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Abstract
In this paper, we establish some fixed point theorems with T -contractions and
w-distances in partially ordered metric spaces. The main tool used in our proof is a
generalized altering distance function. Our results can be applied directly to study
multidimensional fixed point which covers the concepts of coupled, tripled,
quadruple fixed point etc. Moreover, a Fredholm integral equation and an initial-value
problem for partial differential equation of parabolic type are also discussed.
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1 Introduction
Let (X, d) be a complete metric space and F be a selfmap of X. We say that F is a φ-con-
traction if

d(Fx, Fy) ≤ φ
(
d(x, y)

)
for each x, y ∈ X, (.)

where φ : [, +∞) → [, +∞) with φ(t) < t for all t > . The following generalization of the
Banach contraction mapping principle was proved by Rakotch []: if φ is monotone and
continuous, then any φ-contraction is a Picard operator. Subsequently, this result was im-
proved by Boyd and Wong [], who showed that one need only assume that φ(t) < t for all
t > , together with the right-upper semicontinuity of φ. Meanwhile, Meir and Keeler []
found that the conclusion of Banach’s Theorem holds more generally from the following
condition of a weakly uniformly strict contraction: Given ε > , there exists δ >  such that

ε ≤ d(x, y) < ε + δ implies d(Fx, Fy) < ε. (.)

In fact, Rakotch’s corollary and Boyd and Wong’s Theorem  easily followed from Meir
and Keeler’s theorem. We note that Lim [] characterized condition (.) in terms of the
function φ in (.). This is obviously desirable since then one can easily see how much
more general is Meir and Keeler’s result [] than Boyd and Wong’s Theorem . Moreover,
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Proinov [] established two general theorems for equivalence between the Meir-Keeler
type contractive conditions (.) and the contractive conditions involving gauge functions
(.). Indeed, Theorem . in Proinov [] was an extension of Theorem  in Lim []. Next,
the condition (.) was extended by Chi et al. [] from the view point of T-contractions.
Let T : X → X be an injective, continuous and sequentially convergent mapping. For every
ε > , there exists δ >  such that

ε ≤ d(Tx, Ty) < ε + δ implies d(TFx, TFy) < ε. (.)

On the other hand, Delbosco [] initiated a study of the following contractive condition
with the so-called altering distance function:

ψ
(
d(Fx, Fy)

) ≤ kψ
(
d(x, y)

)
for each x, y ∈ X and some k ∈ [, ), (.)

where ψ ∈ �̃ and �̃ is defined by

�̃ =
{
ψ : [,∞) → [, +∞),ψ is continuous, nondecreasing and

ψ–({}) = {}}. (.)

In fact, Delbosco [] only considered the particular case when ψ is a power function. Until
, Khan et al. [] formally introduced the definition of the above family �̃ , and proved
that any mapping F satisfying (.) with ψ ∈ �̃ is a Picard operator.

In the recent past, the idea of altering function has been utilized by many authors. We
would like to mention the work of Dutta and Choudhury [], they presented a generaliza-
tion of (.) to subsume the results of Rhoades [] and Khan et al. [].

Theorem . ([]) Let F be a selfmapping defined on a complete metric space (X, d) satis-
fying the following condition:

ψ
(
d(Fx, Fy)

) ≤ ψ
(
d(x, y)

)
– φ

(
d(x, y)

)
for each x, y ∈ X, (.)

where ψ ,φ ∈ �̃ . Then F is a Picard operator.

Furthermore, Jachymski [] showed that Theorem . and Theorem  of Khan et al. []
are equivalent by establishing a geometric lemma giving a list of equivalent conditions for
some subsets of the plane.

Another recent direction of such generalizations, see [–], has been studied by weak-
ening the contractive conditions and, in compensation, by simultaneously enriching the
metric space structure with a partial order. Very recently, Su [] presented the definition
of generalized altering distance function to prove the following new fixed point theorem
of generalized contraction mappings in a complete metric space endowed with a partial
order.

Theorem . ([]) Let X be a partially ordered set and suppose that there exists a metric
d in X such that (X, d) is a complete metric space. Let F : X → X be a continuous and



Sang and Meng Fixed Point Theory and Applications  (2015) 2015:168 Page 3 of 25

nondecreasing mapping such that

ψ
(
d(Fx, Fy)

) ≤ φ
(
d(x, y)

)
, ∀x ≥ y, (.)

where ψ ∈ � , � is defined by

� =
{
ψ : [,∞) → [, +∞),ψ is nondecreasing and ψ–({}) = {}}, (.)

and φ : [, +∞) → [, +∞) is a right-upper semicontinuous function with the condition
ψ(t) > φ(t) for all t > . If there exists x ∈ X such that x ≤ Fx, then F has a fixed point.

The purpose of this paper is to prove some fixed point theorems with respect to w-dis-
tances in partially ordered metric spaces employing altering functions and the notation of
a function involving Meir-Keeler type. Recall that the concept of a w-distance was initi-
ated by Kada et al. [], and was primarily used to extend Ekeland’s variational principle,
Caristi’s fixed point theorem and the non-convex minimization theorems whose details
are available in Takahashi []. Very recently, He [] established a fixed point theorem
with w-distance for (.) in complete metric spaces. Note that Lakzian et al. [] utilized
the concept of a w-distance on a metric space to generalize Theorem .. Furthermore,
Rouzkard et al. [] proved the following fixed point theorem in a complete metric space
equipped with a partial order using w-distances together with altering functions. For other
new results on w-distances, please see [–].

Theorem . ([]) (X, d) is a complete partially ordered metric space equipped with a
w-distance. Let F : X → X be a continuous and nondecreasing mapping such that

ψ
(
p(Fx, Fy)

) ≤ φψ
(
p(x, y)

)
, ∀x ≥ y, (.)

where ψ ∈ � , φ ∈ �, and � and � are defined by

� =
{
ψ : R+ →R+,ψ is nondecreasing, continuous, and

ψ(t) >  for each t > 
}

(.)

and

� =
{
φ : [, +∞) → [, +∞),φ is nondecreasing, right continuous, and

φ(t) < t for all t > 
}

, (.)

respectively. If there exists x ∈ X such that x ≤ Fx, then F has a fixed point.

Finally, we point out that Samet et al. [] and Roldán et al. [] have proved that cou-
pled and multidimensional fixed point results can be obtained as easy consequences of
fixed point results in dimension one in the setup of metric spaces. Therefore, our results
can be applied directly to the coupled fixed points of mixed monotone operators and mul-
tidimensional fixed points theorems [–].
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2 Preliminaries
Before presenting our results, we collect relevant definitions and results which will be
needed in the proofs of our main results.

Definition . ([, ]) Let (X, d) be a metric space. Then a function p : X ×X → [, +∞)
is called a w-distance on X if the following conditions are satisfied:

(a) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X ;
(b) for any x ∈ X , p(x, ·) → [, +∞) is lower semicontinuous (i.e., if x ∈ X and yn → y in

X , then p(x, y) ≤ lim infn→∞ p(x, yn));
(c) for any ε > , there exists δ >  such that p(x, z) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε.

Lemma . ([]) Let p be a w-distance on a metric space (X, d) and {xn} be a sequence in X
such that for each ε > , there exists N(ε) ∈N such that m > n > N(ε) implies p(xn, xm) < ε.
Then {xn} is a Cauchy sequence.

Lemma . ([]) Let (X, d) be a metric space equipped with a w-distance p. Let {xn} and
{yn} be sequences in X, whereas {αn} and {βn} be sequences in [, +∞) converging to zero.
Then the following conclusions hold (for x, y, z ∈ X):

(i) if p(xn, y) ≤ αn and p(xn, z) ≤ βn for n ∈N, then y = z; in particular, if p(x, y) =  and
p(x, z) = , then y = z;

(ii) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for n ∈N, then limn→∞ d(yn, z) = ;
(iii) if p(xn, xm) ≤ αn for n, m ∈N, then {xn} is a Cauchy sequence;
(iv) if p(y, xn) ≤ αn for n ∈ N, then {xn} is a Cauchy sequence.

Definition . ([]) A function φ : [, +∞) → [, +∞) is said to be an L-function if it
satisfies the following conditions:

(a) φ() = ;
(b) φ(t) >  for all t > ;
(c) for every ε > , there exists δ >  such that φ(t) ≤ ε for all t ∈ [ε, ε + δ].

Definition .′ ([, ]) A function φ : [, +∞) → [, +∞) is said to be a Jachymski func-
tion if it satisfies the following conditions:

(a) φ() = ;
(b) for every ε >  there exists δ >  such that for any t ∈ [, +∞),

ε < t < ε + δ implies φ(t) ≤ ε.

Remark . It is easy to see that each L-function is a Jachymski function. In [], the
authors gave a concrete example to illustrate that the converse does not follow even in the
case that φ(t) < t for all t > .

Preliminaries and notation about coincidence points can also be found in [, ]. Let
n be a positive integer. Henceforth, X will denote a nonempty set and Xn will denote the
product space X × X × · · · × X︸ ︷︷ ︸

n

. In the sequel, let F : Xn → X and g : X → X be two map-
pings.

Definition . ([, ]) An ordered metric space (X, d,	) is said to have the sequential
g-monotone property if it verifies:



Sang and Meng Fixed Point Theory and Applications  (2015) 2015:168 Page 5 of 25

(i) if {xm} is a nondecreasing sequence and {xm} → x, then gxm 	 gx for all m;
(ii) if {ym} is a non-increasing sequence and {ym} → y, then gym 
 gy for all m.
If g is the identity mapping, then X is said to have the sequential monotone property.
Henceforth, fix a partition {A, B} of 
n = {, , . . . , n}, that is, A ∪ B = 
n and A ∩ B = ∅

such that A and B are nonempty sets. We will denote

�A,B =
{
γ : 
n → 
n : γ (A) ⊆ A and γ (B) ⊆ B

}

and

�′
A,B =

{
γ : 
n → 
n : γ (A) ⊆ B and γ (B) ⊆ A

}
.

If (X,	) is a partially ordered space, x, y ∈ X and i ∈ 
n, we will use the following notation:

x 	i y ⇐⇒
{

x 	 y, if i ∈ A,
x 
 y, if i ∈ B.

Consider on the product space Xn the following partial order: for X = (x, x, . . . , xn), Y =
(y, y, . . . , yn) ∈ Xn,

X � Y ⇐⇒ xi 	i yi for all i ∈ 
n. (.)

Definition . ([]) Let (X,	) be a partially ordered space. We say F has the mixed
g-monotone property with respect to the partition {A, B} if F is g-monotone nondecreas-
ing in arguments of A and g-monotone non-increasing in arguments of B, i.e., for all
x, x, . . . , xn, y, z ∈ X, and all i ∈ 
n,

gy 	 gz �⇒ F(x, . . . , xi–, y, xi+, . . . , xn) 	i F(x, . . . , xi–, z, xi+, . . . , xn).

If g is the identity mapping, then we say that F has the mixed monotone property.
Henceforth, let γ,γ, . . . ,γn : 
n → 
n be n mapping from 
n into itself and let ϒ be the

n-tuple (γ,γ, . . . ,γn).

Definition . ([]) A point (x, x, . . . , xn) ∈ Xn is called a ϒ-fixed point of the mapping
F if

F(xγi(), xγi(), . . . , xγi(n)) = xi for all i ∈ 
n.

Definition . ([]) Let (X, d) be a metric space. A mapping T : X → X is called sequen-
tially convergent if {Tyn} is convergent implies that {yn} is a convergent sequence for every
sequence {yn}.

Proposition . ([]) If (x, x, . . . , xn) � (y, y, . . . , yn), then

(xγ (), xγ (), . . . , xγ (n)) � (yγ (), yγ (), . . . , yγ (n)), if γ ∈ �A,B,

(xγ (), xγ (), . . . , xγ (n)) � (yγ (), yγ (), . . . , yγ (n)), if γ ∈ �′
A,B.
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Lemma . ([]) Let (X, d) be a metric space and define Dn,�n : Xn × Xn → [, +∞), for
all A = (a, a, . . . , an), B = (b, b, . . . , bn) ∈ Xn, by

Dn(A, B) = max
≤i≤n

d(ai, bi) and �n(A, B) =
n∑

i=

d(ai, bi).

Then Dn and �n are metrics on Xn.

Lemma . ([]) Let (X, d,	) be a partially ordered metric space and let F : Xn → X be
a mapping. Let ϒ = (γ,γ, . . . ,γn) be a n-tuple of mappings from 
n into itself verifying
γi ∈ �A,B if i ∈ A and γi ∈ �′

A,B if i ∈ B. Define Fϒ = Xn → Xn, for all x, x, . . . , xn ∈ X, by

Fϒ (x, x, . . . , xn) =
(
F(xγ(), xγ(), . . . , xγ(n)), F(xγ(), xγ(), . . . , xγ(n)),

. . . , F(xγn(), xγn(), . . . , xγn(n))
)
. (.)

() if F has the mixed monotone property, then Fϒ is monotone nondecreasing with
respect to � on Xn given by (.);

() if F is continuous, then Fϒ is also continuous;
() a point (x, x, . . . , xn) ∈ Xn is a ϒ-fixed point of F if, and only if, (x, x, . . . , xn) is a

fixed point of Fϒ .

Lemma . ([, ]) Let X be a nonempty set and T : X → X be a function. Then there
exists a subset E ⊆ X such that T(E) = T(X) and T : E → X is one-to-one.

3 Main results
Theorem . Let (X, d) be a complete partially ordered metric space equipped with a
w-distance p and T : X → X be an injective, continuous and sequentially convergent map-
ping. Suppose that F : X → X is a nondecreasing and continuous mapping such that

ψ
(
p(TFx, TFy)

)
< ψ

(
p(Tx, Ty)

)
, x �= y (.)

and

ψ
(
p(TFx, TFy)

) ≤ φ
(
ψ

(
p(Tx, Ty)

))
, ∀x ≥ y, (.)

where ψ ∈ � , and φ : [, +∞) → [, +∞) is a Jachymski function. If there exists x ∈ X such
that x ≤ F(x), then F has a fixed point.

Proof Let x ∈ X be an arbitrary point. We construct two iterative sequences {xn} and {yn}
in the following way: yn = Txn, xn = Fxn–, n = , , . . . . Since F is a nondecreasing operator,
we obtain by induction that

x ≤ Fx ≤ Fx ≤ · · · ≤ Fnx ≤ Fn+x ≤ · · · . (.)

By (.) and, as the elements xn+ and xn are comparable, we get

ψ
(
p(yn+, yn)

)
= ψ

(
p(TFxn, TFxn–)

) ≤ φ
(
ψ

(
p(Txn, Txn–)

))
= φ

(
ψ

(
p(yn, yn–)

))
.
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It is easy to show that yn �= yn– for n ∈ N. In fact, if there exists some n ∈ N such that
yN = yN–. Then TxN = TxN–. Notice that T is an injective mapping, xN = xN– if and
only if FxN– = xN–. Thus xN– is a fixed point of F . Therefore, the condition (.) of
Theorem . tells us that

ψ
(
p(yn+, yn)

)
< ψ

(
p(yn, yn–)

)
.

Since ψ is nondecreasing, then the sequence K = {p(yn+, yn)} of real numbers is decreasing
and is bounded below by . Hence, K converges to r ≥ , the greatest lower bound of K .
We assert that r = . Assume on the contrary that r > . Then there exists δ = δ(r) and some
m ∈N such that r < ψ(p(ym+, ym)) < r + δ, we have ψ(p(ym+, ym+)) ≤ φ(ψ(p(ym+, ym))) ≤
r, which contradicts the fact that r is the greatest lower bound of K . Thus,

 ≤ ψ
(

lim
n→∞ p(yn+, yn)

)
≤ lim

n→∞ψ
(
p(yn+, yn)

)
= .

Notice that ψ(t) =  if and only if t = . Therefore, we have r = . Our idea comes from the
proof of Theorem . in Suzuki [].

Now, we will prove that for every ε > , there exists δ >  such that

ε < p(Tx, Ty) < ε + δ implies p(TFx, TFy) ≤ ε, x, y ∈ X. (.)

Fix ε >  and put α = limt→ε+ ψ(t). We consider the following two cases:
(i) α < ψ(ε + β) holds for every β > ;

(ii) there exists δ >  such that α = ψ(ε + δ).
In the first case, it follows from (.) that there exists γ >  such that

ψ
(
p(Tx, Ty)

)
< α + γ implies ψ

(
p(TFx, TFy)

) ≤ φ
(
ψ

(
p(Tx, Ty)

)) ≤ α.

We can choose δ >  satisfying ψ(ε + δ) < α + γ . Fix x, y ∈ X with p(Tx, Ty) < ε + δ.
Then we have ψ(p(Tx, Ty)) ≤ ψ(ε + δ), and hence ψ(p(TFx, TFy)) ≤ α < ψ(ε + β). The
monotonicity property of ψ tells us that p(TFx, TFy) ≤ ε. In the second case, we also fix
x, y ∈ X with p(Tx, Ty) < ε + δ. If p(TFx, TFy) > ε, then we obtain

α ≤ ψ
(
p(TFx, TFy)

)
< ψ

(
p(Tx, Ty)

) ≤ α.

This is a contradiction. Therefore we get p(TFx, TFy) ≤ ε.
In the following, we will show that {yn} is a Cauchy sequence. Take ε >  and choose

δ̃ = δ̃(ε) with δ̃ ≤ ε. Since r = , there exists some positive integer m̃ such that

p(yn, yn–) < δ̃ for all n > m̃. (.)

Now, let us fix n > m̃. To conclude that {yn} is a Cauchy sequence, it suffices to show that

p(yn+k , yn) ≤ ε for k = , , . . . . (.)

We prove (.) by induction. Since δ̃ ≤ ε, the inequality (.) for the case k =  follows from
(.). Suppose that (.) holds for some fixed k ∈N. Then by (.) and the assumption we
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have

p(yn+k , yn–) ≤ p(yn+k , yn) + p(yn, yn–) < δ̃ + ε.

Thus, by (.), we obtain p(yn+k+, yn) ≤ ε. Hence, we deduce that {yn} is a Cauchy sequence
in (X, d). Since (X, d) is complete, there exists w ∈ X such that d(yn, w) →  (n → ∞). Since
T is sequentially convergent, {xn} converges to some point in X say z. By the continuity of
T , we have Tz = w. Hence, d(yn, Tz) →  (n → ∞).

Next, we show that z is a fixed point of F . For m sufficiently large, it follows from the
lower semicontinuity of p(ym, ·) that

p(ym, Tz) ≤ lim inf
n→∞ p(ym, yn) = αm (say),

p(ym, TFz) ≤ lim inf
n→∞ p(ym, yn+) = βm (say).

Note limm→∞ αm = βm = . Therefore, we have Tz = TFz. Since T is injective, we get
Fz = z. �

Remark . As shown in [], the continuity assumption of F in Theorem . can be
replaced by the following alternative condition imposed on the ambient space X:

if a nondecreasing sequence {xn}∞n= ⊂ X converges to x, then there exists a
subsequence {xn(k)} of {xn} such that xn(k) ≤ x for all k ∈N.

Remark . In Theorem ., the monotonicity of F is not essential for the existence
of a fixed point. In fact, we can replace the nondecreasing property of F with the non-
increasing property of F . In this case, the condition that x ≤ F(x) should replaced by
x ≥ F(x).

Remark . From the process of the proof of Theorem ., the monotonicity of ψ in (.)
can be replaced by the continuity of its. In fact, Sastry and Babu [] have addressed a
similar problem (see Theorem . of []).

Theorem . Let (X, d) be a complete partially ordered metric space equipped with a
w-distance p and T : X → X be an injective, continuous, and sequentially convergent map-
ping. Suppose that F : X → X is a nondecreasing and continuous mapping such that

ψ
(
p(TFx, TFy)

)
< ψ

(
MT (x, y)

)
, x �= y (.)

and

ψ
(
p(TFx, TFy)

) ≤ φ
(
ψ

(
MT (x, y)

))
, ∀x ≥ y, (.)

where

MT (x, y) =
{

p(Tx, Ty), p(Tx, TFx), p(Ty, TFy),
p(Tx, TFy) + p(Ty, TFx)



}
,

ψ ∈ � , and φ : [, +∞) → [, +∞) is a Jachymski function. If there exists x ∈ X such that
x ≤ F(x), then F has a fixed point.
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Proof Similar to proof of Theorem ., we only need to show that {yn} is a Cauchy se-
quence. Denote rn = p(yn+, yn) for all n ∈N. If rn– ≤ rn for some n ∈N, then we have

MT (xn, xn–)

= max

{
p(Txn, Txn–), p(Txn, TFxn), p(Txn–, TFxn–),

p(Txn, TFxn–) + p(Txn–, TFxn)


}

= max

{
p(yn, yn–), p(yn, yn+), p(yn–, yn),

p(yn, yn) + p(yn–, yn+)


}

≤ rn,

where we have used that

p(yn–, yn+) + p(yn, yn)


≤ max
{

p(yn–, yn), p(yn, yn+)
}

.

On the other hand,

MT (xn, xn–) ≥ rn.

Hence

MT (xn, xn–) = rn.

It follows from (.) that

ψ(rn) = ψ
(
p(yn+, yn)

)
= ψ

(
p(TFxn, TFxn–)

) ≤ φ
(
ψ

(
MT (xn, xn–)

))
< ψ(rn),

a contradiction. Therefore rn– > rn for all n ∈ N. Thus {rn} is a monotone decreasing se-
quence of positive real numbers and there exists r ≥  such that limn→∞ rn = r. Similarly
to Theorem ., we obtain r = . By (.), we see that, for every ε > , there exists δ > 
such that

MT (x, y) ≤ ε + δ implies p(TFx, TFy) ≤ ε.

Since r = , there exist δ ≥ δ >  and N ∈N such that rn < δ/ for n ≥ N .
Now, we show that {yn} is a Cauchy sequence. If otherwise, there exist ε̃ >  and δ ≥

δ ≥ δ for which we can find two sequences of positive integers {n(k)} and {m(k)} such
that n(k) > m(k) ≥ N + , p(ym(k), yn(k)) ≥ ε̃ + δ/, and p(ym(k), yn(k)–) < ε̃ + δ/. Thus

ε̃ +δ/ ≤ p(ym(k), yn(k)) ≤ p(ym(k), yn(k)–) + p(yn(k)–, yn(k)) < ε̃ +δ/ +δ/ < ε̃ +δ. (.)

Again,

p(ym(k), yn(k)+) ≤ p(ym(k), yn(k)) + p(yn(k), yn(k)+) < ε̃ + δ/ + δ/ + δ/ ≤ ε̃ + δ. (.)
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Similarly,

p(yn(k), ym(k)+) < ε̃ + δ. (.)

By (.)-(.), we have

MT (xn(k), xm(k)) < ε̃ + δ.

Hence

p(yn(k)+, ym(k)+) ≤ ε̃.

On the other hand, it follows from (.)-(.) that

p(yn(k)+, ym(k)+)

≥ p(ym(k), yn(k)) – p(ym(k), ym(k)+) – p(yn(k)+, yn(k))

> ε̃ + δ/ – δ/ – δ/ ≥ ε̃.

This is a contradiction. Therefore {yn} is a Cauchy sequence. �

It is therefore our interest now to provide additional conditions to ensure that the fixed
point in Theorems . and . is in fact unique. Such a condition has been used in many
results [, ] and says:

For x, y ∈ X, there exists z ∈ X which is comparable to x and y. (.)

Theorem . In addition to the hypotheses of Theorems . and ., suppose that condition
(.) holds. Then F has a unique fixed point.

The proof is trivial, here we omit the details. The readers are referred to the proof of
Theorem . in [].

Consider the following conditions:

(i) (X, d) is complete and p is a w-distance on X ;
(ii) the mapping F : Xn → X has the mixed monotone property;
(ii)′ let F : Xn → X and g : X → X be two mappings such that F has the mixed g-monotone

property;
(iii) F is continuous or (X, d,	) has the sequential monotone property;
(iii)′ F is continuous or (X, d,	) has the sequential g-monotone property;
(iv) there exist x

, x
, . . . , xn

 ∈ X verifying

xi
 	i F

(
xγi()

 , xγi()
 , . . . , xγi(n)


)

for all i ∈ 
n;

(iv)′ there exist x
, x

, . . . , xn
 ∈ X verifying

gxi
 	i F

(
xγi()

 , xγi()
 , . . . , xγi(n)


)

for all i ∈ 
n;

(v) let T : X → X be an injective, continuous and sequentially convergent mapping.
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Corollary . Under hypotheses (i)-(v). Assume that the following contraction condition is
satisfied:

ψ

(∑n
i= p(TF(xγi(), xγi(), . . . , xγi(n)), TF(yγi(), yγi(), . . . , yγi(n)))

n

)

≤ φ

(∑n
i= p(Txi, Tyi)

n

)
(.)

for which xi 	i yi for all i ∈ 
i, where ψ ∈ � , and φ : [, +∞) → [, +∞) is a Jachymski
function with the condition: φ(t) < ψ(t) for all t > . Moreover, if for all A, B ∈ Xn there
exists U ∈ Xn such that A � U and B � U . Then F has a unique ϒ-fixed point.

Proof Consider the functional �n : Xn × Xn → [, +∞) defined by

�n
(
(x, x, . . . , xn), (y, y, . . . , yn)

)
=


n

n∑

i=

d(Txi, Tyi)

and

�̃n
(
(x, x, . . . , xn), (y, y, . . . , yn)

)
=


n

n∑

i=

p(Txi, Tyi)

for all (x, x, . . . , xn), (y, y, . . . , yn) ∈ Xn. Combining Lemmas . and ., we see that �n is
a metric on Xn and �̃n is a w-distance on Xn. Moreover, if (X, d) is complete, then (Xn,�n)
is a complete metric space, too. Now, consider the operator Fϒ : Xn → Xn defined by (.).
Clearly, for (x, x, . . . , xn), (y, y, . . . , yn) ∈ Xn, in view of Proposition ., we have

�̃n
(
Fϒ (x, x, . . . , xn), Fϒ (y, y, . . . , yn)

)

=
∑n

i= p(TF(xγi(), xγi(), . . . , xγi(n)), TF(yγi(), yγi(), . . . , yγi(n)))
n

.

Thus, (.) implies

ψ
(�̃n

(
Fϒ (x, x, . . . , xn), Fϒ (y, y, . . . , yn)

)) ≤ φ
(�̃n

(
(x, x, . . . , xn), (y, y, . . . , yn)

))

with (x, x, . . . , xn) � (y, y, . . . , yn).
Since F has the mixed monotone property, then Fϒ is a nondecreasing mapping with

respect to �. From the condition (iv), we have

(
x

, x
, . . . , xn


) � Fϒ

(
x

, x
, . . . , xn


)
.

Now, if F is continuous, then Fϒ is continuous. Applying Theorem ., we see that Fϒ

has a fixed point, which implies from Lemma . that F has a ϒ-fixed point. In addition,
we obtain the uniqueness of the fixed point of Fϒ from Theorem ., which implies the
uniqueness of fixed point of F . �

Corollary . Under hypotheses (i), (ii)′-(iv)′, (v). Assume that the following contraction
condition is satisfied:

ψ
(
p
(
TF(x, x, . . . , xn), TF(y, y, . . . , yn)

)) ≤ φ
(

max
≤i≤n

p(Tgxi, Tgyi)
)

(.)
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for which gxi 	i gyi for all i ∈ 
i, where ψ ∈ � , and φ : [, +∞) → [, +∞) is a Jachymski
function with the condition: φ(t) < ψ(t) for all t > . In addition, F(Xn) ⊆ g(X), g(X) is
complete and g is continuous. Then F and g have at least one ϒ-coincidence point.

Proof By Lemma ., there exists E ⊆ X such that g(E) = g(X) and g : E → X is one-
to-one. Define a map G : gn(E) → g(E) by G(gx, gx, . . . , gxn) = F(x, x, . . . , xn) and
G(gy, gy, . . . , gyn) = F(y, y, . . . , yn). Since g is one-to-one on g(E), G is well defined. Con-
sider the product space Y = Xn provided with the metric Dn (as in Lemma .) and the
partial order � on Y given by (.). Then (Y , Dn,�) is a complete ordered metric space.

Since G has the mixed monotone property, it follows from Lemma .() that Gϒ :
Y → Y is nondecreasing with respect to �. The continuity of G tells us that Gϒ is
also continuous. If x = (gx

, gx
, . . . , gxn

) ∈ Y , then condition (iv)′ is equivalent to x �
Gϒx. Define D̃n(A, B) = max≤i≤n p(ai, bi). Then D̃n is a w-distance on Xn. For given
X = (gx, gx, . . . , gxn), andY = (gy, gy, . . . , gyn) ∈ Y such thatX �Y, we can derive that the
points (xγi(), xγi(), . . . , xγi(n)) and (yγi(), yγi(), . . . , yγi(n)) are comparable by � from Proposi-
tion ., and

D̃n(TGϒX, TGϒY) = max
≤i≤n

p
(
TF(xγi(), xγi(), . . . , xγi(n)), TF(yγi(), yγi(), . . . , yγi(n))

)
.

Thus

ψ
(
D̃n(TGϒX, TGϒY)

) ≤ φ
(
D̃n(TX, TY)

)

for all gxi, gyj ∈ g(E) (i, j = , , . . . , n). Since g(E) = g(X) is complete, it follows from Theo-
rem . that F and g have at least one ϒ-coincidence point. �

Remark . Compared with Theorem  in [], the condition that O-compatibility be-
tween F and g is removed and replaced by the completeness of g(X). Moreover, we adopt
generalized altering functions and a Jachymski function.

4 Some examples
Firstly, we show how to take appropriate operator T by Examples . and .. Our partial
idea comes from [, ].

Example . Let X = {(, ), (, ), (, ), (, ,)} with the metric d((x, x), (y, y)) =
|x – y| + |x – y|. Define F(x, y) : X → X by

F(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(, ), if (x, y) = (, ),
(, ), if (x, y) = (, ),
(, ), if (x, y) = (, ),
(, ), if (x, y) = (, ,)

and

p
(
(x, x), (y, y)

)
= max

{
d
(
F(x, x), (y, y)

)
, d

(
F(x, x), F(y, y)

)}
.
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On the set X, we consider the following relation:

for (x, x), (y, y) ∈ X, (x, x) 	 (y, y)

⇐⇒ (x, x) = (y, y) or
(
(x, x), (y, y) ∈ {

(, ), (, ), (, )
}

and

(x, x) ≤ (y, y),

where (x, x) ≤ (y, y) ⇐⇒ x ≤ y, x ≤ y, ‘≤’ is the usual order).
It is clear that (X,	) is a complete partially ordered metric space and p is a w-distance

on (X, d). Obviously, F is a nondecreasing map on the partial order 	. We claim that the
condition (.) is not true for every ψ ∈ � , φ ∈ �. Indeed, for (x, x) = (y, y) = (, ), we
have

ψ(,) = ψ
(
p
(
F(, ), F(, )

)) ≤ φψ
(
p
(
(, ), (, )

))

< ψ
(
p
(
(, ), (, )

))
= ψ(,),

which is a contradiction.
If we define the mapping T : X → X as follows: T(, ) = (, ), T(, ,) = (, ),

T(, ) = (, ,), T(, ) = (, ), then T : X → X be an injective, continuous and sequen-
tially convergent mapping.

Now, we show that F and T satisfy the condition (.). In fact, choose ψ(x) = x, φ(x) =
ln( + x). We have the following cases:

Case . (x, x) = (y, y) = (, ), we have

 = p
(
TF(, ), TF(, )

) ≤ φ
(
p
(
T(, ), T(, )

))
= .

Case . (x, x) = (y, y) = (, ), we have

 = p
(
TF(, ), TF(, )

) ≤ φ
(
p
(
T(, ), T(, )

))
= ln( + ,).

Case . (x, x) = (y, y) = (, ), we have

 = p
(
TF(, ), TF(, )

) ≤ φ
(
p
(
T(, ), T(, )

))
= φ(,) = ln( + ,).

Case . (x, x) = (y, y) = (, ,), we have

 = p
(
TF(, ,), TF(, ,)

) ≤ φ
(
p
(
T(, ,), T(, ,)

))
= φ() = ln( + ).

Case . (x, x) = (, ), (y, y) = (, ), we have

 = p
(
TF(, ), TF(, )

) ≤ φ
(
p
(
T(, ), T(, )

))
= φ(,) = ln( + ,).

Case . (x, x) = (, ), (y, y) = (, ), we have

 = p
(
TF(, ), TF(, )

) ≤ φ
(
p
(
T(, ), T(, )

))
= φ(,) = ln( + ,).
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Consequently, for all (x, x), (y, y) ∈ X with (x, x) 
 (y, y), we obtain

p
(
TF(x, x), TF(y, y)

) ≤ φ
(
p
(
T(x, x), T(y, y)

))
.

Example . Let X = [, +∞), p = d(x, y) = |x – y| and Fx = 
√

√
x , x ∈ X. Then F satisfies

condition (.) but does not satisfy (.).
In fact, set


√

√
(√y +

√
x)√xy

> , x, y ∈ X. (.)

Assume that there exist ψ ∈ � and a right-upper semicontinuous function φ such that
(.) holds. This means that

ψ
(
d(Fx, Fy)

)
= ψ

(

√

|y – x|√
(√y +

√
x)√xy

)
≤ φ

(|x – y|) < ψ
(|x – y|).

Since ψ is monotone nondecreasing, we have 
√

√
(√y+

√
x)√xy ≤ , which contradicts (.).

Now, we prove that (.) holds. Indeed, consider the map T : [, +∞) → [, +∞) defined
by Tx = ln x + . For every ε > , if we choose δ = ε/ and ε < d(Tx, Ty) = | ln x – ln y| < ε +δ =
ε/. Then

d(TFx, TFy) =
∣∣∣
∣ln


√

√
x

– ln

√

√
y

∣∣∣
∣ =



| ln x – ln y| <

ε


< ε.

Secondly, Example . illustrates that the partial order on the underlying metric space
how to play necessary role in Theorem ..

Example . Let X = [, ] with Euclidean distance d(x, y) = |x – y| for all x, y ∈ X and
p(x, y) = d(x, y) be a w-distance on (X, d). We consider the order ≺ in X given by

x = y or
[

x, y ∈
{

, ,



,



, . . .
}

with x ≤ y
]

,

where ≤ is usual order.
Consider the operator F : X → X defined by

F(x) =

⎧
⎪⎨

⎪⎩

, x = ,
√
 x, x = 

n , n = , , . . . ,



√

 , otherwise.

Then F satisfies condition (.) but does not satisfy condition (.).
Indeed, for every ε > , assume that there exists δ >  such that ε ≤ p(T, T 


√

 ) < ε + δ

implies that p(TF, TF 

√

 ) = p(T, T 

√

 ) < ε, a contradiction. Hence F does not satisfy
(.).

Furthermore, F does not also satisfy condition (.). In fact, take x = , y = 
 , we have

ψ

(
√


∣∣
∣∣ –




∣∣
∣∣

)
≤ φ

(
ψ

(

∣∣
∣∣ –




∣∣
∣∣

))
< ψ

(



)
,

a contradiction.
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On the other hand, we choose Tx = x, x ∈ X, ψ(x) = x
 , φ(x) = kx, k ∈ (, ). It follows

that

ψ
(
p(TFx, TFy)

)
=




∣
∣x – y∣∣ ≤ k


∣
∣x – y∣∣

= φ
(
ψ

(
p(Tx, Ty)

))
, x, y ∈ X and x ≥ y.

Theorem . gives us the existence of a fixed point of F .

Next, superiority of L-function is embodied in Example ..

Example . Let X = { – 
n , n = , , . . .} ∪ {, } ∪ {n, n = , , . . .}, where (X, d,≤) is a

complete partially ordered metric space with a metric d and usual order ≤. We define
p : X × X → [, +∞) by

p(x, y) =

⎧
⎪⎨

⎪⎩

max{x, y}, if x, y ∈ { – 
n , n = , , . . .} ∪ {, }, x �= y,

x + y, if at least one of x or y /∈ { – 
n , n = , , . . .} ∪ {, }, x �= y,

, if x = y,

and set

F(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

, x = ,
 – 

n , x =  – 
n , n = , , . . . ,


 , x = ,
 – 

n , x =  – 
n+ , n = , , . . . ,

, x = n, n = , , . . . .

It is easy to see that conditions (.) and (.) are not satisfied. In fact, assume that there
exist ϕ,ψ ∈ �̃ such that

ϕp(Fx, Fy) ≤ ϕp(x, y) – ψp(x, y).

Take x =  – 
n , y = . We have

ϕ

(
 –


n

)
≤ ϕ() – ψ(), n = , , . . . .

Thus ψ() = , which contradicts the definition of �̃ .
Furthermore, if there exist φ ∈ � and ψ ∈ � such that

φp(Fx, Fy) ≤ ψφ
(
p(x, y)

)
.

Again take x =  – 
n , y = . We obtain

φ

(
 –


n

)
≤ ψφ().

Thus  < φ() ≤ ψφ(), which contradicts the fact that ψ(t) < t for all t > .
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Now, to verify (.), choose ψ(x) = x and

φ(x) =

{
x, x ∈ [, ] ∩ X,

 x + 

 , x ∈ [, +∞) ∩ X.

Without loss of generality, we assume that x > y and discuss the following cases:
Case . Let x, y ∈ { – 

n , n = , , . . .} ({ – 
n+ , n = , , . . .}). We take x =  – 

(n+) ( –


(n+)+ ), y =  – 
n ( – 

n+ ), n = , , . . . . Then

ψp
(

F
(

 –


(n + )

)
, F

(
 –


n

))

=  –


n + 

≤
(

 –


(n + )

)

= φψp
(

 –


(n + )
,  –


n

)
, n = , , . . .

or

p
(

F
(

 –


(n + ) + 

)
, F

(
 –


n + 

))

=  –


n + 

≤
(

 –


(n + ) + 

)

= φp
(

 –


(n + ) + 
,  –


n + 

)
, n = , , . . . .

Case . Let x =  and y ∈ { – 
n , n = , , . . .} ({ – 

n+ , n = , , . . .}). It follows that

ψp
(

F, F
(

 –


n

))
=  –


n

<  = φψp
(

,  –


n

)

or

p
(

F, F
(

 –


n + 

))
=  –


n

<  = φp
(

,  –


n + 

)
.

Case . Let y = . It follows that

p
(

F
(

 –


n

)
, F

)
=  –


n

<
(

 –


n

)

= φp
(

 –


n
, 

)
or

p(F, F) =



<  = φp(, ), or

p
(

F
(

 –


n + 

)
, F

)
=  –


n

<
(

 –


n + 

)

= p
(

 –


n + 
, 

)
.
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Case . Let x ∈ { – 
n+ , n = , , . . .} ({ – 

n , n = , , . . .}) and y ∈ { – 
n , n = , , . . .}

({ – 
n+ , n = , , . . .}). It follows that

p
(

F
(

 –


n + 

)
, F

(
 –


n

))

=  –

n

<
(

 –


n + 

)

= φp
(

 –


n + 
,  –


n

)

or

p
(

F
(

 –


(n + )

)
, F

(
 –


n + 

))

=  –


n + 
<

(
 –


(n + )

)

= φp
(

 –


(n + )
,  –


n + 

)
.

Case . Let x ∈ {, , , . . .}. We choose x = n, n = , , . . . . It follows that

p(Fx, F) =  <
n


+



= φ(n) = φ
(
p(x, )

)
,

p
(

Fx, F
(

 –


n

))

=  –

n

<



(
 + n –


n

)
+




= φ

(
 + n –


n

)
= φ

(
p
(

x,  –


n

))
,

p(Fx, F) =



<



( + n) +



= φ( + n) = φ
(
p(x, )

)
,

p
(

Fx, F
(

 –


n + 

))
=  –


n

<



(
 + n –


n + 

)
+




= φ

(
p
(

x,  –


n + 

))
,

 = p
(
Fx, F(n – )

)
<




(n – ) +



= φ
(
n + (n – )

)
, n = , , . . . .

Consequently,

p(Fx, Fy) ≤ φ
(
p(x, y)

)
, x ∈ {, , , . . .}, x ≥ y.

Considering all the above cases, F has a unique fixed point by an application of Theo-
rem ..

In Example ., ψ(x) = x does not meet the requirement and hence we take a different
function to alter the distances.

Example . Let X = [, ] ∪ {, , . . .}, where (X, d,≤) is a complete partially ordered
metric space with a metric d and the usual order ≤. We define p : X × X → [, +∞) by
p(x, y) = max{x, y}. Set

F(x) =

{
x
 , x ∈ [, ],
x, x ∈ {, , , . . .}.

We note that (.) fails to hold when ψ(t) = t. In fact, for x ∈ {, , , . . .}, we see that

p(Fx, F) = Fx ≤ φp(x, ) = φ(x) ≤ x
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does not hold. Choose

ψ(x) =

{
x, x ∈ [, ],

x , x > 

and

φ(x) =



x, x ∈ X.

Without loss of generality, we put x > y, and consider the following cases:
Case . x ∈ [, ]. Then

ψ
(
p(Fx, Fy)

)
= Fx =

x


<
x


= φψ
(
p(x, y)

)
.

Case . x ∈ {, , , . . .}. It follows that

ψp(Fx, Fy) = ψFx =

x <


x

= φψ
(
p(x, y)

)
.

That is (.) holds. Thus, Theorem . implies that F has a unique fixed point  ∈ X.

In the following, we apply the results of Section  to study the existence and uniqueness
of positive solution for a nonlinear integral equation.

In order to compare our results to the ones in [, ], we shall consider the same inte-
gral equation, that is,

x(t) =
∫ b

a

(
K(t, s) + K(t, s)

)(
f
(
s, x(s)

)
+ g

(
s, x(s)

))
ds + h(t), t ∈ I = [a, b]. (.)

Let � denote the set of all functions ψ : [, +∞) → [, +∞) satisfying
(i) ψ is nondecreasing;

(ii) there exists a Jachymski function φ : [, +∞) → [, +∞) with φ(r) < r for all r > 
such that ψ(r) = φ(r/).

We will analyze (.) under the following assumptions:
(i) K, K ∈ C(I × I,R), K(t, s) ≥ , and K(t, s) ≤ ;

(ii) h(t) ∈ C(I,R);
(iii) there exist positive numbers μ, ν such that for all x, y ∈R, with x ≥ y, the following

Lipschitzian type conditions hold:

 ≤ f (t, x) – f (t, y) ≤ μψ(x – y)

and

–νψ(x – y) ≤ g(t, x) – g(t, y) ≤ ;

(iv) there exist p >  and q >  with /p + /q =  such that

(μ + ν) sup
t∈I

(∫ b

a

(
K(t, s) – K(t, s)

)p ds
)/p

(b – a)/q ≤ ;
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(v) a pair (α,β) ∈ X with X = C(I,R) is called a coupled lower-upper solution of (.)
if, for all t ∈ I ,

α(t) ≤
∫ b

a
K(t, s)

[
f
(
s,α(s)

)
+ g

(
s,β(s)

)]
ds

+
∫ b

a
K(t, s)

[
f
(
s,β(s)

)
+ g

(
s,α(s)

)]
ds + h(t)

and

β(t) ≥
∫ b

a
K(t, s)

[
f
(
s,β(s)

)
+ g

(
s,α(s)

)]
ds

+
∫ b

a
K(t, s)

[
f
(
s,α(s)

)
+ g

(
s,β(s)

)]
ds + h(t).

Theorem . Under assumptions (i)-(v), (.) has a unique solution in C(I,R).

Proof Consider on X = C(I,R) the natural partial order relation, that is, for x, y ∈ X,

x ≤ y ⇐⇒ x(t) ≤ y(t), ∀t ∈ I.

It is well known that X is a complete metric space with respect to the sup metric

d(x, y) = sup
t∈I

∣
∣x(t) – y(t)

∣
∣, x, y ∈ C(I,R).

It is obviously that for any (x, y) ∈ X, the functions max{x, y}, min{x, y} are the upper and
lower bounded of x, y, respectively. Therefore, for every (x, y), (u, v) ∈ X, there exists the
element (max{x, y}, min{x, y}) which is comparable to (x, y) and (u, v).

Now, define the mapping F : X × X → X by

F(x, y)(t) =
∫ b

a
K(t, s)

[
f
(
s, x(s)

)
+ g

(
s, y(s)

)]
ds

+
∫ b

a
K(t, s)

[
f
(
s, y(s)

)
+ g

(
s, x(s)

)]
ds + h(t) for all t ∈ I.

It is not difficult to prove that F has the mixed monotone property. Now, for x, y, u, v ∈ X
with x ≥ u and y ≤ v, we have

d
(
F(x, y), F(u, v)

)
= sup

t∈I

∣∣F(x, y)(t) – F(u, v)(t)
∣∣

= sup
t∈I

∣
∣∣
∣

∫ b

a
K(t, s)

[
f
(
s, x(s)

)
– f

(
s, u(s)

)
+ g

(
s, y(s)

)
– g

(
s, v(s)

)]
ds

–
∫ b

a
K(t, s)

[
f
(
s, v(s)

)
– f

(
s, y(s)

)
+ g

(
s, u(s)

)
– g

(
s, x(s)

)]
ds

∣∣
∣∣

≤ sup
t∈I

∣∣
∣∣

∫ b

a
K(t, s)

[
μψ

(
x(s) – u(s)

)
+ νψ

(
v(s) – y(s)

)]
ds

–
∫ b

a
K(t, s)

[
μψ

(
v(s) – y(s)

)
+ νψ

(
x(s) – u(s)

)]
ds

∣∣
∣∣.
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It follows from the monotonicity of ψ and K(t, s) ≤  that

d
(
F(x, y), F(u, v)

) ≤ sup
t∈I

∣∣
∣∣

∫ b

a
K(t, s)

[
μψ

(
d(x, u)

)
+ νψ

(
d(y, v)

)]
ds

–
∫ b

a
K(t, s)

[
μψ

(
d(v, y)

)
+ νψ

(
d(x, u)

)]
ds

∣
∣∣
∣. (.)

Similarly, we have

d
(
F(y, x), F(v, u)

) ≤ sup
t∈I

∣
∣∣
∣

∫ b

a
K(t, s)

[
νψ

(
d(x, u)

)
+ μψ

(
d(y, v)

)]
ds

–
∫ b

a
K(t, s)

[
νψ

(
d(v, y)

)
+ μψ

(
d(x, u)

)]
ds

∣∣
∣∣. (.)

By summing (.) and (.), and using the condition (iv), we obtain

d(F(x, y), F(u, v)) + d(F(y, x), F(v, u))


≤ sup
t∈I

(∫ b

a

(
K(t, s) – K(t, s)

)
ds

)/p

(b – a)/q(μ + ν)
ψ(d(x, u)) + ψ(d(v, y))



≤ ψ(d(x, u)) + ψ(d(v, y))


.

Since ψ is non-increasing, we have

ψ(d(x, u)) + ψ(d(y, v))


≤ ψ
(
d(x, u) + d(y, v)

)
.

Combining the definition ψ , we finally obtain

d(F(x, y), F(u, v)) + d(F(y, x), F(v, u))


≤ ψ
(
d(x, u) + d(y, v)

)
= φ

(
d(x, u) + d(y, v)



)
,

which is just the contractive condition (.) in Corollary ..
Now, the condition (v) implies that

α(t) ≤ F
(
α(t),β(t)

)
and β(t) ≥ F

(
β(t),α(t)

)
for all t ∈ I,

which show that all hypotheses of Corollary . hold. This proves that F has a unique
coupled fixed point (x̃, ỹ) in X. Since α ≤ β , it follows that x̃ = ỹ. Thus x̃ ∈ C(I,R) is the
unique solution of the integral equation (.). �

Finally, we show the existence of solution for the following initial-value problem:

{
ut(x, t) = uxx(x, t) + f (x, t, u, ux) + g(x, t, u, ux), –∞ < x < ∞,  < t ≤ T ,
u(x, ) = ϕ(x), –∞ < x < ∞,

(.)
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where ϕ is continuously differentiable and that ϕ and ϕ′ are bounded and f , g are contin-
uous functions.

Now, we consider the space

� =
{

v(x, t) : v, vx ∈ C
(
R× [, T]

)
and ‖v‖ < ∞}

,

where

‖v‖ = sup
x∈R,t∈[,T]

∣∣v(x, t)
∣∣ + sup

x∈R,t∈[,T]

∣∣vx(x, t)
∣∣.

The set � with the norm ‖ · ‖ is a Banach space. Obviously, the space with metric given by

d(u, v) = sup
x∈R,t∈[,T]

∣
∣u(x, t) – v(x, t)

∣
∣ + sup

x∈R,t∈[,T]

∣
∣ux(x, t) – vx(x, t)

∣
∣

is a complete metric space. The set � can also equipped with a partial order given by

u, v ∈ �, u ≤ v ⇐⇒ u(x, t) ≤ v(x, t), ux(x, t) ≤ vx(x, t), x ∈R, t ∈ [, T].

Definition . ([]) A pair u, v ∈ �×� is called a coupled lower-upper solution of (.)
if

{
ut(x, t) ≤ uxx(x, t) + f (x, t, u, ux) + g(x, t, v, vx), –∞ < x < ∞,  < t ≤ T ,
u(x, ) ≤ ϕ(x), –∞ < x < ∞

and
{

vt(x, t) ≥ vxx(x, t) + f (x, t, v, vx) + g(x, t, u, ux), –∞ < x < ∞,  < t ≤ T ,
v(x, ) ≥ ϕ(x), –∞ < x < ∞.

Theorem . Consider the problem (.) with f , g : R × [, T] × R × R → R continuous
and assume that the following conditions are satisfied:

(i) for any c >  with |ξ | < c and |η| < c, the functions f (x, t, ξ ,η), g(x, t, ξ ,η) are
uniformly Hölder continuous in x and t for each compact subset of � × [, T];

(ii) for all (ξ,η) and (ξ,η) in R×R with ξ ≤ ξ and η ≤ η, there exist two positive
constants cf and cg such that

 ≤ f (x, t, ξ,η) – f (x, t, ξ,η) ≤ cf φ

(
ξ – ξ + η – η



)
,

–cgφ

(
ξ – ξ + η – η



)
≤ g(x, t, ξ,η) – g(x, t, ξ,η) ≤ ,

where φ(t) : [, +∞) → [, +∞) is a nondecreasing Jachymski function with φ(t) < t
for all t > ;

(iii) f , g are bounded for bounded ξ and η;
(iv) cf + cg ≤ (T + π–/T /)–.

Then the existence of coupled lower-upper solution for the initial-value problem (.) pro-
vides the existence of the unique solution of the problem (.).



Sang and Meng Fixed Point Theory and Applications  (2015) 2015:168 Page 22 of 25

Proof The problem (.) is equivalent to the integral equation

u(x, t) =
∫ ∞

–∞
k(x – ξ , t)ϕ(ξ ) dξ +

∫ t



∫ ∞

–∞
k(x – ξ , t – τ )

[
f
(
ξ , τ , u(ξ , τ ), ux(ξ , τ )

)

+ g
(
ξ , τ , u(ξ , τ ), ux(ξ , τ )

)]
dξ dτ

for all x ∈R and  < t ≤ T , where

k(x, t) =
√
π t

exp

{
–x

t

}
(.)

for all x ∈ R and t > . The initial-value problem (.) possesses a unique solution if and
only if the above integral-differential equation possesses a unique solution u such that u
and ux are continuous and bounded for all x ∈R and  < t ≤ T .

Define a mapping F : � × � → � by

F(u, v)(x, t) =
∫ ∞

–∞
k(x – ξ , t)ϕ(ξ ) dξ

+
∫ t



∫ ∞

–∞
k(x – ξ , t – τ )

[
f
(
ξ , τ , u(ξ , τ ), ux(ξ , τ )

)

+ g
(
ξ , τ , v(ξ , τ ), vx(ξ , τ )

)]
dξ dτ

for all x ∈ R and t ∈ [, T]. Note that, if (u, v) ∈ � × � is a fixed point of F , then (u, v) is a
solution of the problem (.).

From the condition (ii) of Theorem ., It is not difficult to prove that F has the mixed
monotone property. Now, for u, v, u, v ∈ � with u ≥ u and v ≤ v, we have

∣∣F(u, v)(x, t) – F(u, v)(x, t)
∣∣

≤
∫ t



∫ ∞

–∞
k(x – ξ , t – τ )

[
f
(
ξ , τ , u(ξ , τ ), (u)x(ξ , τ )

)
+ f

(
ξ , τ , u(ξ , τ ), (u)x(ξ , τ )

)

+ g
(
ξ , τ , v(ξ , τ ), (v)x(ξ , τ )

)
– g

(
ξ , τ , v(ξ , τ ), (v)x(ξ , τ )

)]
dξ dτ

≤
∫ t



∫ ∞

–∞
k(x – ξ , t – τ )

[
cf φ

(
u(ξ , τ ) – u(ξ , τ ) + (u)x(ξ , τ ) – (u)x(ξ , τ )



)

+ cgφ

(
v(ξ , τ ) – v(ξ , τ ) + (v)x(ξ , τ ) – (v)x(ξ , τ )



)]
dξ dτ .

Since the function φ is nondecreasing, we have

φ

(
u(ξ , τ ) – u(ξ , τ ) + (u)x(ξ , τ ) – (u)x(ξ , τ )



)

≤ φ

(
supξ∈R,τ∈[,T] |u(ξ , τ ) – u(ξ , τ )| + supξ∈R,t∈[,T] |(u)x(ξ , τ ) – (u)x(ξ , τ )|



)

≤ φ

(
d(u, u)



)
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and

φ

(
v(ξ , τ ) – v(ξ , τ ) + (v)x(ξ , τ ) – (v)x(ξ , τ )



)

≤ φ

(
supξ∈R,τ∈[,T] |v(ξ , τ ) – v(ξ , τ )| + supξ∈R,t∈[,T] |(v)x(ξ , τ ) – (v)x(ξ , τ )|



)

≤ φ

(
d(v, v)



)
.

Hence, by (.), we obtain

∣
∣F(u, v)(x, t) – F(u, v)(x, t)

∣
∣

≤
∫ t



∫ ∞

–∞
k(x – ξ , t – τ )

[
cf φ

(
d(u, u)



)
+ cgφ

(
d(v, v)



)]
dξ dτ

≤ T
[

cf φ

(
d(u, u)



)
+ cgφ

(
d(v, v)



)]
. (.)

Furthermore, we have

∣
∣∣
∣
∂F(u, v)

∂x
(x, t) –

∂F(u, v)
∂x

(x, t)
∣
∣∣
∣

≤
∫ t



∫ ∞

–∞

∣∣
∣∣
∂k
∂x

(x – ξ , t – τ )
∣∣
∣∣

[
cf φ

(
d(u, u)



)
+ cgφ

(
d(v, v)



)]
dξ dτ

≤ π– 
 T




[
cf φ

(
d(u, u)



)
+ cgφ

(
d(v, v)



)]
. (.)

Combining (.) with (.), we obtain

d
(
F(u, v), F(u, v)

) ≤ (
T + π– 

 T


)[

cf φ

(
d(u, u)



)
+ cgφ

(
d(v, v)



)]
. (.)

Similarly, we obtain

d
(
F(v, u), F(v, u)

) ≤ (
T + π– 

 T


)[

cgφ

(
d(u, u)



)
+ cf φ

(
d(v, v)



)]
. (.)

By summing (.) and (.), we get

d(F(u, v), F(u, v)) + d(F(v, u), F(v, u))


≤ (
T + π– 

 T


)
(

cf + cg



)[
φ

(
d(u, u)



)
+ φ

(
d(v, v)



)]
.

Now, since φ is nonincreasing, we have

φ

(
d(u, u)



)
+ φ

(
d(v, v)



)
≤ φ

(
d(u, u) + d(v, v)



)
.
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Thus, by using the condition (iv) of Theorem ., we finally get

d(F(u, v), F(u, v)) + d(F(v, u), F(v, u))


≤ φ

(
d(u, u), d(v, v)



)
.

Now, let (u, v) ∈ � × � be a coupled lower-upper solution of (.). Then we have

u(x, t) ≤ F
(
u(x, t), v(x, t)

)
and v(x, t) ≥ F

(
v(x, t), u(x, t)

)
for all x ∈R, t ∈ [, T],

which show that all hypotheses of Corollary . are satisfied. �

Remark . Gordji et al. [] considered the initial-value problem (.) when g(x, t,
u, ux) ≡ . Notice that if take φ(x) = ln( + x), then we derive Theorem . in [].
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