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Abstract
In this paper, we investigate the common approximate fixed points of monotone
nonexpansive semigroups of nonlinear mappings {T (t)}t≥0, i.e., a family such that
T (0)x = x, T (s + t)x = T (s) ◦ T (t)x, where the domain is a Banach space. In particular we
prove that under suitable conditions, the common approximate fixed points are the
same as the common approximate fixed points set of two mappings from the family.
Then we give an algorithm of how to construct an approximate fixed point sequence
of the semigroup in the case of a uniformly convex Banach space.
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1 Introduction
Nonexpansive mappings are those maps which have Lipschitz constant equal to . The
fixed point theory for such mappings is rich and varied. It finds many applications in non-
linear functional analysis. The existence of fixed points for nonexpansive mappings in Ba-
nach and metric spaces has been investigated since the early s; see, e.g., Belluce and
Kirk [, ], Browder [], Bruck [], Lim [].

In recent years, a new direction has been very active essentially after the publication
of Ran and Reurings fixed point theorem [] dealing with the extension of the Banach
contraction principle to metric spaces endowed with a partial order. In particular, they
show how this extension is useful when dealing with some special matrix equations. It is
worth mentioning that similar results were discovered by Turinici [, ]. Another similar
approach was carried out by Nieto and Rodríguez-López [] and used such arguments in
solving some differential equations. In [] Jachymski gave a more general unified version
of these extensions by considering graphs instead of a partial order.

The purpose of this paper is to prove the existence of approximate fixed points for semi-
groups of nonlinear monotone mappings acting in a Banach vector space endowed with a
partial order. Note that from a numerical point of view, approximate fixed points are very
useful since exact fixed points may be hard to find. Moreover, we will also give an algo-
rithm of how to build such approximate fixed points. Let us recall that a family {T(t)}t≥ of
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mappings forms a semigroup if T()x = x and T(s + t)x = T(s)T(t). Such a situation is quite
typical in mathematics and applications. For instance, in the theory of dynamical systems,
the vector function space would define the state space and the mapping (t, x) → T(t)x
would represent the evolution function of a dynamical system. In the setting of this pa-
per, the state space is a Banach space. Our approach is new and different from the ideas
found in [–, ]. Indeed when one deals with a contraction, the focus is usually on the
distance being complete. But when dealing with nonexpansive mappings, then geometric
properties of the space are crucial.

For more on metric fixed point theory, the reader may consult the books [, ]. As for
the semigroup theory, we suggest the references [–].

2 Preliminaries
Let (X,‖ ·‖) be a Banach vector space and suppose that � is a partial order on X. Through-
out, we will assume that the partial order � and the liner structure of X enjoys the follow-
ing convexity property:

a � b and c � d �⇒ αa + ( – α)c � αb + ( – α)d

for any α ∈ [, ] and a, b, c, d ∈ X. Moreover, we will assume that order intervals are closed.
Recall that an order interval is any of the subsets

(i) [a,→) = {x ∈ X; a � x},
(ii) (←, a] = {x ∈ X; x � a},

for any a ∈ X. Next we give the definition of monotone nonexpansive mappings.

Definition . Let (X,‖ · ‖,�) be as above. Let C be a nonempty subset of X. A map
T : B → X is said to be

(a) monotone if T(x) � T(y) whenever x � y;
(b) monotone nonexpansive if T is monotone and

∥
∥T(x) – T(y)

∥
∥ ≤ ‖x – y‖

for any x, y ∈ C such that x � y.
A fixed point of T is any element x ∈ C such that T(x) = x. The set of all fixed points of
T is denoted by Fix(T). A sequence {xn} is called an approximate fixed point sequence of
T if limn→∞ ‖T(xn) – xn‖ = . The set of approximate fixed point sequences of T will be
denoted by AFPS(T).

This definition is extended to the case of semigroup of mappings.

Definition . Let (X,‖ · ‖,�) be as above. Let C be a nonempty subset of X. A one-
parameter family F = {T(t); t ≥ } of mappings from C into C is said to be a monotone
nonexpansive semigroup if F satisfies the following conditions:

(i) T()x = x for x ∈ C;
(ii) T(t + s) = T(t) ◦ T(s) for t, s ∈ [,∞);

(iii) for each t ≥ , T(t) is a monotone nonexpansive mapping.
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Define then the set of all common fixed points of F as Fix(F ) =
⋂

t≥ Fix(T(t)). Similarly,
define the set of approximate point sequences of F , denoted by AFPS(F ), as AFPS(F ) =
⋂

t≥ AFPS(T(t)).

Next we give an example of such semigroup.

Example . Let (X,‖ · ‖,�) be as above. Let C be a nonempty closed, bounded convex
subset of X. Let J : C → C be a monotone nonexpansive mapping. Let x ∈ C be such that
x � J(x). Consider the recurrent sequence defined by

{

u(t) = x,
un+(t) = e–tx +

∫ t
 es–tJ(un(s)) ds

(.)

for any t ∈ [, A], where A is a fixed positive number. Then the sequence {un(t)} is Cauchy
for any t ∈ [, A]. Indeed, let us suppose that x, y : [, A] → X are continuous functions.
For each t ∈ [, A], we have

∥
∥
∥
∥

e–ty(t) +
∫ t


es–tx(s) ds

∥
∥
∥
∥

≤ e–t‖y‖∞ + K(t)‖x‖∞, (.)

where ‖u‖∞ = sup{‖u(s)‖; t ∈ [, A]} and K(t) =
∫ t

 es–t ds =  – e–t . Indeed, let t ∈ [, A] be
fixed, and τ = {ti; i = , , . . . , n} be any subdivision of [, t]. Set

Sτ = e–ty(t) +
n–
∑

i=

(ti+ – ti)eti–tx(ti).

The family {Sτ } is norm-convergent to

S = e–ty(t) +
∫ t


es–tx(s) ds,

when |τ | = sup{|ti+ – ti|; i = , , . . . , (n – )} goes to . Since

sup
s∈[,t]

∥
∥x(s)

∥
∥ ≤ sup

s∈[,A]

∥
∥x(s)

∥
∥ = ‖x‖∞

and

‖Sτ‖ ≤ e–t∥∥y(t)
∥
∥ +

n–
∑

i=

(ti+ – ti)eti–t‖x‖∞ ≤ e–t∥∥y(t)
∥
∥ + K(t)‖x‖∞,

where we used

n–
∑

i=

(ti+ – ti)eti–t ≤
∫ t


es–t ds = K(t),

then we have ‖S‖ ≤ e–t‖y(t)‖ + K(t)‖x‖∞. Therefore we have

∥
∥
∥
∥

e–ty(t) +
∫ t


es–tx(s) ds

∥
∥
∥
∥

≤ e–t‖y‖∞ + K(t)‖x‖∞
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for any t ∈ [, A]. Next we discuss the sequence {un(t)}. Since

u(t) = e–tx +
∫ t


es–tJ(x) ds = e–tx +

(

 – e–t)J(x), t ∈ [, A],

we have u(t) � u(t) for any t ∈ [, A]. Assume that un(t) � un+(t) for any t ∈ [, A]. Then
we have J(un(t)) � J(un+(t)) for any t ∈ [, A] because J is monotone. Using the properties
of the partial order �, we get

un+(t) = e–tx +
∫ t


es–tJ

(

un(s)
)

ds � e–tx +
∫ t


es–tJ

(

un+(s)
)

ds = un+(t)

for any t ∈ [, A]. By induction, we conclude that {un(t)} is monotone increasing for any
t ∈ [, A]. Moreover, we have

un+(t) – un+(t) =
∫ t


es–t(J

(

un+(s)
)

– J
(

un(s)
))

ds, t ∈ [, A],

which implies by using the monotone nonexpansive behavior of J

∥
∥un+(t) – un+(t)

∥
∥ ≤

∫ t


es–t∥∥J

(

un+(s)
)

– J
(

un(s)
)∥
∥ds, t ∈ [, A],

or

∥
∥un+(t) – un+(t)

∥
∥ ≤

∫ t


es–t∥∥un+(s) – un(s)

∥
∥ds, t ∈ [, A]

for any n ≥ . From this inequality and by induction, we get

∥
∥un+(t) – un(t)

∥
∥ ≤ (

 – e–A)n
diam(C), t ∈ [, A],

where diam(C) = sup{‖y – z‖; y, z ∈ C} < ∞, since C is bounded. Hence

∥
∥un+h(t) – un(t)

∥
∥ ≤ ( – e–A)n

 – ( – e–A)
diam(C) = eA(

 – e–A)n
diam(C)

for any t ∈ [, A] and n, h ∈N. Clearly this implies that {un(t)} is Cauchy for any t ∈ [, A].
Since order intervals are closed, we conclude that the limit u(t) of {un(t)} satisfies un(t) �
u(t) for any n ≥  and t ∈ [, A]. Using the monotone nonexpansive behavior of J , we get

∥
∥J

(

un(t)
)

– J
(

u(t)
)∥
∥ ≤ ∥

∥un(t) – u(t)
∥
∥ ≤ eA(

 – e–A)n
diam(C)

for any t ∈ [, A] and n, h ∈ N. In particular, we have limn→+∞ J(un(t)) = J(u(t)), uniformly
in [, A], which implies

u(t) = e–tx +
∫ t


es–tJ

(

u(s)
)

ds, t ∈ [, A]. (.)

Moreover, the same proof as above will show that if x � y, then un(t) � Un(t), for any n, t ≥
, where un and Un are the functions obtained by the initial values x and y respectively
by (.). This will imply that u(t) � U(t) for any t ≥ . Define the one-parameter family
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F : [,∞) × C → C by

T(t)x = u(t).

Then F defines a semigroup which is monotone nonexpansive. Indeed, we have ‖u(t) –
U(t)‖ = ‖x – y‖ = ‖x – y‖∞. Assume ‖un(t) – Un(t)‖ ≤ ‖x – y‖, then by using (.) we will
have

∥
∥un+(t) – Un+(t)

∥
∥ ≤ e–t‖x – y‖ +

∫ t


es–t∥∥un(s) – Un(s)

∥
∥ds ≤ ‖x – y‖.

By induction, ‖un(t) – Un(t)‖ ≤ ‖x – y‖ holds for any n ∈N and t ∈ [, A]. Hence

∥
∥T(t)x – T(t)y

∥
∥ =

∥
∥u(t) – U(t)

∥
∥ ≤ ‖x – y‖

for any t ∈ [, A]. Moreover, we have

T(t + s)x = e–(t+s)x +
∫ t+s


e–(t+s–σ )J

(

T(σ )x
)

dσ

= e–(t+s)x +
∫ t


e–(t+s–σ )J

(

T(σ )x
)

dσ +
∫ t+s

t
e–(t+s–σ )J

(

T(σ )x
)

dσ ,

= e–s
(

e–tx +
∫ t


e–(t–σ )J

(

T(σ )x
)

dσ

)

+
∫ s


e–(s–σ )J

(

T(t + σ )x
)

dσ

= e–sT(t)x +
∫ s


e–(s–σ )J

(

T(t + σ )x
)

dσ

= T(s)
(

T(t)x
)

for any t ≥ . Note that if we started by a point x ∈ C such that J(x) � x, then we would
have found that the sequence {un(t)} is monotone decreasing for any t ≥ . In other words,
the conclusion would have been the same. Moreover, if x is a fixed point of J , then we have
un(t) = x for any n ∈ N and t ≥ . Hence T(t)x = x for any t ≥ , i.e., x ∈ ⋂

t≥ Fix(T(t)).
On the other hand, it is easy to show that if x ∈ Fix(F ), then x ∈ Fix(J), which means we
have

Fix(J) =
⋂

t≥

Fix
(

T(t)
)

.

3 Common approximate fixed points of semigroups
Before we state our first result, we need the following definition.

Definition . Let (X,‖ · ‖) be a Banach space and C ⊂ X be nonempty. A one-parameter
family F = {T(t); t ≥ } of mappings from C into X is said to be:

(i) continuous on C if for any x ∈ C, the mapping t → T(t)x is continuous, i.e., for any
t ≥ , we have

lim
t→t

∥
∥T(t)x – T(t)x

∥
∥ = 

for any x ∈ C;
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(ii) strongly continuous on C if for any bounded nonempty subset K ⊂ C, we have

lim
t→t

sup
x∈K

(∥
∥T(t)x – T(t)x

∥
∥
)

= .

The following technical lemmas will be useful throughout.

Lemma . Let (X,‖ · ‖) be a Banach space and C ⊂ X be nonempty. Let J : C → C be a
uniformly continuous mapping. Then we have AFPS(J) ⊂ AFPS(Jm) for any m ≥ .

Proof Without loss of generality we may assume that AFPS(J) is not empty. Let {xn} ∈
AFPS(J), i.e., limn→∞ ‖J(xn) – xn‖ = . Fix m ≥ , then we have

∥
∥Jm(xn) – xn

∥
∥ ≤

m–
∑

k=

∥
∥Jk+(xn) – Jk(xn)

∥
∥

for any n ≥ . Since T is uniformly continuous, then we must have

lim
n→∞

∥
∥Jk+(xn) – Jk(xn)

∥
∥ = 

for any k ≥ . Since m is fixed, we get limn→∞ ‖Jm(xn) – xn‖ = , i.e., {xn} ∈ AFPS(Jm). �

Lemma . Let (X,‖ · ‖) be a Banach space and C ⊂ X be nonempty. Let F = {T(t); t ≥ }
be a one-parameter semigroup of uniformly continuous mappings from C into C. Let α and
β be two positive real numbers. Then we have

AFPS
(

T(α)
) ∩ AFPS

(

T(β)
) ⊂

⋂

t∈G+(α,β)

AFPS
(

T(t)
)

,

where G+(α,β) = {mα + kβ ≥ ; m, k ∈ Z}.

Proof Without loss of generality we may assume that AFPS(T(α)) ∩ AFPS(T(β)) is not
empty. Let {xn} ∈ AFPS(T(α)) ∩ AFPS(T(β)). Let t ∈ G+(α,β). Then we have two cases.
First assume t = mα + kβ , where m, k ≥ . Then

T(t)xn = T(mα + kβ)xn = Tm(α)
(

Tk(β)xn
)

,

which implies

∥
∥T(t)xn – xn

∥
∥ ≤ ∥

∥Tm(α)
(

Tk(β)xn
)

– Tm(α)xn
∥
∥ +

∥
∥Tm(α)xn – xn

∥
∥

for any n ≥ . Using Lemma . and the uniform continuity of Tm(α), we get
limn→∞ ‖T(t)xn – xn‖ = , i.e., {xn} ∈ AFPS(T(t)). Next assume that t = mα + kβ , where
either m or k is negative. Without loss of generality assume t = mα – kβ , where m, k ≥ .
We have

∥
∥T(t)xn – xn

∥
∥ ≤ ∥

∥T(mα – kβ)xn – T(mα)xn
∥
∥ +

∥
∥T(mα)xn – xn

∥
∥.



Bachar and Khamsi Fixed Point Theory and Applications  (2015) 2015:160 Page 7 of 11

Since T(mα) = T(mα – kβ)T(kβ), and T(mα – kβ) is uniformly continuous, Lemma .
implies limn→∞ ‖T(t)xn – xn‖ = , i.e., {xn} ∈ AFPS(T(t)). Hence

{xn} ∈
⋂

t∈G+(α,β)

AFPS
(

T(t)
)

.
�

The following lemma, which can be found in any introductory course on real analysis,
will be crucial to proving the first result on common approximate fixed point of semi-
groups.

Lemma . [] Let G be a nonempty additive subgroup of R. Then G is either dense in
R or there exists a >  such that G = a · Z = {an, n ∈ Z}. Therefore if α and β are two real
numbers such that α

β
is irrational, then the set

G(α,β) = {αn + βm; n, m ∈ Z}

is dense in R. In particular, the set G+(α,β) = G(α,β) ∩ [, +∞) is dense in [, +∞).

Theorem . Let (X,‖ · ‖) be a Banach space and C ⊂ X be nonempty and bounded. Let
F = {T(t); t ≥ } be a one-parameter semigroup of uniformly continuous mappings from
C into C. Assume that F is strongly continuous. Let α and β be two positive real numbers
such that α

β
is irrational. Then we have

AFPS
(

T(α)
) ∩ AFPS

(

T(β)
)

= AFPS(F ).

Proof Since AFPS(F ) ⊂ AFPS(T(α)) ∩ AFPS(T(β)), it is enough to just prove
AFPS(T(α)) ∩ AFPS(T(β)) ⊂ AFPS(F ). Without loss of generality, assume that
AFPS(T(α))∩AFPS(T(β)) is not empty. Let {xn} ∈ AFPS(T(α))∩AFPS(T(β)). Lemma .
implies that

{xn} ∈
⋂

t∈G+(α,β)

AFPS
(

T(t)
)

.

From Lemma ., we know that G+(α,β) = G(α,β) ∩ [, +∞) is dense in [, +∞). Let t ∈
[, +∞). Then there exists tm ∈ G+(α,β), m ≥ , such that limm→∞ tm = t. We have

∥
∥xn – T(t)xn

∥
∥ ≤ ∥

∥xn – T(tm)xn
∥
∥ +

∥
∥T(tm)xn – T(t)xn

∥
∥

≤ ∥
∥xn – T(tm)xn

∥
∥ + sup

x∈C

∥
∥T(t)x – T(t)x

∥
∥.

Let ε > . Since F is strongly continuous, there exists m ≥  such that for any m ≥ m,
we have

sup
x∈C

∥
∥T(tm)x – T(t)x

∥
∥ < ε.

Since {xn} ∈ AFPS(T(m)) from Lemma ., there exists n ≥  such that

∥
∥xn – T(tm )(xn)

∥
∥ < ε
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for any n ≥ n. Hence

∥
∥xn – T(t)xn

∥
∥ ≤ ∥

∥xn – T(tm )(xn)
∥
∥ + sup

x∈C

∥
∥T(tm )x – T(t)x

∥
∥ < ε

for any n ≥ n. Since ε was arbitrarily positive, we conclude that limn→∞ ‖T(t)xn – xn‖ = ,
i.e., {xn} ∈ AFPS(T(t)) for any t ≥ . �

As a corollary to Theorem ., we get the following result.

Corollary . Let (X,‖ · ‖) be a Banach space and C ⊂ X be nonempty and bounded. Let
F = {T(t); t ≥ } be a one-parameter semigroup of uniformly continuous mappings from C
into C. Assume that F is strongly continuous. Then we have

AFPS(F ) = AFPS
(

T()
) ∩ AFPS

(

T(π )
)

= AFPS
(

T()
) ∩ AFPS

(

T(
√

)
)

.

All of the results obtained in this section may be easily stated in metric spaces. In the next
section, we give an algorithm of how to construct an approximate fixed point sequence of
two maps.

4 Common approximate fixed points of two monotone mappings
In this section we discuss a construction of a common approximate fixed point sequence of
two monotone nonexpansive mappings defined on a Banach space (X,‖ · ‖) endowed with
a partial order � as described before. Let C ⊂ X be a nonempty convex subset. Let J , H :
C → C be two mappings. Fix x ∈ C, Das and Debata [] studied the strong convergence
of Ishikawa iterates {xn} defined by

xn+ = αnH
(

βnJ(xn) + ( – βn)xn
)

+ ( – αn)xn, (DD)

where αn,βn ∈ [, ]. Under suitable assumptions, we will show that {xn} is an approximate
fixed point sequence of both J and H . Assume that J and H are monotone nonexpansive.
Assume that there exists x ∈ C such that x � J(x) and x � H(x). We will also assume
that H and J have a common fixed point p ∈ C such that x and p are comparable. Using
the convexity properties of the partial order �, we will easily show that xn and p are com-
parable. Since H and J are monotone nonexpansive, we get ‖H(xn) – p‖ ≤ ‖xn – p‖ and
‖J(xn) – p‖ ≤ ‖xn – p‖ for any n ≥ . Hence

‖xn+ – p‖ =
∥
∥αnH(yn) + ( – αn)xn – p

∥
∥

≤ αn
∥
∥H(yn) – p

∥
∥ + ( – αn)‖xn – p‖

≤ αn‖yn – p‖ + ( – αn)‖xn – p‖
= αn

∥
∥βnJ(xn) + ( – βn)xn – p

∥
∥ + ( – αn)‖xn – p‖

≤ αn
[

βn
∥
∥J(xn) – p

∥
∥ + ( – βn)‖xn – p‖] + ( – αn)‖xn – p‖

≤ αn
[

βn‖xn – p‖ + ( – βn)‖xn – p‖] + ( – αn)‖xn – p‖
≤ ‖xn – p‖,
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where yn = βnJ(xn) + ( – βn)xn for any n ≥ . This proves that {‖xn – p‖} is decreasing,
which implies that limn→∞ ‖xn – p‖ exists. Using the above inequalities, we get

lim
n→∞‖xn – p‖ = lim

n→∞
∥
∥αnH(yn) + ( – αn)xn – p

∥
∥

= lim
n→∞

[

αn
∥
∥H(yn) – p

∥
∥ + ( – αn)‖xn – p‖]

= lim
n→∞

[

αn‖yn – p‖ + ( – αn)‖xn – p‖]

= lim
n→∞

[

αn
∥
∥βnJ(xn) + ( – βn)xn – p

∥
∥ + ( – αn)‖xn – p‖]

= lim
n→∞

[

αn
(

βn
∥
∥J(xn) – p

∥
∥ + ( – βn)‖xn – p‖) + ( – αn)‖xn – p‖].

Before we state the main theorem of this section, let us recall the definition of a uniformly
convex Banach space.

Definition . [] Let (X,‖ · ‖) be a Banach space. X is said to be uniformly convex if and
only if for any ε > , we have δX(ε) > , where

δX(ε) = inf

{

 –


‖x + y‖;‖x‖ ≤ ,‖y‖ ≤  and ‖x – y‖ ≥ ε

}

.

It is well known that if X is uniformly convex, then X is reflexive []. Moreover, we have
[]

∥
∥αx + ( – α)y

∥
∥ ≤  – δX

(

 min{α,  – α}ε)

for any α ∈ (, ), ε >  and x, y ∈ X such that ‖x‖ ≤ , ‖y‖ ≤  and ‖x – y‖ ≥ ε.
The following lemma will be needed to prove the main result of this section.

Lemma . [] Let (X,‖·‖) be a uniformly convex Banach space. Let {xn} and {yn} be in X
such that lim supn→∞ ‖xn‖ ≤ R, lim supn→∞ ‖yn‖ ≤ R, and limn→∞ ‖αnxn + ( – αn)yn‖ = R,
where αn ∈ [a, b], with  < a ≤ b < , and R ≥ . Then we have

lim
n→∞‖xn – yn‖ = .

Next we state the main result of this section.

Theorem . Let C be a nonempty, closed and convex subset of a uniformly convex Ba-
nach space (X,‖ · ‖). Let H , J : C → C be monotone nonexpansive mappings such that H is
uniformly continuous. Assume that there exists x ∈ C such that x � J(x) and x � H(x).
We will also assume that H and J have a common fixed point p ∈ C such that x and p
are comparable. Consider the sequence {xn} defined by x and the recurrent formula (DD).
Assume that αn,βn ∈ [α,β], with  < α ≤ β < , then

lim
n→∞

∥
∥xn – H(xn)

∥
∥ =  and lim

n→∞
∥
∥xn – J(xn)

∥
∥ = ,

i.e., {xn} ∈ AFPS(J) ∩ AFPS(H).
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Proof We have already seen that {‖xn – p‖} is decreasing. Set c = limn→∞ ‖xn – p‖. If c = ,
then all the conclusions are trivial. Therefore we will assume that c > . We have already
seen that

lim
n→∞‖xn – p‖ = lim

n→∞
∥
∥αnH(yn) + ( – αn)xn – p

∥
∥

= lim
n→∞

[

αn
∥
∥H(yn) – p

∥
∥ + ( – αn)‖xn – p‖].

We claim that limn→∞ ‖H(yn)–p‖ = c. Indeed, let U be a nontrivial ultrafilter over N. Then
we have limn,U αn = α∞ ∈ [α,β] and limn,U ‖xn – p‖ = c. Hence

c = α∞ lim
n,U

∥
∥H(yn) – p

∥
∥ + ( – α∞)c.

Since α∞ �= , we get limn,U ‖H(yn) – p‖ = c. Since U was arbitrary, we get limn→∞ ‖H(yn) –
p‖ = c as claimed. Therefore we have

lim
n→∞‖xn – p‖ = lim

n→∞
∥
∥H(yn) – p

∥
∥ = lim

n→∞
∥
∥αnH(yn) + ( – αn)xn – p

∥
∥.

Using Lemma ., we get limn→∞ ‖H(yn) – xn‖ = . Since we already proved

lim
n→∞‖xn – p‖ = lim

n→∞
[

αn‖yn – p‖ + ( – αn)‖xn – p‖],

a similar argument will show that limn→∞ ‖yn – p‖ = limn→∞ ‖xn – p‖. Moreover, we have

lim
n→∞‖xn – p‖ = lim

n→∞
[

αn
(

βn
∥
∥J(xn) – p

∥
∥ + ( – βn)‖xn – p‖) + ( – αn)‖xn – p‖].

If we use again ultrafilters, one will easily prove that limn→∞ ‖J(xn) – p‖ = limn→∞ ‖xn – p‖.
Hence we have

lim
n→∞‖xn – p‖ = lim

n→∞
∥
∥J(xn) – p

∥
∥ = lim

n→∞
∥
∥βnJ(xn) + ( – βn)xn – p

∥
∥.

Using again Lemma ., we get limn→∞ ‖J(xn) – xn‖ = . Since

lim
n→∞‖yn – xn‖ = lim

n→∞βn
∥
∥J(xn) – xn

∥
∥ = ,

and H is uniformly continuous, we get limn→∞ ‖H(xn) – H(yn)‖ = . Combined with
limn→∞ ‖H(yn) – xn‖ = , we get

lim
n→∞

∥
∥H(xn) – xn

∥
∥ = . �

Remark . If we assume that αn = α and βn = β with α,β ∈ (, ), then under the as-
sumptions of Theorem ., we can prove that

xn ≤ xn+ and yn ≤ yn+

for any n ≥ . Since {‖xn – p‖} and {‖yn – p‖} are convergent, then both {xn} and {yn}
are bounded. Therefore, they have a weak-cluster point since X is reflexive. Using the



Bachar and Khamsi Fixed Point Theory and Applications  (2015) 2015:160 Page 11 of 11

convexity properties of the partial order � in X, we will conclude that in fact {xn} and {yn}
are weakly convergent. It is not clear to us that the weak-limit of {xn} is a fixed point of H
and J . This will be the case if we have a demi-closed property for monotone nonexpansive
mappings. Otherwise, we may assume that X satisfies the Opial condition []. In this case
the weak-limit of {xn} will be a fixed point of T and S. As an example of a Banach space
which satisfies all of the above assumptions, one may take X = 	p,  < p < +∞.
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