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Abstract
In the paper, first, we introduce a new hybrid projection algorithm and present its
strong convergence theorem. Next, we analyze different hybrid algorithms in
computing and conclude that our proposed algorithm has an advantage. Finally, the
numerical experiments validate the efficiency and advantages of the new algorithm.
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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖ and C be
a nonempty closed convex subset of H . Recall that a mapping T : C → C is said to be
nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ C. We denote by Fix(T) the set of fixed points of T , i.e., Fix(T) = {x ∈ C : Tx =
x}.

The construction of common fixed points for a finite family of nonlinear mappings is of
practical importance. In particular, iteration algorithms for finding common fixed points
of a finite family of nonexpansive mappings have received extensive investigation (see [–
]) since these algorithms have a variety of applications in inverse problem, image recov-
ery, and signal processing (see [–]).

Mann’s iteration algorithm [] is often used to find a fixed point of nonexpansive map-
pings, but it has only weak convergence (see [] for an example). However, strong conver-
gence is often much more desirable than weak convergence in many problems that arise
in infinite dimensional spaces (see [] and references therein). So, attempts have been
made to modify Mann’s iteration algorithm so that strong convergence is guaranteed. Let
T : C → C be a nonexpansive mapping. Then I – T is a maximal monotone operator [].
Inspired by Solodov and Svaiter’s hybrid method for finding a zero of a maximal monotone
operator [], Nakajo and Takahashi [] first introduced a hybrid algorithm for a nonex-
pansive mapping. Thereafter, some hybrid algorithms have been studied extensively since
they have strong convergence (see [–]).
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In this paper, motivated by Eckstein and Svaiter’s splitting methods for approximating
a zero of the sum of two maximal monotone operators [], we introduce a new hybrid
algorithm. Let T , S : C → C be two nonexpansive mappings such that Fix(T) ∩ Fix(S) 	= ∅.
We consider the following algorithm.

Algorithm 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = αnxn + ( – αn)Txn,

zn = βn[γnyn + ( – γn)xn] + ( – βn)Syn,

Cn = {z ∈ C : σ‖zn – z‖ + ( – σ )‖yn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, xn – x〉 ≤ },
xn+ = PCn∩Qn x

()

for each n ≥ , where PK denotes the metric projection onto the set K and αn,βn ∈ [,  –
δ], δ ∈ [, ), γn ∈ [, ], σ ∈ (, ) with some conditions.

2 Relation to the previous work
In this section, we analyze and compare Algorithm  with two important hybrid algo-
rithms which are simple and easily realized. For the purposes of comparison, set γn =  in
Algorithm , which is reasonable from the numerical experiments in Section . In the case
where γn = , Algorithm  actually is a modification of the following cyclic algorithm:

⎧
⎨

⎩

yn = αnxn + ( – αn)Txn,

xn+ = βnyn + ( – βn)Syn
()

for each n ≥ , where x ∈ C.
In [], Takahashi et al. modified the cyclic algorithm () and introduced another hybrid

algorithm.

Algorithm 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = αnxn + ( – αn)T[n]xn,

Cn = {z ∈ C : ‖yn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, xn – x〉 ≤ },
xn+ = PCn∩Qn x

for each n ≥ , where  ≤ αn ≤ α < , T[n] = Tn mod  and the mod function takes values in
{, } and T = T and T = S.

The computational complexity of Algorithm  on every step is one computation of a
metric projection and two values of S and T , while the computational complexity of Al-
gorithm  on every step is one computation of a metric projection and one value of S or
T . In general, the computational cost of metric projection is larger than that of operators.
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By modifying the parallel algorithm (see []), it is easy to obtain the following algorithm
(see [] for details).

Algorithm 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = αnxn + βnTxn + γnSxn,

Cn = {z ∈ C : ‖yn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, xn – x〉 ≤ },
xn+ = PCn∩Qn x

for each n ≥ , where αn,βn,γn ∈ [, ], αn + βn + γn =  and lim supn→∞ αn < ,
lim infn→∞ βnγn > .

In the sense of computational complexity Algorithm  is similar to Algorithm . How-
ever, it is generally recognized that the cyclic algorithm (like the Gauss-Seidel iteration) is
faster than the parallel algorithm (like Jacob iteration).

3 Preliminaries
We use the following notation:

• ⇀ for weak convergence and → for strong convergence;
• ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn}.
We need some facts and tools in a real Hilbert space H which are listed as lemmas be-

low.

Lemma . We have the identity in a real Hilbert space H :

‖u – v‖ = ‖u‖ – ‖v‖ – 〈u – v, v〉

for all u, v ∈ H .

Lemma . (Goebel and Kirk []) Let C be a nonempty closed convex subset of a real
Hilbert space H and T : C → C be a nonexpansive mapping such that Fix(T) 	= ∅. If a
sequence {xn} in C is such that xn ⇀ z and xn – Txn → , then z = Tz.

Lemma . Let C be a nonempty closed convex subset of real Hilbert space H and let PC

be the (metric or nearest point) projection from H onto C (i.e., for any x ∈ H , PCx is the
only point in C such that ‖x – PCx‖ = inf{‖x – z‖ : z ∈ C}). Then, for any x ∈ H and z ∈ C,
z = PCx if and only if

〈x – z, y – z〉 ≤ 

for all y ∈ C.

Lemma . (Martinez-Yanes and Xu []) Let C be a nonempty closed convex subset of H .
Let {xn} be a sequence in H and u ∈ H . Let q = PCu. If {xn} is such that ωw{xn} ⊂ C and
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satisfies the condition

‖xn – u‖ ≤ ‖u – q‖

for all n ≥ , then xn → q.

Lemma . Let H be a real Hilbert space. Let C be a nonempty closed convex subset of H
and let x, y, z ∈ H . For any real number σ ∈ [, ], the set

D :=
{

v ∈ C : σ‖z – v‖ + ( – σ )‖y – v‖ ≤ ‖x – v‖}

is convex (and closed).

Proof In fact, the defining inequality in D is equivalent to the inequality

〈
σ (z – x) + ( – σ )(y – x), x – v

〉 ≤ –


(
σ‖z – x‖ + ( – σ )‖y – x‖).

This inequality is affine in v and hence the set D is convex. �

4 Main results
In this section, we first present a strong convergence theorem and its proof for Algorithm .
Then we extend it to a finite family of nonexpansive mappings.

Theorem . Let C be a nonempty closed convex subset of a Hilbert space H and T , S :
C → C be two nonexpansive mappings such that Fix(T) ∩ Fix(S) 	= ∅. Assume that {αn},
{βn}, and {γn} are the sequences in [, ] such that αn,βn ≤  – δ for some δ ∈ (, ]. As-
sume σ ∈ (, ). Then the sequence {xn} generated by Algorithm  converges in norm to
PFix(T)∩Fix(S)x.

Proof First, observe that Cn is convex by Lemma .. Next, we show that Fix(T)∩Fix(S) ⊂
Cn for all n ≥ . To observe this, arbitrarily take p ∈ Fix(T) ∩ Fix(S), and we have

‖yn – p‖ ≤ αn‖xn – p‖ + ( – αn)‖Txn – p‖ ≤ ‖xn – p‖

and

‖zn – p‖ ≤ βn
[
γn‖yn – p‖ + ( – γn)‖xn – p‖] + ( – βn)‖Syn – p‖

≤ βn‖xn – p‖ + ( – βn)‖yn – p‖
≤ ‖xn – p‖.

Combining the above inequalities, it follows that, for any σ ∈ (, ),

σ‖zn – p‖ + ( – σ )‖yn – p‖ ≤ ‖xn – p‖,

and so p ∈ Cn for all n ≥ .
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Next, we show that

Fix(T) ∩ Fix(S) ⊂ Qn ()

for all n ≥  by induction. For n = , we have Fix(T) ∩ Fix(S) ⊂ C = Q. Assume that
Fix(T) ∩ Fix(S) ⊂ Qn. Since xn+ is the projection of x onto Cn ∩ Qn, by Lemma ., we
have

〈xn+ – z, xn+ – x〉 ≤ 

for all z ∈ Cn ∩ Qn. Since Fix(T) ∩ Fix(S) ⊂ Cn ∩ Qn, by the induction assumption, the last
inequality holds, in particular, for all z ∈ Fix(T) ∩ Fix(S). This together with the definition
of Qn+ implies that Fix(T) ∩ Fix(S) ⊂ Qn+. Hence () holds for all n ≥ .

Now, since xn = PQn x (by the definition of Qn) and Fix(T) ∩ Fix(S) ⊂ Qn, we have

‖xn – x‖ ≤ ‖p – x‖

for all p ∈ Fix(T) ∩ Fix(S). In particular, {xn} is bounded and

‖xn – x‖ ≤ ‖q – x‖, ()

where q = PFix(T)∩Fix(S)x. The fact that xn+ ∈ Qn implies that 〈xn+ – xn, xn – x〉 ≥ . This
together with Lemma . implies that

‖xn+ – xn‖ =
∥
∥(xn+ – x) – (xn – x)

∥
∥

= ‖xn+ – x‖ – ‖xn – x‖ – 〈xn+ – xn, xn – x〉
≤ ‖xn+ – x‖ – ‖xn – x‖,

which implies

‖xn+ – xn‖ →  ()

as n → ∞. Observe that xn+ ∈ Cn implies that

σ‖zn – xn+‖ + ( – σ )‖yn – xn+‖ ≤ ‖xn – xn+‖.

Due to σ ∈ (, ), we have

‖zn – xn+‖ → , ‖yn – xn+‖ →  ()

as n → ∞, which yields

‖zn – yn‖ → . ()

Combining () and (), we obtain

‖zn – xn‖ → , ‖yn – xn‖ →  ()
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as n → ∞. Noting that ( – αn)(Txn – xn) = yn – xn, we obtain

‖Txn – xn‖ =


 – αn
‖yn – xn‖.

Since αn ≤  – δ, by (), we have

‖Txn – xn‖ →  ()

as n → ∞. From zn = βn[γnyn + ( – γn)xn] + ( – βn)Syn, we have

‖Syn – zn‖ =
βn

 – βn

∥
∥γn(yn – zn) + ( – γn)(xn – zn)

∥
∥

≤ 
 – βn

(
γn‖yn – zn‖ + ( – γn)‖xn – zn‖

)
,

which, from ()-(), yields

‖Syn – zn‖ → 

as n → ∞ and so

‖Sxn – xn‖ ≤ ‖Sxn – Syn‖ + ‖Syn – zn‖ + ‖zn – xn‖
≤ ‖xn – yn‖ + ‖Syn – zn‖ + ‖zn – xn‖
→  ()

as n → ∞. Therefore, by ()-() and Lemma ., we obtain

ωw(xn) ⊂ Fix(T) ∩ Fix(S).

This, together with () and Lemma ., guarantees the strong convergence of {xn} to
PFix(T)∩Fix(S)x. This completes the proof. �

Let S = T in Algorithm , we have a hybrid algorithm for a nonexpansive mapping T :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = αnxn + ( – αn)Txn,

zn = βn[γnyn + ( – γn)xn] + ( – βn)Tyn,

Cn = {z ∈ C : σ‖zn – z‖ + ( – σ )‖yn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, xn – x〉 ≤ },
xn+ = PCn∩Qn x

()

for each n ≥ , where αn,βn ∈ [,  – δ], δ ∈ [, ), γn ∈ [, ], σ ∈ (, ).
When γn = , the algorithm () is actually a modification of the Ishikawa iteration ([]).

In , Martinez-Yanes and Xu [] modified the Ishikawa iteration and introduced the
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following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = αnxn + ( – αn)Txn,

zn = βnxn + ( – βn)Tyn,

Cn = {z ∈ C : ‖zn – z‖ ≤ βn‖xn – z‖ + ( – βn)‖yn – z‖},
Qn = {z ∈ C : 〈xn – z, xn – x〉 ≤ },
xn+ = PCn∩Qn x

()

for each n ≥ , where {αn}, {βn} are the sequences in [, ] such that αn →  and βn ≤  – δ

for some δ ∈ (, ].
It is easily observed that the algorithm () with γn =  is different from the algorithm

() in the definitions of the sets Cn and the conditions on αn.
From Theorem ., we get directly the following result.

Corollary . Let C be a nonempty closed convex subset of a Hilbert space H and T : C →
C be a nonexpansive mapping such that Fix(T) 	= ∅. Assume that {αn}, {βn}, and {γn} are
the sequences in [, ] such that αn, βn ≤  – δ for some δ ∈ (, ]. Assume σ ∈ (, ). Then
the sequence {xn} generated by the algorithm () converges in norm to PFix(T)x.

Letting γn =  in Algorithm , from Theorem ., we obtain the following result.

Corollary . Let C be a nonempty closed convex subset of a Hilbert space H and T , S :
C → C be two nonexpansive mappings such that Fix(T)∩Fix(S) 	= ∅. Assume that {αn} and
{βn} are the sequences in [, ] such that αn,βn ≤  – δ for some δ ∈ (, ]. Assume σ ∈ (, ).
Then the sequence {xn} generated by the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = αnxn + ( – αn)Txn,

zn = βnyn + ( – βn)Syn,

Cn = {z ∈ C : σ‖zn – z‖ + ( – σ )‖yn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, xn – x〉 ≤ },
xn+ = PCn∩Qn x for each n ≥ 

()

converges in norm to PFix(T)∩Fix(S)x.

Let {Tk : C → C, k = , , . . . , N} be a finite family of nonexpansive mappings such that
⋂N

k= Fix(Tk) 	= ∅. The algorithm () can be extended to a finite family of nonexpansive
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mappings as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn, = αn,xn + ( – αn,)Txn,

yn,k = αn,kyn,k– + ( – αn,k)Tkyn,k–,

Cn = {z ∈ C :
∑N

k= σk‖yn,k – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, xn – x〉 ≤ },
xn+ = PCn∩Qn x

()

for each n ≥  and k = , . . . , N , where αn,k ∈ [,  – δ], δ ∈ (, ], σk ∈ (, ) for each k =

, , . . . , N , and
∑N

k= σk = . Note that the algorithm () is different from the cyclic and

parallel algorithms [, ] and other algorithms for finding a common fixed point of a

finite family of nonexpansive mappings.

Extending Corollary . to a finite family of nonexpansive mappings, we can easily ob-

tain the strong convergence for the algorithm (), whose proof is similar to Theorem .

and omitted here.

Corollary . Let C be a nonempty closed convex subset of a Hilbert space H and

{Tk : C → C, k = , , . . . , N} be a finite family of nonexpansive mappings such that
⋂N

k= Fix(Tk) 	= ∅. Assume that {αnk } is the sequence in [, ] such that αnk ≤  – δ for

each k = , , . . . , N for some δ ∈ (, ]. Assume that σk ∈ (, ) for each k = , , . . . , N , and
∑N

k= σk = . Then the sequence {xn} generated by the algorithm () converges in norm to

P⋂N
k= Fix(Tk )x.

5 Numerical experiments

Many authors studied hybrid algorithms and analyzed strong convergence of the algo-

rithms, however, as far as we know, the results of the realization for the algorithms are

very limited (see, for example, [, ]).

Recently, He et al. [] pointed out that it is difficult to realize the hybrid algorithm in

actual computing programs because the specific expression of PCn∩Qn x cannot be got, in

general. For the special case C = H , where Cn and Qn are two half-spaces, they obtained

the specific expression of PCn∩Qn x and thus easily realized the hybrid algorithm proposed

by Nakajo and Takahashi [].



Dong et al. Fixed Point Theory and Applications  (2015) 2015:150 Page 9 of 12

In the case C = H , following some ideas of He et al. [], we obtain the specific expression
of PCn∩Qn x of Algorithm  as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ H chosen arbitrarily,

xn+ = xn if Txn = Sxn = xn,
yn = αnxn + ( – αn)Txn,

zn = βn[γnyn + ( – γn)xn] + ( – βn)Syn,

⎫
⎬

⎭
if Txn 	= xn or Sxn 	= xn,

un = σ zn + ( – σ )yn – xn,

vn = –(σ‖zn–xn‖+(–σ )‖yn–xn‖)
 ,

Cn = {z ∈ H : 〈un, xn – z〉 ≤ vn},
Qn = {z ∈ H : 〈xn – z, xn – x〉 ≤ },
xn+ = pn, if pn ∈ Qn,

xn+ = qn, if pn /∈ Qn

()

for each n ≥ , where

pn = x –
〈un, x – xn〉 + vn

‖un‖ un,

qn =
(

 –
〈x – xn, xn – pn〉
〈x – xn, wn – pn〉

)

pn +
〈x – xn, xn – pn〉
〈x – xn, wn – pn〉wn,

wn = xn –
vn

‖un‖ un.

Let R
 be a -dimensional Euclidean space with the usual inner product 〈v(), v()〉 =

v()
 v()

 + v()
 v()

 for all v() = (v()
 , v()

 )T , v() = (v()
 , v()

 )T ∈ R
, and the norm ‖v‖ =

√
v

 + v


(v = (v, v)T ∈R
). He et al. [] defined a mapping:

T : v = (v, v)T �→
(

sin
v + v√


, cos

v + v√


)T

and showed that T is nonexpansive. It is easily to observe that T has a fixed point in the
unit disk. Define a mapping S : R →R

 as follows:

S(v) := PK (v)

for all v ∈R
, where K = {v ∈R

 : ‖v‖ ≤ }. It is well known that S is nonexpansive (actually
firmly nonexpansive) and Fix(S) = K . Thus we get Fix(T) ∩ Fix(S) = Fix(T) 	= ∅.

Denote by E(x) = ‖x–Tx‖+‖x–Sx‖
‖x‖ the relative rate of convergence of the algorithms since

we do not know the exact value of the projection of x onto common fixed points set of S
and T .

In the numerical results listed in the following tables, Iter. and Sec. denote the number
of iterations and the cpu time in seconds, respectively. We took E(x) < ε as the stopping
criterion and ε = – unless specified otherwise. We chose different x as initial point.
The algorithms were coded in Matlab . and run on a personal computer.

We firstly investigated the choice of the parameters of Algorithm .
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Table 1 Algorithm 1 with αn = 0.1, βn = 0.1, γn = 1.0

x0 σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(0, 0) Iter. 372 472 404 538 539 417 461 452 523
(2, 7) Iter. 167 760 249 897 385 321 615 355 1,182
(–5, 2) Iter. 915 1,424 2,047 1,597 972 1,077 1,672 2,309 2,101
(–3, –4) Iter. 1,032 669 1,930 1,166 934 766 753 1,181 530

Table 2 Algorithm 1 with αn = 0.1, βn = 0.1, σ = 0.1

x0 γn 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(0, 0) Iter. 539 626 393 441 408 303 576 759 469 422 372
(2, 7) Iter. 205 825 242 488 1,278 214 301 362 174 750 167
(–5, 2) Iter. 1,237 1,373 1,853 1,627 2,275 2,173 1,609 2,036 1,316 2,633 915
(–3, –4) Iter. 919 780 1,647 958 875 957 1,411 663 1,146 573 1,032

Table 3 Algorithm 1 with βn = 0.1, γn = 1.0, σ = 0.1

x0 αn 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(0, 0) Iter. 372 524 853 1,080 1,398 – – – –
(2, 7) Iter. 167 482 625 1,479 2,186 2,046 3,115 4,111 14,440
(–5, 2) Iter. 915 1,418 2,950 3,998 6,098 6,827 1,330 20,114 68,421
(–3, –4) Iter. 1,032 2,306 2,262 1,975 4,341 2,882 6,321 11,761 38,330

In Algorithm , there are four parameters, σ , αn, βn, γn (indeed three nonnegative se-
quences). Thus we need to set them before performing the algorithm.

Tables  and  show the effect of different choice of σ and γn and illustrated that the
number of iteration was relatively small as σ = . and γn = . for the initial points (, ),
(, ), and (–, ).

Table  lists the impact of αn on the efficiency of the algorithm and showed that the
number of iteration was increasing with αn, with few exceptions. For αn ≥ ., the stopping
criterion could not even be satisfied at initial point (, ). The impact of βn was similar to
that of αn and we do not list it here.

Next, we discuss the choice of parameters in Algorithms  and . We took ε =  × –,
since for Algorithms  and , it was difficult for the relative rate of convergence to run up
to –. For Algorithm , we tested αn = [., .] and the numerical results are reported
in Figure , which showed that the number of iterations was less for small αn. Since the
number of iterations for αn > . was generally larger than those for αn ≤ ., we only
report the results for . ≤ αn ≤ .. For Algorithm , Figure  reports the number of
iterations for . ≤ αn ≤ ., where βn = γn = ( – αn)/. The conclusion was similar to
Algorithm , that is, small αn was better.

Finally, we compare Algorithm  with Algorithms  and . We took αn = ., βn = .,
γn = ., σ = . for Algorithm , αn = . in Algorithm  and αn = ., βn = γn = .
in Algorithm . The stopping criterion was E(x) < ε =  × –. Table  illustrates the
efficiency of the Algorithm , both from the points of view of number of iterations and
cpu time.

6 Conclusions
Hybrid algorithms for nonexpansive mappings have extensively been studied over the past
decade. In this paper, we introduced a new hybrid algorithm and, for the first time in the
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Figure 1 Comparison of the number of iterations of Algorithm 2 with different initial values.

Figure 2 Comparison of the number of iterations of Algorithm 3 with different initial values.

Table 4 Comparison of Algorithm 1 with Algorithms 2 and 3

x0 Algorithm 1 Algorithm 2 Algorithm 3

Iter. Sec. Iter. Sec. Iter. Sec.

(0, 0) 238 0.0156 290 0.0156 610 0.0625
(2, 7) 162 0.0313 922 0.0781 792 0.0781
(–5, 2) 532 0.0469 1,524 0.1094 2,305 0.3594
(–3, –4) 511 0.0625 1,356 0.0938 1,034 0.1250

literature, compared the different hybrid algorithms in computing. Numerical examples
were provided, which showed the advantages of the new algorithm.
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