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Abstract
In this paper, we investigate common solutions to a family of mixed equilibrium
problems with a relaxed η-α-monotone mapping and a nonlinear operator equation
involving an infinite family of asymptotically quasi-φ-nonexpansive mappings in the
intermediate sense. Strong convergence theorems of common solutions are
established in a strictly convex and uniformly smooth Banach space. These results
extend many important recent ones in the literature.
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1 Introduction
It is well known that equilibrium problems and mixed equilibrium problems have been
important tools for solving problems arising in the fields of linear or nonlinear program-
ming, complementary problems, optimization problems, variational inequalities, fixed
point problems and in certain applications to economics, physics, mechanics and engi-
neering sciences, etc. One of the most significant topics in the theory of equilibria is to de-
velop effective and implementable algorithms for solving equilibrium problems and mixed
equilibrium problems (see, e.g., [–] and the references therein).

The aim of this paper is to present an iterative method for solving solutions of a fam-
ily of mixed equilibrium problems with a relaxed η-α-monotone mapping and a nonlin-
ear operator equation involving an infinite family of asymptotically quasi-φ-nonexpansive
mappings in the intermediate sense.

The organization of this paper is as follows. In Section , we provide some necessary
preliminaries. In Section , an iterative algorithm is presented. A strong convergence the-
orem is established in a reflexive Banach space. Some results in Hilbert spaces are also
discussed.
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2 Preliminaries
In this paper, without other specifications, let N+ and R be the sets of positive integers and
real numbers, respectively, C be a nonempty, closed, and convex subset of a real reflexive
Banach space E with the dual space E∗. The norm and the dual pair between E∗ and E are
denoted by ‖ · ‖ and 〈·, ·〉, respectively. Recall that the normalized duality mapping J from
E to E∗ is defined by Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖ = ‖x∗‖}.

Recall that E is said to be strictly convex if ‖ x+y
 ‖ <  for all x, y ∈ E with ‖x‖ = ‖y‖ =  and

x �= y. It is said to be uniformly convex if limn→∞ ‖xn – yn‖ =  for any two sequences {xn}
and {yn} in E such that ‖xn‖ = ‖yn‖ =  and limn→∞ ‖ xn+yn

 ‖ = . Let U = {x ∈ E : ‖x‖ = }
be the unit sphere of E. A Banach space E is said to be smooth provided limt→

‖x+ty‖–‖x‖
t

exists for each x, y ∈ U . It is said to be uniformly smooth if the limit is attained uniformly
for x, y ∈ E. It is well known that if E is uniformly smooth, then J is uniformly norm-to-
norm continuous on each bounded subset of E and E is uniformly smooth if and only if
E∗ is uniformly convex.

In the paper, we use → and ⇀ to denote the strong convergence and weak convergence,
respectively. Recall that a Banach space E enjoys the Kadec-Klee property if for any se-
quence {xn} ⊂ E, and x ∈ E with xn ⇀ x, and ‖xn‖ → ‖x‖, then ‖xn – x‖ →  as n → ∞
(see, e.g., [] and the references therein). It is well known that if E is a uniformly convex
Banach space, then E enjoys the Kadec-Klee property.

As we all know, if C is a nonempty closed convex subset of a Hilbert space H and
PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact actu-
ally characterizes Hilbert spaces and consequently, it is not available in more general Ba-
nach spaces. In this connection, recently, Alber [] introduced a generalized projection
operator �C in a Banach space E which is an analog of the metric projection in Hilbert
spaces.

Next, we assume that E is a smooth Banach space. Let φ : E × E → R be a function
defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E. (.)

Observe that, in a Hilbert space H , (.) is reduced to φ(x, y) = ‖x – y‖ for all x, y ∈ H .
Recall that the generalized projection �C : E → C is a mapping that assigns to an arbitrary
point x ∈ E the minimum point of the functional φ(x, y); that is, �Cx = x̂, where x̂ is a
solution to the minimization problem

φ(x̂, x) = inf
y∈C

φ(y, x), (.)

the existence and uniqueness of the operator �C follow from the properties of the func-
tional φ(x, y) and strict monotonicity of the mapping J (see, e.g., [, ]). In Hilbert spaces,
�C = PC . It is obvious from the definition of function φ that

(‖y‖ – ‖x‖) ≤ φ(y, x) ≤ (‖y‖ + ‖x‖), ∀x, y ∈ E (.)

and

φ(x, y) = φ(x, z) + φ(z, y) + 〈x – z, Jz – Jy〉, ∀x, y, z ∈ E. (.)
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Remark . If E is a smooth, strictly convex, and reflexive Banach space, then φ(x, y) = 
if and only if x = y (see [, ] and the references therein).

In [], Fang and Huang introduced a concept called a relaxed η-α-monotone mapping.
A mapping A : C → E∗ is said to be relaxed η-α-monotone if there exists a mapping η :
C × C → E and a function α : E →R with α(tz) = tpα(z) for all t >  and z ∈ E, where p > 
is a constant, such that

〈
Ax – Ay,η(x, y)

〉≥ α(x – y), ∀x, y ∈ C.

Especially, if η(x, y) = x – y for all x, y ∈ C and α(z) = k‖z‖p, where p >  and k >  are two
constants, then A is said to be p-monotone (see, e.g., [–]). They proved that, under
some suitable assumptions, the following variational inequality is solvable: find x ∈ C such
that

〈
Ax,η(y, x)

〉
+ f (y) – f (x) ≥ , ∀y ∈ C, (.)

where f is a function from C to R∪ {∞}. They also proved that the variational inequality
(.) is equivalent to the following: find x ∈ C such that

〈
Ay,η(y, x)

〉
+ f (y) – f (x) ≥ α(y – x), ∀y ∈ C. (.)

Recently, in [], Chen et al. studied the following mixed equilibrium problem: find x ∈ C
such that

�(x, y) +
〈
Ax,η(y, x)

〉
+ f (y) – f (x) ≥ , ∀y ∈ C. (.)

Here � is a bifunction from C ×C to R, f : C ×C →R∪{+∞} is a proper convex function,
A : C → E∗ is a relaxed η-α-monotone mapping and η is a mapping from C × C to E.
Denote the set of solutions of the problem (.) by EP(�, A), i.e.,

EP(�, A) =
{

x ∈ C | �(x, y) +
〈
Ax,η(y, x)

〉
+ f (y) – f (x) ≥ ,∀y ∈ C

}
.

Special cases: (I) If A = , then the problem (.) is equivalent to find x ∈ C such that

�(x, y) + f (y) – f (x) ≥ , ∀y ∈ C. (.)

This is called the mixed equilibrium problem. Denote the set of solutions of (.) by
MEP(�, f ).

(II) If A = , f = , then the problem (.) is equivalent to find x ∈ C such that

�(x, y) ≥ , ∀y ∈ C. (.)

This is called the equilibrium problem. Denote the set of solutions of (.) by EP(�).
(III) If � = , then the problem (.) is equivalent to the variational inequality (.) and

(.). Denote the set of solutions of (.) and (.) by �.
In order to solve the equilibrium problem, the bifunction � is usually to be assumed

that following conditions are satisfied:
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(C) �(x, x) =  for all x ∈ C;
(C) � is monotone; that is, �(x, y) + �(y, x) ≤  for all x, y ∈ C;
(C) for all x, y, z ∈ C, lim supt↓ �(tz + ( – t)x, y) ≤ �(x, y);
(C) for all x ∈ C, �(x, ·) is convex and lower semicontinuous.
Let C be a nonempty subset of E and let T : C → C be a mapping. In this paper, we use

F(T) to denote the fixed point set of T . T is said to be asymptotically regular on C if for
any bounded subset K of C, limn→+∞ supx∈K ‖Tn+x – Tnx‖ = . T is said to be closed if
for any sequence {xn} ⊂ C such that limn→∞ xn = x and limn→∞ Txn = y, then Tx = y.

Recall that a point p in C is said to be an asymptotic fixed point of T [] if C contains
a sequence {xn} which converges weakly to p such that limn→∞ ‖xn – Txn‖ = . The set of
asymptotic fixed points of T will be denoted by F̃(T).

A mapping T is said to be relatively nonexpansive if

F̃(T) = F(T) �= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F(T).

A mapping T is said to be relatively asymptotically nonexpansive if

F̃(T) = F(T) �= ∅, φ
(
p, Tnx
)≤ ( + μn)φ(p, x), ∀x ∈ C, p ∈ F(T), n ≥ ,

where {μn} ⊂ [,∞) is a sequence such that μn →  as n → ∞.

Remark . The class of relatively asymptotically nonexpansive mappings was first con-
sidered in [] (see also, [] and the reference therein).

Recall that a mapping T is said to be quasi-φ-nonexpansive if

F(T) �= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F(T).

Recall that a mapping T is said to be asymptotically quasi-φ-nonexpansive if there exists
a sequence {μn} ⊂ [,∞) with μn →  as n → ∞ such that

F(T) �= ∅, φ
(
p, Tnx
)≤ ( + μn)φ(p, x), ∀x ∈ C, p ∈ F(T), n ≥ .

Remark . The class of quasi-φ-nonexpansive mappings was first considered in [].
The class of asymptotically quasi-φ-nonexpansive mappings that was studied in [] and
[] includes the class of quasi-φ-nonexpansive mappings as a special cases.

Remark . The class of quasi-φ-nonexpansive mappings and the class of asymptotically
quasi-φ-nonexpansive mappings are more general than the class of relatively nonexpan-
sive mappings and the class of relatively asymptotically nonexpansive mappings which
require the strong restriction that F̃(T) = F(T).

Remark . The class of quasi-φ-nonexpansive mappings and the class of asymptotically
quasi-φ-nonexpansive mappings are generalizations of the class of quasi-nonexpansive
mappings and the class of asymptotically quasi-nonexpansive mappings in Banach spaces.
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Recall that T is said to be asymptotically quasi-φ-nonexpansive in the intermediate
sense if F(T) �= ∅ and the following inequality holds:

lim sup
n→∞

sup
p∈F(T),x∈C

(
φ
(
p, Tnx
)

– φ(p, x)
)≤ . (.)

Putting

ξn = max
{

, sup
p∈F(T),x∈C

(
φ
(
p, Tnx
)

– φ(p, x)
)}

,

it follows that ξn →  as n → ∞. Then (.) is reduced to the following:

φ
(
p, Tnx
)≤ φ(p, x)) + ξn, ∀p ∈ F(T), x ∈ C. (.)

Remark . The class of asymptotically quasi-φ-nonexpansive mappings in the interme-
diate sense was first considered by Qin and Wang in [].

The following Example . and Example . show that there is an asymptotically quasi-
φ-nonexpansive mapping in the intermediate sense with the nonempty fixed point set
which is not φ-nonexpansive mapping.

Example . Let E = R = {x | |x| < +∞} and C = [, ]. Define the following mapping
T : C → C by

Tx =

{

 x, x ∈ [, 

 ],
, x ∈ ( 

 , ].

Then F(T) = {} ( �= ∅), E is a Hilbert space and φ(·, ·) is reduced to φ(x, y) = |x – y| for all
x, y ∈ E. We also have the following:

lim sup
n→+∞

sup
p∈F(T),y∈C

[
φ
(
p, Tny
)

– φ(p, y)
]

= lim sup
n→+∞

sup
y∈C

[
φ
(
, Tny
)

– φ(, y)
]

= lim sup
n→+∞

sup
y∈C

(∣∣Tny
∣
∣ – |y|)≤ lim sup

n→+∞
max

[(


n – 
)

inf
y∈[, 

 ]
|y|, – inf

y∈( 
 ,]

|y|
]

= lim sup
n→+∞

max

(
, –




)
= lim sup

n→+∞
 = .

Let x = 
 , y = 

 + 
 ∈ C = [, ], then

φ(Tx, Ty) = |Tx – Ty| =
∣
∣∣
∣




x – 
∣
∣∣
∣



=



> |x – y|

=
∣
∣∣
∣




–
(




+




)∣∣∣
∣



=


,
= φ(x, y).
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These imply that T is an asymptotically quasi-φ-nonexpansive mapping in the interme-
diate sense which is not φ-nonexpansive mapping. In fact, we may prove that T is an
asymptotically φ-nonexpansive mapping in the intermediate sense.

Example . Let E = l and C = {x ∈ l | ‖x‖ ≤ }, where l = {σ = (σ,σ, . . . ,σn, . . .) |
∑+∞

n= |σn| < +∞}. ‖σ‖ = (
∑+∞

n= |σn|) 
 , ∀σ = (σ,σ, . . . ,σn, . . .) ∈ l; 〈σ ,η〉 =

∑+∞
n= σnηn,

∀σ = (σ,σ, . . . ,σn, . . .), η = (η,η, . . . ,ηn, . . .) ∈ l.
Let T : C → C be a mapping defined by

T(x, x, x, . . .) =
(
, x

 , ax, ax, . . .
)
, ∀(x, x, x, . . .) ∈ C,

where {aj} is a sequence in (, ) such that
∏+∞

j= aj = 
 .

It is proved in Goebel and Kirk [] that
(i) ‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C;

(ii) ‖Tnx – Tny‖ ≤ (
∏n

j= aj)‖x – y‖, ∀x, y ∈ C, ∀n ≥ .
It is clear that F(T) = {} ( �= ∅), E is a Hilbert space, φ(x, y) = ‖x – y‖ for all x, y ∈ E, and

from (i) and (ii), we have

∥∥Tny
∥∥ =
∥∥Tny – Tn

∥∥ ≤
(


n∏

j=

aj

)

‖y – ‖ =

(


n∏

j=

aj

)

‖y‖, ∀y ∈ C,∀n ≥ ,

and

lim sup
n→+∞

sup
p∈F(T),y∈C

[
φ
(
p, Tny
)

– φ(p, y)
]

= lim sup
n→+∞

sup
y∈C

[
φ
(
, Tny
)

– φ(, y)
]

= lim sup
n→+∞

sup
y∈C

(∥∥Tny
∥∥ – ‖y‖)≤

{

lim sup
n→+∞

[(


n∏

j=

aj

)

– 

]}

·
(

inf
y∈C

‖y‖
)

=

[(


n∏

j=

aj

)

– 

]

·  = .

Let x = (, , , . . .), y = ( 
 , , , . . .), and z = (– 

 , , , . . .) ∈ C, then

φ(Tx, Ty) = ‖Tx – Ty‖ =
∥∥
∥∥
(
, , , . . .

)
–
(

,



, , . . .
)∥∥
∥∥



=
(

 –



)

=



> ‖x – y‖ =
∥∥
∥∥(, , , . . .) –

(



, , , . . .
)∥∥
∥∥



=
(

 –



)

=



= φ(x, y)

and

T(x + z) =
(

,



, , , . . .
)

�=
(

,



, , , . . .
)

= (, , , , . . .) +
(

,



, , , . . .
)

= Tx + Tz;
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These imply that T : C → C is an asymptotically quasi-φ-nonexpansive nonlinear map-
ping in the intermediate sense with the nonempty fixed point set which is not a φ-
nonexpansive nonlinear mapping.

Remark . The class of asymptotically quasi-φ-nonexpansive mappings in the interme-
diate sense is a generalization of the class of asymptotically quasi-nonexpansive mappings
in the intermediate sense, which was considered by Kirk [], in the framework of Banach
spaces.

The following lemmas are needed for the proof of our main results in next section.

Lemma . [] Let C be a nonempty closed convex subset of a smooth Banach space E
and x ∈ E. Then x = �Cx if and only if

〈x – y, Jx – Jx〉 ≥ , ∀y ∈ C.

Lemma . [] Let E be a reflexive, strictly convex, and smooth Banach space, let C be a
nonempty closed convex subset of E and x ∈ E. Then

φ(y,�Cx) + φ(�Cx, x) ≤ φ(y, x), ∀y ∈ C.

Lemma . [] Let E be a strictly convex, uniformly smooth Banach space with the dual
space E∗ and let C be a nonempty closed convex subset of E. Let A : C → E∗ be an η-
hemicontinuous and relaxed η-α-monotone mapping, let � be a bifunction from C × C
to R satisfying (C), (C), and (C), and let f be a proper convex function from C × C to
R∪ {+∞}. Let r >  and define a mapping Tr : E → C as follows:

Tr(x) =
{

z ∈ C : �(z, y) +
〈
Az,η(y, z)

〉
+ f (y) – f (z) +


r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C

}
,

for all x ∈ E. Assume that
(i) η(x, y) + η(y, x) = , for all x, y ∈ C;

(ii) for any fixed u, v ∈ C, the mapping x �→ 〈Av,η(x, u)〉 is convex and lower
semicontinuous;

(iii) α : E → R is weakly lower semicontinuous; that is, for any net {xβ}, xβ converges to x
in σ (E, E∗) implying that α(x) ≤ lim infα(xβ );

(iv) for any x, y ∈ C, α(x – y) + α(y – x) ≥ ;
(v) 〈A(tz + ( – t)z),η(y, tz + ( – t)z)〉 ≥ t〈Az,η(y, z)〉 + ( – t)〈Az,η(y, z)〉, for any

z, z, y ∈ C and t ∈ [, ].
Then the following hold:
() Tr is single-valued;
() Tr is a firmly nonexpansive-type mapping; that is, for all x, y ∈ E,

〈Trx – Try, JTrx – JTry〉 ≤ 〈Trx – Try, Jx – Jy〉;

() F(Tr) = EP(�, A);
() Tr is quasi-φ-nonexpansive satisfying φ(w, Trx) + φ(Trx, x) ≤ φ(w, x) for all

w ∈ F(Tr) and x ∈ E;
() EP(�, A) is closed and convex.
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Lemma . [] Let E be an uniformly convex Banach space, and let r > . Then there
exists a strictly increasing, continuous, and convex function g : [, r] →R such that g() =
 and

∥
∥∥
∥∥

∞∑

i=

αixi

∥
∥∥
∥∥



≤
∞∑

i=

αi‖xi‖ – αiαjg
(‖xi – xj‖

)
,

for all x, x, . . . , xN , . . . ∈ Br := {x ∈ E : ‖x‖ ≤ r} and α,α, . . . ,αN , . . . ∈ [, ] such that
∑∞

i= αi = .

3 Main results
Theorem . Let E be a strictly convex, and uniformly smooth Banach space such that
E has the Kadec-Klee property. Let C be a nonempty closed and convex subset of E and
let � be an index set. Let A : C → E∗ be an η-hemicontinuous and relaxed η-α-monotone
mapping, let �j be a bifunction from C × C to R satisfying (C)-(C) for every j ∈ �, and
let f be a proper convex and lower semicontinuous function from C × C to R ∪ {+∞}.
Let Ti : C → C be an asymptotically quasi-φ-nonexpansive mapping in the intermedi-
ate sense for every i ≥ . Assume that Ti is closed asymptotically regular on C and F =
⋂∞

i= F(Ti) ∩⋂j∈� EP(�j, A) is nonempty and bounded. Also assume that the conditions
(i)-(v) in Lemma . and the following condition hold:

(vi) for all x, y, z, w ∈ C,

lim sup
t↓

〈
Az,η
(
x, ty + ( – t)w

)〉≤ 〈Az,η(x, w)
〉
.

Let {xn} be a sequence generated in the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,
C,j = C,
C =
⋂

j∈� C,j,
x = �C x,
yn = J–(αn,Jxn +

∑∞
i= αn,iJTn

i xn),
un,j ∈ C such that

�j(un,j, y) + 〈Aun,j,η(y, un,j)〉 + f (y) – f (un,j)
+ 

rn,j
〈y – un,j, Jun,j – Jyn〉 ≥ , ∀y ∈ C,

Cn+,j = {z ∈ Cn : φ(z, un,j) ≤ φ(z, xn) + ξn},
Cn+ =
⋂

j∈� Cn+,j,
xn+ = �Cn+ x,

(.)

where ξn = supi∈N+{, supp∈F(Ti),x∈C(φ(p, Tn
i x) – φ(p, x))}, {αn,i} is a real number sequence

in (, ) for every i ≥ , {rn,j} is a real number sequence in [k,∞), where k is some positive
real number. Assume that

∑∞
i= αn,i =  and lim infn→∞ αn,αn,i >  for every i ≥ . Then the

sequence {xn} converges strongly to �F x, where �F is the generalized projection from E
onto F .

Proof The proof is split into the following six steps.
Step . We first show that F is closed and convex.
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From Theorem . in [], we see that
⋂∞

i= F(Ti) is closed and convex, which combines
with Lemma . shows that the common element set F is closed and convex.

Step . Next, we show that Cn is closed and convex for each n ≥ .
It suffices to show, for any fixed but arbitrary j ∈ �, that Cn,j is closed and convex. This

can be proved by induction on n. It is obvious that C,i = C is closed and convex. Assume
that Ch,j is closed and convex for some h ≥ . We next prove that Ch+,j is closed and convex
for the same h. This completes the proof that Cn is closed and convex. It is clear that Ch+,j

is closed. We only prove the convexity. Indeed, ∀a, a ∈ Ch+,j, we see that a, a ∈ Ch,j,
and

φ(a, uh,j) ≤ φ(a, xh) + ξh,

and

φ(a, uh,j) ≤ φ(a, xh) + ξh.

Notice that the two inequalities above are equivalent to the following inequalities, respec-
tively:

〈a, Jxh – Juh,j〉 ≤ ‖xh‖ – ‖uh,j‖ + ξh,

and

〈a, Jxh – Juh,j〉 ≤ ‖xh‖ – ‖uh,j‖ + ξh.

These imply that


〈
ta + ( – t)a, Jxh – Juh,j

〉≤ ‖xh‖ – ‖uh,j‖ + ξh, ∀t ∈ (, ).

Since Ch,j is convex, we see that ta + ( – t)a ∈ Ch,j. Notice that the above inequality is
equivalent to

φ
(
ta + ( – t)a, uh,j

)≤ φ
(
ta + ( – t)a, xh

)
+ ξh.

It follows that Ch+,j is convex. This in turn implies that Cn is closed and convex for all
n ≥ .

Step . We prove that F ⊂ Cn for each n ≥ .
It suffices to claim that F ⊂ Cn,j for every j ∈ �. In fact, it is obvious that F ⊂ C,j = C.

Suppose that F ⊂ Ch,j for some h ≥  and for every j ∈ �. On the other hand, since Trn,j is
quasi-φ-nonexpansive, according to Lemma .(), we have, for any w ∈ F ⊂ Ch,j,

φ(w, uh,j) = φ(w, Trh,j yh)

≤ φ(w, yh)

= φ

(

w, J–

(

αh,Jxh +
∞∑

i=

αh,iJTh
i xh

))
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= ‖w‖ – 

〈

w,αh,Jxh +
∞∑

i=

αh,iJTh
i xh

〉

+

∥
∥∥
∥∥
αh,Jxh +

∞∑

i=

αh,iJTh
i xh

∥
∥∥
∥∥



≤ ‖w‖ – αh,〈w, Jxh〉 – 
∞∑

i=

αh,i
〈
w, JTh

i xh
〉
+ αh,‖xh‖ +

∞∑

i=

αh,i
∥∥Th

i xh
∥∥

= αh,φ(w, xh) +
∞∑

i=

αh,iφ
(
w, Th

i xh
)

≤ αh,φ(w, xh) +
∞∑

i=

αh,iφ(w, xh) +
∞∑

i=

αh,iξh

= φ(w, xh) +
∞∑

i=

αh,iξh

≤ φ(w, xh) + ξh, (.)

which shows that w ∈ Ch+,j. This implies that F ⊂ Cn,j for all n ≥  and for every j ∈ �.
Therefore we obtain F ⊂ Cn. This in turn shows that the sequence {xn} generated by the
algorithm (.) is well defined.

Step . Next, we prove that the sequence {xn} is bounded.
Observe that xn = �Cn x, we find from Lemma . that 〈xn – z, Jx – Jxn〉 ≥  for each

z ∈ Cn. Since F ⊂ Cn, we know that

〈xn – w, Jx – Jxn〉 ≥ , ∀w ∈ F . (.)

It then follows from Lemma . that

φ(xn, x) = φ(�Cn x, x) ≤ φ(�F x, x) – φ(�F x, xn) ≤ φ(�F x, x).

This shows that the sequence {φ(xn, x)} is bounded. We can know from (.) that the
sequence {xn} is also bounded.

Step . Now we show that xn → x∗, where x∗ ∈ F as n → ∞.
Note that E is an uniformly smooth Banach space, it follows from the uniformly convex-

ity of E∗ that the space E is reflexive. Since {xn} is bounded, we may assume that xn ⇀ x∗.
Since Cn is closed and convex, we see that x∗ ∈ Cn. On the other hand, we see from the
weakly lower semicontinuity of ‖ · ‖ that

φ
(
x∗, x
)

=
∥∥x∗∥∥ – 

〈
x∗, Jx
〉
+ ‖x‖

≤ lim inf
n→∞
(‖xn‖ – 〈xn, Jx〉 + ‖x‖)

= lim inf
n→∞ φ(xn, x)

≤ lim sup
n→∞

φ(xn, x)

≤ φ
(
x∗, x
)
,
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from which it follows that limn→∞ φ(xn, x) = φ(x∗, x). Hence, we obtain

lim
n→∞‖xn‖ =

√
lim

n→∞‖xn‖ =
√

lim
n→∞
{[

φ(xn, x) – φ
(
x∗, x
)]

+
∥∥x∗∥∥ + 

〈
xn – x∗, Jx

〉}

=
√∥
∥x∗∥∥ =

∥
∥x∗∥∥.

In view of the Kadec-Klee property of E, we see that xn → x∗ as n → ∞. Next, we show
that x∗ ∈ F .

(a) First we prove that x∗ ∈⋂∞
i= F(Ti).

Since xn = �Cn x and xn+ = �Cn+ x ∈ Cn+ ⊂ Cn, we find that φ(xn, x) ≤ φ(xn+, x),
which shows that {φ(xn, x)} is nondecreasing. From the boundedness, limn→∞ φ(xn, x)
exists. By xn+ = �Cn+ x ∈ Cn+ ⊂ Cn, we have

φ(xn+, xn) = φ(xn+,�Cn x) ≤ φ(xn+, x) – φ(�Cn x, x) = φ(xn+, x) – φ(xn, x).

It follows that

lim
n→∞φ(xn+, xn) = . (.)

In the light of xn+ = �Cn+ x ∈ Cn+, we arrive at

φ(xn+, un,j) ≤ φ(xn+, xn) + ξn.

This in turn implies from (.) that

lim
n→∞φ(xn+, un,j) = .

From (.), we see that limn→∞(‖xn+‖ – ‖un,j‖) = . This in turn implies that

lim
n→∞‖un,j‖ =

∥
∥x∗∥∥.

It follows that

lim
n→∞‖Jun,j‖ = lim

n→∞‖un,j‖ =
∥
∥Jx∗∥∥. (.)

This implied that {Jun,j} is bounded. Since both E and E∗ are reflexive, we may assume
that Jun,j ⇀ u∗,j ∈ E∗. In view of the reflexivity of E, we see that J(E) = E∗. This implies that
there exists an element uj ∈ E such that Juj = u∗,j. It follows that

φ(xn+, un,j) = ‖xn+‖ – 〈xn+, Jun,j〉 + ‖un,j‖ = ‖xn+‖ – 〈xn+, Jun,j〉 + ‖Jun,j‖.

Taking lim infn→∞ on the both sides of the equality above yields

 ≥ ∥∥x∗∥∥ – 
〈
x∗, u∗,j〉 +

∥
∥u∗,j∥∥ =

∥
∥x∗∥∥ – 

〈
x∗, Juj〉 +

∥
∥Juj∥∥

=
∥
∥x∗∥∥ – 

〈
x∗, Juj〉 +

∥
∥uj∥∥ = φ

(
x∗, uj).
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That is, x∗ = uj, which shows that u∗,j = Jx∗. It follows that Jun,j ⇀ Jx∗ ∈ E∗. In view of
the Kadec-Klee property of E∗, we have from (.) that limn→∞ Jun,j = Jx∗. In view of the
demicontinuity of J– : E∗ → E and the Kadec-Klee property of E, we have un,j → x∗, as
n → ∞. Note that

‖xn – un,j‖ ≤ ∥∥xn – x∗∥∥ +
∥
∥x∗ – un,j

∥
∥.

It follows that

lim
n→∞‖xn – un,j‖ = . (.)

Since J is uniformly norm-to-norm continuous on any bounded set, we have

lim
n→∞‖Jxn – Jun,j‖ = . (.)

On the other hand, we have

φ(w, xn) – φ(w, un,j) = ‖xn‖ – ‖un,j‖ – 〈w, Jxn – Jun,j〉
≤ ‖xn – un,j‖

(‖xn‖ + ‖un,j‖
)

+ ‖w‖‖Jxn – Jun,j‖.

From (.) and (.), we obtain

lim
n→∞
(
φ(w, xn) – φ(w, un,j)

)
= . (.)

Since E is uniformly smooth, we see that E∗ is uniformly convex. We find from Lemma .
that

φ(w, un,j) = φ(w, Trn,j yn)

≤ φ(w, yn)

= φ

(

w, J–

(

αn,Jxn +
∞∑

i=

αn,iJTn
i xn

))

= ‖w‖ – 

〈

w,αn,Jxn +
∞∑

i=

αn,iJTn
i xn

〉

+

∥
∥∥
∥∥
αn,Jxn +

∞∑

i=

αn,iJTn
i xn

∥
∥∥
∥∥



≤ ‖w‖ – αn,〈w, Jxn〉 – 
∞∑

i=

αn,i
〈
w, JTn

i xn
〉
+ αn,‖xn‖ +

∞∑

i=

αn,i
∥∥Tn

i xn
∥∥

– αn,αn,ig
(∥∥Jxn – JTn

i xn
∥∥)

= αn,φ(w, xn) +
∞∑

i=

αn,iφ
(
w, Tn

i xn
)

– αn,αn,ig
(∥∥Jxn – JTn

i xn
∥∥)

≤ αn,φ(w, xn) +
∞∑

i=

αn,iφ(w, xn) +
∞∑

i=

αn,iξn – αn,αn,ig
(∥∥Jxn – JTn

i xn
∥∥)

≤ φ(w, xn) + ξn – αn,αn,ig
(∥∥Jxn – JTn

i xn
∥
∥).
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It follows that

αn,αn,ig
(∥∥Jxn – JTn

i xn
∥∥)≤ φ(w, xn) – φ(w, un,j) + ξn.

By the restriction on the sequences, we find from (.) that

lim
n→∞ g
(∥∥Jxn – JTn

i xn
∥
∥) = .

It follows that

lim
n→∞
∥
∥Jxn – JTn

i xn
∥
∥ = .

Notice that ‖JTn
i xn – Jx∗‖ ≤ ‖JTn

i xn – Jxn‖ + ‖Jxn – Jx∗‖. It follows that

lim
n→∞
∥∥JTn

i xn – Jx∗∥∥ = . (.)

In view of the demicontinuity of J– : E∗ → E, we have Tn
i xn ⇀ x∗. Note that

∣
∣
∥
∥Tn

i xn
∥
∥ –
∥
∥x∗∥∥∣∣ =

∣
∣
∥
∥JTn

i xn
∥
∥ –
∥
∥Jx∗∥∥∣∣≤ ∥∥JTn

i xn – Jx∗∥∥.

It follows from (.) that limn→∞ ‖Tn
i xn‖ = ‖x∗‖. In view of the Kadec-Klee property of E,

we have limn→∞ ‖Tn
i xn – x∗‖ = . On the other hand, we have

∥
∥Tn+

i xn – x∗∥∥≤ ∥∥Tn+
i xn – Tn

i xn
∥
∥ +
∥
∥Tn

i xn – x∗∥∥.

It follows from the uniformly asymptotic regularity of Ti that

lim
n→∞
∥
∥Tn+

i xn – x∗∥∥ = .

That is, TiTn
i xn → x∗. In view of the closedness of Ti, we obtain x∗ = Tix∗ for each i ≥ .

This proves that x∗ ∈⋂∞
i= F(Ti).

(b) Next, we show that x∗ ∈⋂j∈� EP(�j, A).
From (.), we arrived at φ(w, yn) ≤ φ(w, xn) + ξn. From un,j = Trn,j yn and Lemma .(),

one has

φ(un,j, yn) = φ(Trn,j yn, yn)

≤ φ(w, yn) – φ(w, Trn,j yn)

≤ φ(w, xn) + ξn – φ(w, un,j).

Thus, it follows from (.) that

φ(un,j, yn) →  as n → ∞.

From (.), we see that limn→∞(‖un,j‖ – ‖yn‖) = . This in turn implies from (.) that

lim
n→∞‖yn‖ =

∥∥x∗∥∥.
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It follows that

lim
n→∞‖Jyn‖ = lim

n→∞‖yn‖ =
∥∥Jx∗∥∥. (.)

This implied that {Jyn} is bounded. Since E∗ are reflexive, we may assume that Jyn ⇀ v∗ ∈
E∗. In view of J(E) = E∗, we see that there exists an element v ∈ E such that Jv = v∗. It follows
that

φ(un,j, yn) = ‖un,j‖ – 〈un,j, Jyn〉 + ‖yn‖

= ‖un,j‖ – 〈un,j, Jyn〉 + ‖Jyn‖.

Taking lim infn→∞ on the both sides of the equality above yields

 ≥ ∥∥x∗∥∥ – 
〈
x∗, v∗〉 +

∥
∥v∗∥∥

=
∥
∥x∗∥∥ – 

〈
x∗, Jv
〉
+ ‖Jv‖

=
∥
∥x∗∥∥ – 

〈
x∗, Jv
〉
+ ‖v‖

= φ
(
x∗, v
)
.

That is, x∗ = v, which shows that v∗ = Jx∗. It follows that Jyn ⇀ Jx∗ ∈ E∗. In view of the
Kadec-Klee property of E∗, we have from (.) that limn→∞ Jyn = Jx∗. In view of the demi-
continuity of J– : E∗ → E and the Kadec-Klee property of E, we have yn → x∗, as n → ∞.
Note that

‖un,j – yn‖ ≤ ∥∥un,j – x∗∥∥ +
∥
∥x∗ – yn

∥
∥.

It follows that

lim
n→∞‖un,j – yn‖ = .

Since J is uniformly norm-to-norm continuous on any bounded set, we have

lim
n→∞‖Jun,j – Jyn‖ = . (.)

Note that

�j(un,j, y) +
〈
Aun,j,η(y, un,j)

〉
+ f (y) – f (un,j) +


rn,j

〈y – un,j, Jun,j – Jyn〉 ≥ , ∀y ∈ C.

From (C) and (i), it follows that

‖y – un,j‖‖Jun,j – Jyn‖
rn,j

≥ 〈Aun,j,η(un,j, y)
〉
+ f (un,j) – f (y) – �j(un,j, y)

≥ 〈Aun,j,η(un,j, y)
〉
+ f (un,j) – f (y) + �j(y, un,j), ∀y ∈ C. (.)
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Noticing that rn,j ≥ k >  for all n ≥ , it follows from (C), (ii), (.), and (.) that

 ≥ 〈Ax∗,η
(
x∗, y
)〉

+ f
(
x∗) – f (y) + �j

(
y, x∗), ∀y ∈ C.

For all  < tj ≤  and y ∈ C, define ytj = tjy + ( – tj)x∗. Noticing that x∗, y ∈ C, one obtains
ytj ∈ C, which yields

 ≥ 〈Ax∗,η
(
x∗, ytj

)〉
+ f
(
x∗) – f (ytj ) + �j

(
ytj , x∗). (.)

It follows from (C), (C), (i), (ii), the convexity of f , and (.) that

 = �j(ytj , ytj ) +
〈
Ax∗,η(ytj , ytj )

〉
+ f (ytj ) – f (ytj )

≤ tj
[
�j(ytj , y) +

〈
Ax∗,η(y, ytj )

〉
+ f (y) – f (ytj )

]
+ ( – tj)

[
�j
(
ytj , x∗)

+
〈
Ax∗,η
(
x∗, ytj

)〉
+ f
(
x∗) – f (ytj )

]

≤ tj
[
�j(ytj , y) +

〈
Ax∗,η(y, ytj )

〉
+ f (y) – f (ytj )

]
.

That is,

�j(ytj , y) +
〈
Ax∗,η(y, ytj )

〉
+ f (y) – f (ytj ) ≥ .

Letting t ↓ , it follows from (C), (vi), and the lower semicontinuity of f that

�j
(
x∗, y
)

+
〈
Ax∗,η
(
y, x∗)〉 + f (y) – f

(
x∗)≥ , ∀y ∈ C.

This implies that x∗ ∈⋂j∈� EP(�j, A).
Step . Finally, we prove x∗ = �F x.
Letting n → ∞ in (.), we obtain

〈
x∗ – w, Jx – Jx∗〉≥ , ∀w ∈ F .

In view of Lemma ., we have x∗ = �F x. This completes the proof. �

Remark . Theorem . improves and generalizes the main theorem in Chen et al. []
in the following aspects.

() From a quasi-φ-nonexpansive mapping to an infinite family of asymptotically
quasi-φ-nonexpansive mappings in the intermediate sense.

() From a mixed equilibrium problem to a finite family of mixed equilibrium problems.
() From a uniformly smooth and uniformly convex Banach space to a uniformly

smooth and strictly convex Banach space such that the space has the Kadec-Klee
property.

The space in Theorem . can be applicable to LP , P > . Now, we give Example . in
order to support Theorem ..
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Example . Let E = l and C = {x ∈ l | ‖x‖ ≤ }, where l = {σ = (σ,σ, . . . ,σn, . . .) |
∑+∞

n= |σn| < +∞}. ‖σ‖ = (
∑+∞

n= |σn|) 
 , ∀σ = (σ,σ, . . . ,σn, . . .) ∈ l; 〈σ ,η〉 =

∑+∞
n= σnηn,

∀σ = (σ,σ, . . . ,σn, . . .), η = (η,η, . . . ,ηn, . . .) ∈ l. Set x ∈ C and ‖x‖ = . Define the fol-
lowing a countable family of mappings Ti : C → C by

Tix =

{

 x, x = x

n ,
– 

i+ x, x �= x
n and x ∈ C,

for all i ∈ N+ and n ∈ N+.
It is clear that F(Ti) = {} for all i ∈ N+, E is a Hilbert space, φ(x, y) = ‖x – y‖ for all

x, y ∈ E, and

Tn
i x =

{


n x, x = x
n ,

(–)n

(i+)n x, x �= x
n and x ∈ C.

Choose i ∈ N+, for any n ∈ N+, we set xn = x
n+ , then xn ∈ C, xn →  ∈ F(Ti) = {} as

n → +∞, and

lim sup
n→+∞

sup
p∈F(Ti),y∈C

[
φ
(
p, Tn

i y
)

– φ(p, y)
]

= lim sup
n→+∞

sup
y∈C

[
φ
(
, Tn

i y
)

– φ(, y)
]

= lim sup
n→+∞

sup
y∈C

(∥∥Tn
i y
∥
∥ – ‖y‖)

≤ lim sup
n→+∞

max

[(


n – 
)

inf
y= x

n

‖y‖,
(


(i + )n – 

)
inf

y∈C\{ x
n }

‖y‖
]

≤ lim sup
n→+∞

max

[(


n – 
)

· 
n ,
(


(i + )n – 

)
· 
]

= lim sup
n→+∞

(


n – 
)


n = .

This implies that Ti : C → C is an asymptotically quasi-φ-nonexpansive mapping in the
intermediate sense for every i ∈ N+. Next, we claim that Ti is not φ-nonexpansive mapping
for all i ∈ N+. Indeed, let p = x

 , q = x
 ∈ C, then

φ(Tip, Tiq) = ‖Tip – Tiq‖ =
∥
∥∥
∥




p –
(

–


i + 
q
)∥∥∥
∥



=
∥
∥∥
∥




x –
(

–


i + 
· 


x

)∥∥∥
∥



=
∥
∥∥
∥

(



+


i + 

)
x

∥
∥∥
∥



=
(




)

·
(

i + 
i + 

)

>
(




)

=
∥
∥∥
∥

x


–

x



∥
∥∥
∥



= ‖p – q‖ = φ(p, q)

for all i ∈ N+.
For any bounded subset K of C, we have

 ≤ lim sup
n→+∞

sup
y∈K

∥∥Tn+
i y – Tn

i y
∥∥

≤ lim sup
n→+∞

max

(
sup
y= x

n

∥
∥∥∥


n+ y –


n y
∥
∥∥∥, sup

y∈K\{ x
n }

∥
∥∥∥

(–)n+

(i + )n+ y –
(–)n

(i + )n y
∥
∥∥∥

)

= lim sup
n→+∞

max

(


n+ , sup
y∈K\{ x

n }

i + 
(i + )n+ ‖y‖

)
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≤ lim sup
n→+∞

max

(


n+ , sup
y∈C\{ x

n }

i + 
(i + )n+ ‖y‖

)

≤ lim sup
n→+∞

max

(


n+ ,
i + 

(i + )n+ · 
)

≤ lim sup
n→+∞

max

(


n+ ,


(i + )n

)

≤ lim sup
n→+∞

max

(


n+ ,


n–

)
= lim sup

n→+∞


n– = .

This implies that lim supn→+∞ supy∈K ‖Tn+
i y–Tn

i y‖ = , i.e., Ti is an asymptotically regular
on C.

For any sequence {yn} ⊆ C such that limn→+∞ yn = x and limn→+∞ Tiyn = y, we con-
sider the following two cases:

() If the sequence yn = x
n and limn→+∞ yn = x, then we have x =  and

 = lim
n→+∞
∥∥Tiyn – y∥∥ = lim

n→+∞

∥∥∥
∥

yn


– y
∥∥∥
∥ = lim

n→+∞

∥∥∥
∥

x

n+ – y
∥∥∥
∥

≥ lim sup
n→+∞

∣∣
∣∣
∥
∥y∥∥ –

∥∥
∥∥

x

n+

∥∥
∥∥

∣∣
∣∣ = lim sup

n→+∞

∣∣
∣∣
∥
∥y∥∥ –


n+

∣∣
∣∣ =
∥
∥y∥∥≥ ,

this implies that y =  and Tix = – x

i+ =  = y.
() If yn �= x

n , yn ∈ C and limn→+∞ yn = x, then it follows from

 = lim
n→+∞
∥∥Tiyn – y∥∥ = lim

n→+∞

∥∥∥
∥–


i + 

yn – y
∥∥∥
∥

= lim
n→+∞

∥∥∥
∥–


i + 
(
yn – x) –

(
y +

x

i + 

)∥∥∥
∥

≥ lim sup
n→+∞

∣∣
∣∣

∥∥
∥∥y

 +
x

i + 

∥∥
∥∥ –
∥∥
∥∥

yn – x

i + 

∥∥
∥∥

∣∣
∣∣ =
∥∥
∥∥y

 +
x

i + 

∥∥
∥∥≥ 

that y = – x

i+ , thus Tix = – 
i+ x = y.

In summary, we can see that Ti is closed for every i ∈ N+.
Finally, it is obvious that the family {Ti}i∈N+ satisfies all the aspects of the hypothesis of

Theorem ..

For a single mapping and bifunction in Theorem ., we have Corollary ..

Corollary . Let E be a strictly convex, and uniformly smooth Banach space such that
E has the Kadec-Klee property. Let C be a nonempty closed and convex subset of E. Let
A : C → E∗ be an η-hemicontinuous and relaxed η-α-monotone mapping, let � be a bi-
function from C × C to R satisfying (C)-(C), and let f be a proper convex and lower
semicontinuous function from C × C to R ∪ {+∞}. Let T : C → C be an asymptotically
quasi-φ-nonexpansive mapping in the intermediate sense. Assume that T is closed asymp-
totically regular on C and F = F(T) ∩ EP(�, A) is nonempty and bounded. Also assume
that the conditions (i)-(v), Lemma ., and the following condition hold:

(vi) for all x, y, z, w ∈ C, lim supt↓〈Az,η(x, ty + ( – t)w)〉 ≤ 〈Az,η(x, w)〉.
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Let {xn} be a sequence generated in the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,
C = C,
x = �C x,
yn = J–(αnJxn + ( – αn)JTnxn),
un ∈ C such that

�(un, y) + 〈Aun,η(y, un)〉 + f (y) – f (un) + 
rn

〈y – un, Jun – Jyn〉 ≥ , ∀y ∈ C,
Cn+ = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + ξn},
xn+ = �Cn+ x,

where ξn = max{, supp∈F(T),x∈C(φ(p, Tnx) – φ(p, x))}, {αn} is a real number sequences in
(, ), {rn} is a real number sequence in [k,∞), where k is some positive real number. Assume
that lim infn→∞ αn( –αn) > . Then the sequence {xn} converges strongly to �F x, where �F

is the generalized projection from E onto F .

Remark . Corollary . improves and generalizes the main theorem in Chen et al. []
in the following aspects:

() From a quasi-φ-nonexpansive mapping to an asymptotically quasi-φ-nonexpansive
mappings in the intermediate sense.

() From a uniformly smooth and uniformly convex Banach space to a uniformly
smooth and strictly convex Banach space such that the space has the Kadec-Klee
property.

Setting A ≡  in Theorem ., we have Corollary ..

Corollary . Let E be a strictly convex, and uniformly smooth Banach space such that
E has the Kadec-Klee property. Let C be a nonempty closed and convex subset of E and
let � be an index set. Let �j be a bifunction from C × C to R satisfying (C)-(C) for
every j ∈ �, and let f be a proper convex and lower semicontinuous function from C × C
to R ∪ {+∞}. Let Ti : C → C be an asymptotically quasi-φ-nonexpansive mapping in the
intermediate sense for every i ≥ . Assume that Ti is closed asymptotically regular on C
and F =

⋂∞
i= F(Ti) ∩⋂j∈� MEP(�j, f ) is nonempty and bounded. Let {xn} be a sequence

generated in the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,
C,j = C,
C =
⋂

j∈� C,j,
x = �C x,
yn = J–(αn,Jxn +

∑∞
i= αn,iJTn

i xn),
un,j ∈ C such that �j(un,j, y) + f (y) – f (un,j) + 

rn,j
〈y – un,j, Jun,j – Jyn〉 ≥ , ∀y ∈ C,

Cn+,j = {z ∈ Cn : φ(z, un,j) ≤ φ(z, xn) + ξn},
Cn+ =
⋂

j∈� Cn+,j,
xn+ = �Cn+ x,

where ξn = supi∈N+{, supp∈F(Ti),x∈C(φ(p, Tn
i x) – φ(p, x))}, {αn,i} is a real number sequence

in (, ) for every i ≥ , {rn,j} is a real number sequence in [k,∞), where k is some positive
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real number. Assume that
∑∞

i= αn,i =  and lim infn→∞ αn,αn,i >  for every i ≥ . Then the
sequence {xn} converges strongly to �F x, where �F is the generalized projection from E
onto F .

Setting A ≡ , f ≡  in Theorem ., we have Corollary ..

Corollary . Let E be a strictly convex, and uniformly smooth Banach space such that
E has the Kadec-Klee property. Let C be a nonempty closed and convex subset of E and
let � be an index set. Let �j be a bifunction from C × C to R satisfying (C)-(C) for
every j ∈ �. Let Ti : C → C be an asymptotically quasi-φ-nonexpansive mapping in the
intermediate sense for every i ≥ . Assume that Ti is closed asymptotically regular on C and
F =
⋂∞

i= F(Ti) ∩⋂j∈� EP(�j) is nonempty and bounded. Let {xn} be a sequence generated
in the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,
C,j = C,
C =
⋂

j∈� C,j,
x = �C x,
yn = J–(αn,Jxn +

∑∞
i= αn,iJTn

i xn),
un,j ∈ C such that �j(un,j, y) + 

rn,j
〈y – un,j, Jun,j – Jyn〉 ≥ , ∀y ∈ C,

Cn+,j = {z ∈ Cn : φ(z, un,j) ≤ φ(z, xn) + ξn},
Cn+ =
⋂

j∈� Cn+,j,
xn+ = �Cn+ x,

where ξn = supi∈N+{, supp∈F(Ti),x∈C(φ(p, Tn
i x) – φ(p, x))}, {αn,i} is a real number sequence

in (, ) for every i ≥ , {rn,j} is a real number sequence in [k,∞), where k is some positive
real number. Assume that

∑∞
i= αn,i =  and lim infn→∞ αn,αn,i >  for every i ≥ . Then the

sequence {xn} converges strongly to �F x, where �F is the generalized projection from E
onto F .

Remark . Corollary . improves the main theorem in Huang and Ma [] from an equi-
librium problem to a family of equilibrium problems.

Setting � ≡  in Theorem ., we have Corollary ..

Corollary . Let E be a strictly convex, and uniformly smooth Banach space such that
E has the Kadec-Klee property. Let C be a nonempty closed and convex subset of E. Let
A : C → E∗ be an η-hemicontinuous and relaxed η-α-monotone mapping, and let f be a
proper convex and lower semicontinuous function from C × C to R∪{+∞}. Let Ti : C → C
be an asymptotically quasi-φ-nonexpansive mapping in the intermediate sense for every
i ≥ . Assume that Ti is closed asymptotically regular on C and F =

⋂∞
i= F(Ti) ∩ � is

nonempty and bounded. Also assume that the conditions (i)-(v), Lemma ., and the fol-
lowing condition hold:

(vi) for all x, y, z, w ∈ C, lim supt↓〈Az,η(x, ty + ( – t)w)〉 ≤ 〈Az,η(x, w)〉.
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Let {xn} be a sequence generated in the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,
C = C,
x = �C x,
yn = J–(αn,Jxn +

∑∞
i= αn,iJTn

i xn),
un ∈ C such that 〈Aun,η(y, un)〉 + f (y) – f (un) + 

rn
〈y – un, Jun – Jyn〉 ≥ , ∀y ∈ C,

Cn+ = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + ξn},
xn+ = �Cn+ x,

where ξn = supi∈N+{, supp∈F(Ti),x∈C(φ(p, Tn
i x) – φ(p, x))}, {αn,i} is a real number sequence

in (, ) for every i ≥ , {rn} is a real number sequence in [k,∞), where k is some positive
real number. Assume that

∑∞
i= αn,i =  and lim infn→∞ αn,αn,i >  for every i ≥ . Then the

sequence {xn} converges strongly to �F x, where �F is the generalized projection from E
onto F .

Remark . Corollary . improves Corollary  in Chen et al. [] from a quasi-φ-
nonexpansive mapping to an infinite family of asymptotically quasi-φ-nonexpansive map-
pings in the intermediate sense, from a mixed equilibrium problem to a family of mixed
equilibrium problems, and from a uniformly smooth and uniformly convex Banach space
to a uniformly smooth and strictly convex Banach space such that the space has the Kadec-
Klee property.

Setting E to be a Hilbert space in Corollary ., we have Corollary ..

Corollary . Let E be a Hilbert space. Let C be a nonempty closed and convex subset of
E and let � be an index set. Let �j be a bifunction from C × C to R satisfying (C)-(C)
for every j ∈ �. Let Ti : C → C be an asymptotically quasi-nonexpansive mapping in the
intermediate sense for every i ≥ . Assume that Ti is closed asymptotically regular on C and
F =
⋂∞

i= F(Ti) ∩⋂j∈� EP(�j) is nonempty and bounded. Let {xn} be a sequence generated
in the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,
C,j = C,
C =
⋂

j∈� C,j,
x = ProjC x,
yn = αn,xn +

∑∞
i= αn,iTn

i xn,
un,j ∈ C such that �j(un,j, y) + 

rn,j
〈y – un,j, un,j – yn〉 ≥ , ∀y ∈ C,

Cn+,j = {z ∈ Cn : ‖z – un,j‖ ≤ ‖z – xn‖ + ξn},
Cn+ =
⋂

j∈� Cn+,j,
xn+ = ProjCn+ x,

where ξn = supi∈N+{, supp∈F(Ti),x∈C(‖p – Tn
i x‖ –‖p – x‖)}, {αn,i} is a real number sequence

in (, ) for every i ≥ , {rn,j} is a real number sequence in [k,∞), where k is some positive
real number. Assume that

∑∞
i= αn,i =  and lim infn→∞ αn,αn,i >  for every i ≥ . Then

the sequence {xn} converges strongly to ProjF x, where ProjF is the metric projection from E
onto F .
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Proof Note that φ(x, y) = ‖x – y‖, J = I , the identity mapping, and the generalized pro-
jection is reduced to the metric projection. In the framework of Hilbert spaces, the class
of asymptotically quasi-φ-nonexpansive mappings in the intermediate sense is reduced
to the class of asymptotically quasi-nonexpansive mappings in the intermediate sense. By
Corollary ., we draw the desired conclusion immediately. �

Remark . Corollary . improves Theorem . in Zhang and Wu [] from asymptot-
ically quasi-nonexpansive mappings to asymptotically quasi-nonexpansive mappings in
the intermediate sense.

Setting Ti = I in Corollary ., we have Corollary ..

Corollary . Let E be a Hilbert space. Let C be a nonempty closed and convex subset of
E and let � be an index set. Let �j be a bifunction from C × C to R satisfying (C)-(C) for
every j ∈ �. Assume that F =

⋂
j∈� EP(�j) is nonempty. Let {xn} be a sequence generated in

the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,
C,j = C,
C =
⋂

j∈� C,j,
x = ProjC x,
un,j ∈ C such that �j(un,j, y) + 

rn,j
〈y – un,j, un,j – xn〉 ≥ , ∀y ∈ C,

Cn+,j = {z ∈ Cn : ‖z – un,j‖ ≤ ‖z – xn‖},
Cn+ =
⋂

j∈� Cn+,j,
xn+ = ProjCn+ x,

where {rn,j} is a real number sequence in [k,∞), where k is some positive real number. Then
the sequence {xn} converges strongly to ProjF x, where ProjF is the metric projection from E
onto F .

Setting � ≡  in Corollary ., we have Corollary ..

Corollary . Let E be a Hilbert space. Let C be a nonempty closed and convex sub-
set of E. Let Ti : C → C be an asymptotically quasi-nonexpansive mapping in the inter-
mediate sense for every i ≥ . Assume that Ti is closed asymptotically regular on C and
F =
⋂∞

i= F(Ti) is nonempty and bounded. Let {xn} be a sequence generated in the following
manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,
C = C,
x = ProjC x,
yn = αn,xn +

∑∞
i= αn,iTn

i xn,
Cn+ = {z ∈ Cn : ‖z – yn‖ ≤ ‖z – xn‖ + ξn},
xn+ = ProjCn+ x,

where ξn = supi∈N+{, supp∈F(Ti),x∈C(‖p – Tn
i x‖ –‖p – x‖)}, {αn,i} is a real number sequence

in (, ) for every i ≥ . Assume that
∑∞

i= αn,i =  and lim infn→∞ αn,αn,i >  for every i ≥ .
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Then the sequence {xn} converges strongly to ProjF x, where ProjF is the metric projection
from E onto F .

Remark . Corollary . improves Corollary . in Zhang and Wu [] from asymptot-
ically quasi-nonexpansive mappings to asymptotically quasi-nonexpansive mappings in
the intermediate sense.

From Corollary ., we can obtain Corollary . easily.

Corollary . Let E be a Hilbert space. Let C be a nonempty, closed, and convex subset of E.
Let T : C → C be a closed quasi-nonexpansive mapping. Let {xn} be a sequence generated
in the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,
C = C,
x = ProjC x,
yn = αnxn + ( – αn)Txn,
Cn+ = {z ∈ Cn : ‖z – yn‖ ≤ ‖z – xn‖},
xn+ = ProjCn+ x,

where {αn} is a real number sequence in (, ) such that lim infn→∞ αn( – αn) > . Then
the sequence {xn} converges strongly to ProjF x, where ProjF is the metric projection from E
onto F .

Remark . Corollary . is a shrinking version of the corresponding results in Nakajo
and Takahashi []. Note that the mapping in our result is quasi-nonexpansive. The re-
striction of the demiclosed principal is relaxed.
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