xn} such that ‖xf (n) –
Txf (n)‖ < ξ (εn). Since x belongs to the closed convex hull of {xf (n) : n ∈ N}, it is a weak
limit of {xf (n)}. Hence, there exist y ∈ C and v ∈ N such that ‖y – x‖ < ε and y belongs
to the convex hull of {xf (n) : n = , , . . . , v}. Using Lemma ., we have ‖Ty – y‖ < ε. Using
Proposition .(ii), we obtain

‖Tx – x‖ ≤ ‖Ty – y‖ + ‖y – x‖ < ε.

Since ε >  is arbitrary, we obtain Tx = x. �

Lemma . Let T be a mapping on a bounded and convex subset C of a uniformly convex
Banach space X. Assume that T satisfies (RCSC)-condition. For arbitrary x ∈ C and a real
number α ∈ [/, ), construct a sequence {xn} in C by

xn+ = αTxn + ( – α)xn. (.)

If limn→∞ ‖Txn – xn‖ = , then limn→∞ ‖txn + ( – t)p – q‖ exists, where p, q ∈ F(T) and
t ∈ [, ].

Proof Since T satisfies (RCSC)-condition, by Proposition ., it is quasi-nonexpansive.
Let S = αT + ( – α)I , then S is a self-mapping on C, and F(S) = F(T) also S is quasi-
nonexpansive, and

xn+ = αTxn + ( – α)xn = Sxn = Snx.
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Thus, for any q ∈ F(S), we have

‖xn+ – q‖ = ‖Sxn – q‖
≤ ‖xn – q‖,

hence the sequence {‖xn – q‖} is nonincreasing and bounded below. Therefore, it con-
verges.

Since the sequence {‖p – q‖} obviously converges, we see that limn→∞ ‖txn + ( – t)p – q‖
exists for t =  and t = . Thus it remains to consider t ∈ (, ).

Let limn→∞ ‖xn – p‖ = d. If d = , there is nothing to prove. Take d > . We have

lim inf
m,n→∞

∥∥xn – Sl(txm + ( – t)p
)∥∥ ≥ lim inf

m,n→∞
(‖xn – p‖ –

∥∥p – Sl(txm + ( – t)p
)∥∥)

≥ lim inf
m,n→∞

(‖xn – p‖ –
∥
∥p –

(
txm + ( – t)p

)∥∥)

=( – t)d > 

for all l ∈ N ∪ {}, where S is the identity mapping on C. Then there exists ν ∈ N such
that



‖xn – Txn‖ ≤ ∥

∥xn – Sl(txm + ( – t)p
)∥∥

for all l ≥  and m, n ≥ ν . Since T satisfies (RCSC)-condition and Proposition .(i), we
obtain

∥
∥Txn – T ◦ Sl(txm + ( – t)p

)∥∥

≤ 

∥
∥xn – Sl(txm + ( – t)p

)∥∥ +


∥
∥Txn – Sl(txm + ( – t)p

)∥∥

+


∥∥xn – T ◦ Sl(txm + ( – t)p

)∥∥,

and hence

∥
∥xn+ – Sl+(txm + ( – t)p

)∥∥

=
∥∥Sxn – S ◦ Sl(txm + ( – t)p

)∥∥

≤ ∥
∥αTxn + ( – α)xn – αT ◦ Sl(txm + ( – t)p

)

– ( – α)Sl(txm + ( – t)p
)∥∥

=
∥∥α

(
Txn – T ◦ Sl(txm + ( – t)p

))

+ ( – α)
(
xn – Sl(txm + ( – t)p

))∥∥

≤ α
∥∥Txn – T ◦ Sl(txm + ( – t)p

)∥∥

+ ( – α)
∥
∥xn – Sl(txm + ( – t)p

)∥∥

≤ α

{


(∥∥xn – Sl(txm + ( – t)p

)∥∥ +
∥
∥Txn – Sl(txm + ( – t)p

)∥∥
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+
∥
∥xn – T ◦ Sl(txm + ( – t)p

)∥∥)}

+ ( – α)
∥
∥xn – Sl(txm + ( – t)p

)∥∥

≤ α

{


(∥∥xn – Sl(txm + ( – t)p

)∥∥ +
∥∥Txn – Sl(txm + ( – t)p

)∥∥

+ ‖Txn – xn‖ +
∥
∥xn – Sl(txm + ( – t)p

)∥∥)}

+ ( – α)
∥∥xn – Sl(txm + ( – t)p

)∥∥

≤ α

{∥∥xn – Sl(txm + ( – t)p
)∥∥ +




‖Txn – xn‖
}

+ ( – α)
∥∥xn – Sl(txm + ( – t)p

)∥∥

=
∥
∥xn – Sl(txm + ( – t)p

)∥∥ +



‖Txn – xn‖

for all l ≥  and m, n ≥ ν .
Let h : N → [,∞) be a function defined by

h(n) =
∥
∥txn + ( – t)p – q

∥
∥.

Take two subsequences {f (n)} and {g(n)} of {n} such that ν < f (), f (n) < g(n) for each
n ∈N and

lim
n→∞ h

(
f (n)

)
= lim inf

n→∞ h(n), lim
n→∞ h

(
g(n)

)
= lim sup

n→∞
h(n).

Set un = xg(n), vn = p and wn = Sg(n)–f (n)(txf (n) + ( – t)p). Then we have

lim
n→∞‖un – vn‖ = d, (.)

lim sup
n→∞

‖un – wn‖ = lim sup
n→∞

∥∥xg(n) – Sg(n)–f (n)(txf (n) + ( – t)p
)∥∥

≤ lim sup
n→∞

∥∥xf (n) –
(
txf (n) + ( – t)p

)∥∥

+



lim sup
n→∞

‖xn – Txn‖

= ( – t) lim sup
n→∞

‖xf (n) – p‖

= ( – t)d, (.)

and

lim sup
n→∞

‖vn – wn‖ ≤ td. (.)

By (.), (.), (.) and Lemma ., we have

lim
n→∞

∥∥tun + ( – t)vn – wn
∥∥ = .
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Substituting the value of un, vn and wn, we have

lim
n→∞

∥∥txg(n) + ( – t)p – Sg(n)–f (n)(txf (n) + ( – t)p
)∥∥ = .

Using the quasi-nonexpansiveness of S, we get

lim sup
n→∞

h(n) = lim
n→∞ h

(
g(n)

)

≤ lim sup
n→∞

(∥∥txg(n) + ( – t)p – Sg(n)–f (n)(txf (n) + ( – t)p
)∥∥

+
∥∥Sg(n)–f (n)(txf (n) + ( – t)p

)
– q

∥∥)

= lim sup
n→∞

∥∥Sg(n)–f (n)(txf (n) + ( – t)p
)

– q
∥∥

≤ lim sup
n→∞

∥∥(
txf (n) + ( – t)p

)
– q

∥∥

= lim
n→∞ h

(
f (n)

)

= lim inf
n→∞ h(n).

Thus limn→∞ h(n) = limn→∞ ‖txn + ( – t)p – q‖ exists. �

Now, we prove a weak convergence theorem.

Theorem . Let X be a uniformly convex Banach space whose dual has the Kadec-Klee
property. Let T be a mapping on a bounded, closed and convex subset C of X. Assume that T
satisfies (RCSC)-condition and define a sequence {xn} in C by (.). If limn→∞ ‖Txn – xn‖ =
, then {xn} converges weakly to a fixed point of T .

Proof Let W be the set of all weak subsequential limits of {xn}. Since limn→∞ ‖Txn – xn‖
is equal to , by Proposition . we have W ⊂ F(T). Using Lemma . and Lemma .,
W is singleton. But X is a uniformly convex Banach space, hence reflexive. So every se-
quence {xn} has a subsequence converging weakly to the unique element of W . Since W
is singleton, therefore {xn} itself converges weakly to the unique element of W . �

Remark  Theorem . is a generalization of Theorem  of [].

Since the dual of a reflexive Banach space with Fréchet differentiable norm has the
Kadec-Klee property [], as a direct consequence of Theorem ., we get the following
result.

Corollary . Let X be a uniformly convex Banach space whose norm is Fréchet differen-
tiable. Let T be a mapping on a bounded, closed and convex subset C of X. Assume that T
satisfies (RCSC)-condition and define a sequence {xn} in C by (.). If limn→∞ ‖Txn – xn‖ =
, then {xn} converges weakly to a fixed point of T .

Recall that a mapping T : C → C is said to satisfy condition (I) [] if there exists a
nondecreasing function f : [,∞) → [,∞) with f () = , f (r) >  for all r ∈ (,∞) such
that d(x, Tx) ≥ f (d(x, F(T))) for all x ∈ C, where d(x, F(T)) = infp∈F(T) d(x, p).
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We now establish a strong convergence theorem.

Theorem . Let T be a mapping on a bounded, closed and convex subset C of a uniformly
convex Banach space X. Assume that T satisfies (RCSC)-condition and define a sequence
{xn} in C by (.). If limn→∞ ‖Txn – xn‖ =  and T satisfies condition (I), then {xn} converges
strongly to a fixed point of T .

Proof By Lemma ., we know that limn→∞ ‖xn – p‖ exists for all p ∈ F(T), and hence
limn→∞ d(xn, F(T)) exists. Assume that limn→∞ ‖xn – p‖ = r for some r ≥ .

If r = , then {xn} converges strongly to p and the result follows.
Suppose r > . From the hypothesis and condition (I), we have limn→∞ ‖Txn – xn‖ = 

and f (d(xn, F(T))) ≤ ‖Txn – xn‖. This gives limn→∞ f (d(xn, F(T))) = . Since f is a nonde-
creasing function, we have limn→∞ d(xn, F(T)) = . Thus, there exist a subsequence {xnk }
of {xn} and a sequence {yk} ⊂ F(T) such that

‖xnk – yk‖ <


k for all k ∈N.

Again, we see that

‖xn+ – yk‖ =
∥
∥αTxn + ( – α)xn – yk

∥
∥

≤ α‖Txn – yk‖ + ( – α)‖xn – yk‖
≤ ‖xn – yk‖

<


k .

Hence,

‖yk+ – yk‖ ≤ ‖yk+ – xk+‖ + ‖xk+ – yk‖

≤ 
k+ +


k

<


k– →  as n → ∞.

This shows that {yk} is a Cauchy sequence in a complete space, and hence it converges to
a point p ∈ X. Since F(T) is closed, therefore p ∈ F(T) and then {xnk } converges strongly
to p. Since limn→∞ ‖xn – p‖ exists, xn → p ∈ F(T). This completes the proof. �

We now give an example of mapping T which satisfies (RCSC)-condition but fails to
satisfy condition (C).

Example  Let X = R with usual metric and C = [, ] ⊂ X. Define a mapping T : C → C
by the rule

Tx =

{
, x ∈ [, 

 ),
x
 , x ∈ [ 

 , ].
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Set x = 
 and y = 

 , we see that



|x – Tx| =




<



= |x – y|,

and

|Tx – Ty| =



>




= |x – y|,

i.e.,



|x – Tx| ≤ |x – y| � |Tx – Ty| ≤ |x – y|,

hence, T fails to satisfy condition (C).
To verify that T satisfies condition (RCSC), consider the following cases.
Case-I: Let x, y ∈ [, 

 ), then we have

|Tx – Ty| =  ≤ 

[|x – y| + |Tx – y| + |x – Ty|],

x, y ∈ [, 
 ).

Case-II: Let x, y ∈ [ 
 , ], then

|Tx – Ty| =
∣∣
∣∣
x


–
y


∣∣
∣∣.

Since

|x – y| >
∣∣∣
∣
x


–
y


∣∣∣
∣ = |Tx – Ty|,

|Tx – y| =
∣∣
∣∣
x


– y
∣∣
∣∣ >

∣∣
∣∣
x


–
y


∣∣
∣∣ = |Tx – Ty|

and

|x – Ty| =
∣∣
∣∣x –

y


∣∣
∣∣ >

∣∣
∣∣
x


–
y


∣∣
∣∣ = |Tx – Ty|,

which implies that

|Tx – Ty| <


[|x – y| + |Tx – y| + |x – Ty|]

for all x, y ∈ [ 
 , ].

Case-III: Let x ∈ [, 
 ) and y ∈ [ 

 , ] or x ∈ [ 
 , ] and y ∈ [, 

 ). Then

|Tx – Ty| =
y


.

Also,



[|x – y| + |Tx – y| + |x – Ty|] =




[
y – x + y +

∣∣
∣∣x –

y


∣∣
∣∣

]
. (.)
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We now have two subcases as follows.
Case-III(A): x ≥ y

 , then |x – y
 | = x – y

 , and by (.) we have



[|x – y| + |Tx – y| + |x – Ty|] =

y


= |Tx – Ty|.

Case-III(B): x < y
 , then |x – y

 | = y
 – x, and by (.) we have



[|x – y| + |Tx – y| + |x – Ty|] =




[
y


– x
]

>



[
y


– y
]

=
y


= |Tx – Ty|.

Hence |Tx – Ty| ≤ 
 [|x – y| + |Tx – y| + |x – Ty|] for all x ∈ [, 

 ) and y ∈ [ 
 , ].

Case-IV : Let x ∈ [ 
 , ] and y ∈ [, 

 ). By interchanging the role of x and y in Case-III, we
can see that

|Tx – Ty| ≤ 

[|x – y| + |Tx – y| + |x – Ty|]

for all x ∈ [ 
 , ] and y ∈ [, 

 ).
In view of Case-I to Case-IV, we can say that T satisfies condition (RCSC) for all x, y ∈ C.
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