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Abstract
In this paper we compute the fixed point index for A-proper semilinear operators
under certain boundary conditions. The proof is based on the partial order method
combined with the properties of the fixed point index. As an application, we use the
abstract results presented above to study the existence conditions of positive
solutions for superlinear first-order and second-order periodic problems.
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1 Introduction
The topological degree and fixed point index are important theories in nonlinear func-
tional analysis as they have had significant applications as regards obtaining results on
the existence and the number of solutions for differential equations [], differential inclu-
sions [] and dynamical systems [, ]. In recent years, many authors have focused on the
computation of the topological degree and fixed point index (see [–] and the references
therein). It is noticed that the results cited above apply to an operator equation of the form
x = Ax, which is closely connected to fixed point theory. However, in this paper we will be
mainly interested in studying a more general operator equation of the form

Lx = Nx, (.)

where L is not necessarily invertible. During the last three decades, the existence problem
for (.) has been an interesting topic and has attracted the attention of many researchers
[, –] because it has especially broad applications in the existence of periodic solutions
of nonlinear differential equations.

Based on the approach of Fitzpatrick and Petryshyn [], the concept of a fixed point in-
dex for A-proper maps related to (.) has been introduced by Cremins [, ]. Since then,
some existence results for the semilinear equation (.) in cones have been established in
[, ] using the properties of the fixed point index and partial order method. Recently,
the computation of the fixed point index for A-proper semilinear operators was proved
in [] under the sublinear case, but to the best of the knowledge of the authors nothing
has been published concerning the computation results available in the literature for the
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superlinear case. In this paper, we will continue this study and focus on the computation
of the fixed point index with certain boundary conditions in the superlinear case.

The remaining part of the paper is organized as follows. Some preliminaries and a num-
ber of lemmas useful to the derivation of the main results are given in Section . In Sec-
tion , we obtain some sufficient conditions that the fixed point index equals {} or {},
values more easily applicable. As an application, in Section , we use the new results pre-
sented in Section  to study the existence conditions of positive solutions for first-order
and second-order superlinear periodic boundary value problems.

2 Preliminaries
In this section, we recall some standard facts on A-proper mappings and Fredholm oper-
ators.

Let X and Y be Banach spaces with the zero element θ , D a linear subspace of X,
{Xn} ⊂ D, and {Yn} ⊂ Y sequences of oriented finite dimensional subspaces such that
Qny → y in Y for every y and dist(x, Xn) →  for every x ∈ D where Qn : Y → Yn and
Pn : X → Xn are sequences of continuous linear projections. The projection scheme
� = {Xn, Yn, Pn, Qn} is then said to be admissible for maps from D ⊂ X to Y . A map T : D ⊂
X → Y is called approximation-proper (abbreviated A-proper) at a point y ∈ Y with re-
spect to � if Tn ≡ QnT |D∩Xn is continuous for each n ∈N and whenever {xnj |xnj ∈ D ∩ Xnj}
is bounded with Tnj xnj → y, then there exists a subsequence {xnjk

} such that xnjk
→ x ∈ D,

and Tx = y. T is said to be A-proper on a set D if it is A-proper at all points of Y .
L : dom L ⊂ X → Y is a Fredholm operator of index zero if Im L is closed and dim Ker L =

codim Im L < ∞. Then X and Y may be expressed as direct sums X = X ⊕ X, Y = Y ⊕ Y

with continuous linear projections P : X → Ker L = X and Q : Y → Y. The restriction
of L to dom L ∩ X, denoted L, is a bijection onto Im L = Y with continuous inverse L–

 :
Y → dom L∩X. Since X and Y have the same finite dimension, there exists a continuous
bijection J : Y → X.

Cremins [, ] defined a fixed point index indK ([L, N],�) for A-proper maps acting
on cones, which has the usual properties of the classical fixed point index, that is, exis-
tence, normalization, additivity, and homotopy invariance. Let K be a cone in the Banach
space X, then X becomes a partial ordered Banach space under the partial ordering ≤
which is induced by K . K is said to be normal if there exists a positive constant ˜N such
that θ ≤ x ≤ y implies ‖x‖ ≤ ˜N‖y‖. For the concepts and the properties as regards the
cone we refer to [–]. Here we remark that the results in [, , ] hold in partial
ordered Banach spaces. Let � ⊂ X be open and bounded such that �K = � ∩ K �= ∅. If we
let K = (L + J–P)(K ∩ dom L), then K is a cone in Y and the linear operator L + J–P is
inversely positive by using [], Proposition .

Throughout this paper we assume that the following conditions are satisfied:

(A) L : dom L → Y is Fredholm of index zero.
(A) L – λN is A-proper for λ ∈ [, ].
(A) N is bounded and P + JQN + L–

 (I – Q)N maps K to K .

Lemma . ([], Lemma (a)) If L–
 is compact, then L–λN is A-proper for each λ ∈ [, ].

To obtain some new methods of computing the fixed point index for the A-proper semi-
linear operator (.), we need the following two lemmas.
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Lemma . [] Let θ ∈ � ⊂ X. If Lx �= μNx – ( – μ)J–Px for all x ∈ ∂�K and μ ∈ [, ],
then

indK
(

[L, N],�
)

= {}.

Lemma . [] If there exists e ∈ K\{θ} such that

Lx – Nx �= μe,

for all x ∈ ∂�K and all μ ≥ , then

indK
(

[L, N],�
)

= {}.

3 Main results
Theorem . Let θ ∈ � ⊂ X and Lx �= Nx for all x ∈ ∂�K . Assume that the following hy-
potheses hold:

(i) there exists a positive bounded linear operator B : X → X , such that

(

N + J–P
)

x ≤ (

L + J–P
)

Bx, for all x ∈ ∂�K ,

where this partial order is induced by the cone K in Y .
(ii) r(B) ≤ , where r(B) is the spectral radius of B.

Then the fixed point index

indK
(

[L, N],�K
)

= {}.

Proof We show that

Lx �= μNx – ( – μ)J–Px, ∀x ∈ ∂�K ,μ ∈ [, ]. (.)

Suppose the assertion of (.) is false. Then there exist x ∈ ∂�K and μ ∈ [, ] such that
Lx = μNx – ( – μ)J–Px. Since Lx �= Nx ∀x ∈ ∂�K , we see that μ ∈ [, ). This and
condition (i) imply that

(

L + J–P
)

x = μ
(

N + J–P
)

x

≤ μ
(

L + J–P
)

Bx.

Applying (L + J–P)– to the above inequality, we obtain x ≤ μBx. Continuing this pro-
cess, we get

x ≤ μn
 Bnx. (.)

Let � = {y|y ≥ x}. Equation (.) yields {μn
 Bnx|n = , , . . .} ⊂ �. x ∈ ∂�K and θ ∈ �K

imply d = d(θ ,�) > . Consequently, we get by (.)

∥

∥Bn∥
∥ ≥ 

‖x‖
∥

∥Bnx
∥

∥ ≥ d
μn

 ‖x‖ , for n = , , . . . .
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This shows

r(B) = lim
n→∞

n
√‖Bn‖ ≥ 

μ
> .

This contradicts the condition (ii). Hence (.) is true and we see from Lemma . that the
conclusion is true. �

Theorem . Let K be a normal cone in X. If there exist a constant C >  and u ∈ K\{θ},
such that

(

N + J–P
)

x ≥ C
(

L + J–P
)

x – u, for all x ∈ K , (.)

where this partial order is induced by the cone K in Y , then there exists R > , and for
R > R, the fixed point index

indK
(

[L, N], BR ∩ K
)

= {},

where BR = {x ∈ X : ‖x‖X < R}.

Proof Setting

W = {x ∈ K |Lx – Nx = λu, for each λ ≥ },

we claim that W is bounded. For x ∈ W , there exists λ ≥  such that Lx – Nx = λu. This
and assumption (.) imply that

(

L + J–P
)

x =
(

N + J–P
)

x + λu ≥ (

N + J–P
)

x ≥ C
(

L + J–P
)

x – u.

Operating on both sides of the latter inequality by (L + J–P)–, we obtain

x ≥ Cx –
(

L + J–P
)–u.

This shows that x ≤ 
C– (L + J–P)–u. In view of the normality of K , there exists an ˜N > 

such that

‖x‖ ≤ ˜N
C – 

∥

∥

(

L + J–P
)–u

∥

∥, x ∈ W .

This shows that W is bounded.
Let R = supx∈W ‖x‖. For R > R, we have

Lx – Nx �= λu, ∀x ∈ ∂BR ∩ K ,λ ≥ . (.)

Using Lemma ., we infer by (.) that the conclusion is true. �

Now the following two corollaries are immediate consequences of Theorems . and .
and the facts that (L + J–P)–(N + J–P) = P + JQN + L–

 (I – Q)N (see [], Lemma ) and
we have linearity and positivity of the operator (L + J–P)– (see [], Proposition ).
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Corollary . Let θ ∈ �K and Lx �= Nx for all x ∈ ∂�K . If there exists a positive bounded
linear operator B : X → X with r(B) ≤ , such that

(

P + JQN + L–
 (I – Q)N

)

x ≤ Bx, for any x ∈ ∂�K ,

where this partial order is induced by the cone K in X, then the fixed point index

indK
(

[L, N],�K
)

= {}.

Corollary . Let K be a normal cone in X. If there exist a constant C >  and u ∈ K\{θ},
such that

(

P + JQN + L–
 (I – Q)N

)

x ≥ Cx – u, for any x ∈ K ,

where this partial order is induced by the cone K in X, then there exists R > , and for
R > R, the fixed point index

indK
(

[L, N], BR ∩ K
)

= {},

where BR = {x ∈ X : ‖x‖X < R}.

Using Corollaries . and ., we complete this section with a proof of the following
important result to be used later.

Theorem . Let K be a normal cone in X, u ∈ K\{θ} and let there be a constant C > .
If there exists a positive bounded linear operator B : X → X with r(B) ≤ , such that the
following hypotheses hold:

(i) (P + JQN + L–
 (I – Q)N)x ≥ Cx – u, ∀x ∈ K ,

(ii) (P + JQN + L–
 (I – Q)N)x ≤ Bx, ∀x ∈ ∂Br ∩ K , where Br = {x ∈ X : ‖x‖ < r}, then

there exists x∗ ∈ dom L ∩ K \ {θ} such that Lx∗ = Nx∗.

Proof It follows from Corollary . and condition (i) that there exists R >  with R > r such
that

indK
(

[L, N], BR
)

= {}. (.)

We assume Lx �= Nx on ∂Br ∩ K ∩ dom L, otherwise the conclusion follows. Using Corol-
lary . we get from condition (ii)

indK
(

[L, N], Br
)

= {}. (.)

In view of (.), (.), and the additivity property, we obtain

indK
(

[L, N], BR\Br
)

= indK
(

[L, N], BR
)

– indK
(

[L, N], Br
)

= {} – {} = {–}
�= {},

which completes the proof from the existence property. �
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4 Applications to superlinear periodic boundary value problem
4.1 First-order periodic boundary value problem
We shall apply Theorem . to obtain positive solutions to the following first-order peri-
odic boundary value problem (PBVP):

{

x′(t) = f (t, x(t)), t ∈ (, ),
x() = x(),

(.)

where f : [, ] ×R
+ →R is a continuous function.

Let X = Y = C[, ] with the usual norm ‖x‖ = maxt∈[,] |x(t)|. Define the linear operator
L : dom L ⊂ X → Y , (Lx)(t) = x′(t), t ∈ [, ], where

dom L =
{

x ∈ X : x′ ∈ C[, ], x() = x()
}

and N : X → Y with

(Nx)(t) = f
(

t, x(t)
)

, t ∈ [, ].

It is easy to check that

Ker L =
{

x ∈ dom L : x(t) ≡ c on [, ], c ∈ R
}

,

Im L =
{

y ∈ Y :
∫ 


y(s) ds = 

}

,

dim Ker L = codim Im L = ,

so that L is a Fredholm operator of index zero.
Next, define the projections P : X → X by

Px =
∫ 


x(s) ds,

and Q : Y → Y by

Qy =
∫ 


y(s) ds.

Furthermore, we define the isomorphism J : Im Q → Im P as Jy = βy with β = . We may
easy verify that the inverse operator L–

 : Im L → dom L ∩ Ker P of L|dom L∩Ker P : dom L ∩
Ker P → Im L is (L–

 y)(t) =
∫ 

 K(t, s)y(s) ds, where

K(t, s) =

{

s + ,  ≤ s < t ≤ ,
s,  ≤ t ≤ s ≤ .

For notational convenience, we set G(t, s) =  + K(t, s) –
∫ 

 K(t, s) ds. We can verify that

G(t, s) =

{


 – (t – s),  ≤ s < t ≤ ,

 + (s – t),  ≤ t ≤ s ≤ ,

and 
 ≤ G(t, s) ≤ 

 , t, s ∈ [, ].
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Define the cone K in X by

K =
{

x ∈ X : x(t) ≥ , x(t) ≥ 

‖x‖, t ∈ [, ]

}

,

then K is a normal cone of X (see []).

Lemma . If

(H) f (t, x) ≥ – 
 x, for all t ∈ [, ], x ≥ ,

then P + JQN + L–
 (I – Q)N is a positive operator, that is,

(

P + JQN + L–
 (I – Q)N

)

(K) ⊂ K .

Proof It follows from condition (H) that

Px + JQNx + L–
 (I – Q)Nx

=
∫ 


x(s) ds +

∫ 


f
(

s, x(s)
)

ds

+
∫ 


K(t, s)

(

f
(

s, x(s)
)

–
∫ 


f
(

s, x(s)
)

ds
)

ds

=
∫ 


x(s) ds +

∫ 


G(t, s)f

(

s, x(s)
)

ds

≥
∫ 



(

 –



G(t, s)
)

x(s) ds ≥ ,

for all x ∈ K . Thus (P + JQN + L–
 (I – Q)N)(x) ≥ .

Now we are ready to prove

(P + JQN)x(t) + L–
 (I – Q)Nx(t) ≥ 


∥

∥(P + JQN)x + L–
 (I – Q)Nx

∥

∥.

Using condition (H), we obtain

∥

∥(P + JQN)x + L–
 (I – Q)Nx

∥

∥

= max
t∈[,]

[∫ 


x(s) ds +

∫ 


G(t, s)f

(

s, x(s)
)

ds
]

= max
t∈[,]

[∫ 



(

 –



G(t, s)
)

x(s) ds +
∫ 


G(t, s)

(

f
(

s, x(s)
)

+



x(s)
)

ds
]

≤ 


∫ 


x(s) ds +




∫ 



(

f
(

s, x(s)
)

+



x(s)
)

ds.

From the last inequality, we have from condition (H)

min
t∈[,]

[

(P + JQN)x(t) + L–
 (I – Q)Nx(t)

]

= min
t∈[,]

[∫ 


x(s) ds +

∫ 


G(t, s)f

(

s, x(s)
)

ds
]
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= min
t∈[,]

[∫ 



(

 –



G(t, s)
)

x(s) ds +
∫ 


G(t, s)

(

f
(

s, x(s)
)

+



x(s)
)

ds
]

≥ 


∫ 


x(s) ds +




∫ 



(

f
(

s, x(s)
)

+



x(s)
)

ds

=



[




∫ 


x(s) ds +




∫ 



(

f
(

s, x(s)
)

+



x(s)
)

ds
]

≥ 


[




∫ 


x(s) ds +




∫ 



(

f
(

s, x(s)
)

+



x(s)
)

ds
]

≥ 

∥

∥(P + JQN)x + L–
 (I – Q)Nx

∥

∥.

Therefore, (P + JQN)x + L–
 (I – Q)Nx ∈ K . �

We can now state and prove our result on the existence of a positive solution for the
PBVP (.).

Theorem . Suppose that condition (H) is satisfied. If

(H) lim infx→+∞ mint∈[,]
f (t,x)

x > ,
(H) lim supx→+ maxt∈[,]

f (t,x)
x < ,

then the PBVP (.) has at least one positive solution.

Proof First, we note that L, as defined, is Fredholm of index zero, L–
 is compact by Arzela-

Ascoli theorem and thus L – λN is A-proper for λ ∈ [, ] by Lemma ..
Condition (H) guarantees that there exist ε >  and τ >  such that

f (t, x) ≥ ( + ε)x, for all t ∈ [, ], x ≥ τ .

Hence,

f (t, x) ≥ ( + ε)x – M, for all t ∈ [, ], x ≥ , (.)

where M = max≤t≤,≤x≤τ |f (t, x) – ( + ε)x| + .
Set C =  + ε

 , u = M
 . Then C > , u ∈ K\{θ}. Using (.), we obtain

Px + JQNx + L–
 (I – Q)Nx

=
∫ 


x(s) ds +

∫ 


G(t, s)f

(

s, x(s)
)

ds

≥
∫ 


x(s) ds + ( + ε)

∫ 


G(t, s)x(s) ds – M

∫ 


G(t, s) ds

≥
∫ 


x(s) ds +




( + ε)
∫ 


x(s) ds –

M


=
(

 +
ε



)∫ 


x(s) ds –

M


≥
(

 +
ε



)

· 

‖x‖ –

M
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≥
(

 +
ε



)

x –
M



= Cx – u.

This implies that condition (i) of Theorem . is satisfied.
It follows from condition (H) that there exist σ ∈ (, ) and r ∈ (, τ ) such that

f (t, x) ≤ –σx, for all t ∈ [, ],  ≤ x ≤ r. (.)

Take Bx = ( – σ
 )

∫ 
 x(s) ds. One can see that B : X → X is a positive bounded linear

operator. It is clear that r(B) =  – σ
 < . Thus, by (.), we have

Px + JQNx + L–
 (I – Q)Nx

=
∫ 


x(s) ds +

∫ 


G(t, s)f

(

s, x(s)
)

ds

≤
∫ 


x(s) ds – σ

∫ 


G(t, s)x(s) ds

≤
∫ 


x(s) ds –

σ



∫ 


x(s) ds

=
(

 –
σ



)∫ 


x(s) ds = Bx, for all x ∈ K with ‖x‖ ≤ r. (.)

This means that condition (ii) of Theorem . is verified.
We see that all assumptions of Theorem . are satisfied. The proof is finished. �

4.2 Second-order periodic boundary value problem
We will discuss the existence of positive solutions of the second-order periodic boundary
value problem (PBVP)

{

–x′′(t) = f (t, x(t)), t ∈ (, ),
x() = x(), x′() = x′(),

(.)

where f : [, ] ×R
+ →R is a continuous function.

Since some parts of the proof are in the same line as that of Theorem ., we will outline
the proof with the emphasis on the difference.

Let Banach spaces X, Y be as in Section .. In this case, we may define

dom L =
{

x ∈ X : x′′ ∈ C[, ], x() = x(), x′() = x′()
}

,

and let the linear operator L : dom L ⊂ X → Y be defined by

(Lx)(t) = –x′′(t), for x ∈ dom L, t ∈ [, ].

Then L is Fredholm of index zero,

Ker L =
{

x ∈ dom L : x(t) ≡ c on [, ], c ∈ R
}

,
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and

Im L =
{

y ∈ Y :
∫ 


y(s) ds = 

}

.

Define N : X → Y by

(Nx)(t) = f
(

t, x(t)
)

, t ∈ [, ].

Thus it is clear that the PBVP (.) is equivalent to the operator equation (.).
We use the same projections P, Q as in Section . and define the isomorphism J :

Im Q → Im P as Jy = βy with β = . It is easy to verify that the inverse operator L–
 : Im L →

dom L ∩ Ker P of L|dom L∩Ker P : dom L ∩ Ker P → Im L is

(

L–
 y

)

(t) =
∫ 


(t, s)y(s) ds,

where

(t, s) =

{

s
 ( – t + s),  ≤ s < t ≤ ,

 ( – s)(t – s),  ≤ t ≤ s ≤ .

Set

H(t, s) =



+ (t, s) –
∫ 


(t, s) ds.

We can verify that

H(t, s) =

{


 + s

 ( – t + s) + t

 – t
 ,  ≤ s < t ≤ ,


 + 

 ( – s)(t – s) + t

 + t
 ,  ≤ t ≤ s ≤ ,

and




≤ H(t, s) ≤ 


, t, s ∈ [, ].

Define a normal cone K in X by

K =
{

x ∈ X : x(t) ≥ , x(t) ≥ 

‖x‖, t ∈ [, ]

}

.

Lemma . If

(H) f (t, x) ≥ –x, for all t ∈ [, ], x ≥ ,

then P + JQN + L–
 (I – Q)N is a positive operator, that is,

(

P + JQN + L–
 (I – Q)N

)

(K) ⊂ K .
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Proof For each x ∈ K , by condition (H)

(P + JQN)x + L–
 (I – Q)Nx

=
∫ 


x(s) ds +




∫ 


f
(

s, x(s)
)

ds

+
∫ 


(t, s)

(

f
(

s, x(s)
)

–
∫ 


f
(

s, x(s)
)

ds
)

ds

=
∫ 


x(s) ds +

∫ 


H(t, s)f

(

s, x(s)
)

ds

≥
∫ 



(

 – H(t, s)
)

x(s) ds ≥ .

Thus (P + JQN + L–
 (I – Q)N)(x) ≥ .

We now show that

(P + JQN)x(t) + L–
 (I – Q)Nx(t) ≥ 


∥

∥(P + JQN)x + L–
 (I – Q)Nx

∥

∥.

In fact, we get from condition (H)

∥

∥(P + JQN)x + L–
 (I – Q)Nx

∥

∥

= max
t∈[,]

[∫ 


x(s) ds +

∫ 


H(t, s)f

(

s, x(s)
)

ds
]

= max
t∈[,]

[∫ 



(

 – H(t, s)
)

x(s) ds +
∫ 


H(t, s)

(

f
(

s, x(s)
)

+ x(s)
)

ds
]

≤ 


∫ 


x(s) ds +




∫ 



(

f
(

s, x(s)
)

+ x(s)
)

ds.

By the above inequality, we have from condition (H)

min
t∈[,]

[

(P + JQN)x(t) + L–
 (I – Q)Nx(t)

]

= min
t∈[,]

[∫ 


x(s) ds +

∫ 


H(t, s)f

(

s, x(s)
)

ds
]

= min
t∈[,]

[∫ 



(

 – H(t, s)
)

x(s) ds +
∫ 


H(t, s)

(

f
(

s, x(s)
)

+ x(s)
)

ds
]

≥ 


∫ 


x(s) ds +




∫ 



(

f
(

s, x(s)
)

+ x(s)
)

ds

=



[




∫ 


x(s) ds +




∫ 



(

f
(

s, x(s)
)

+ x(s)
)

ds
]

≥ 


[




∫ 


x(s) ds +




∫ 



(

f
(

s, x(s)
)

+ x(s)
)

ds
]

≥ 

∥

∥(P + JQN)x + L–
 (I – Q)Nx

∥

∥.

Thus (P + JQN)x + L–
 (I – Q)Nx ∈ K . �
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Theorem . Suppose that condition (H) is satisfied. If

(H) lim infx→+∞ mint∈[,]
f (t,x)

x > ,
(H) lim supx→+ maxt∈[,]

f (t,x)
x < ,

then the PBVP (.) has at least one positive solution.

Proof It is again easy to show that L – λN is A-proper for λ ∈ [, ] by Lemma .. From
condition (H), we know that there exist ε >  and τ > 

f (t, x) ≥ ( + ε)x, for all t ∈ [, ], x ≥ τ .

Thus

f (t, x) ≥ ( + ε)x – M, for all t ∈ [, ], x ≥ , (.)

where M = max≤t≤,≤x≤τ |f (t, x) – ( + ε)x| + .
From (.), we have

Px + JQNx + L–
 (I – Q)Nx

=
∫ 


x(s) ds +

∫ 


H(t, s)f

(

s, x(s)
)

ds

≥
∫ 


x(s) ds + ( + ε)

∫ 


H(t, s)x(s) ds – M

∫ 


H(t, s) ds

≥
∫ 


x(s) ds +




( + ε)
∫ 


x(s) ds –

M


=
(




+
ε



)∫ 


x(s) ds –

M


≥
(




+
ε



)

· 

‖x‖ –

M


≥
(

 +
ε



)

x –
M


,

and condition (i) of Theorem . is satisfied with C =  + ε
 and u = M

 .
By condition (H), we can find σ ∈ (, ) and r ∈ (, τ ) such that

f (t, x) ≤ –σx, for all t ∈ [, ],  ≤ x ≤ r. (.)

If we take Bx = ( – σ
 )

∫ 
 x(s) ds, then B : X → X is a positive bounded linear operator and

r(B) =  – σ
 < . Finally, similar to the proof of (.), it follows from (.) that

Px + JQNx + L–
 (I – Q)Nx ≤ Bx, for all x ∈ K ,‖x‖ ≤ r.

Thus condition (ii) of Theorem . is satisfied and the proof is complete. �

Example . Let the nonlinearity in (.) be

f (t, x) = a(t)xα – kx,
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where α > , a ∈ C[, ] is positive -periodic function and k ∈ (, ). Then (.) has at least
one positive -periodic solution.

Proof We will apply Theorem . with f (t, x) = a(t)xα – kx. Since k ∈ (, ), it is easy to see
that (H) holds.

One may easily see that lim infx→+∞ mint∈[,]
f (t,x)

x = lim infx→+∞ mint∈[,](a(t)xα– – k) =
+∞ > , which implies that (H) holds.

On the other hand, we have lim supx→+ maxt∈[,]
f (t,x)

x = lim supx→+ maxt∈[,](a(t)xα– –
k) = –k < , which implies that (H) holds. Now we have the desired result. �

Remark . In [, ], some existence results for the second-order periodic problem
were established by Graef, Kong, Wang and Torres, respectively. Their proofs are based
on Krasnosel’skii fixed point theorem in cones for completely continuous operators and
the proofs are simpler and more clear than the proof presented in our paper. However,
for us it seems difficult to obtain the same results in our paper using the fixed point the-
orem in cones. The main reason is that our condition (H) is weaker than the classical
superlinear condition near x = +∞ (that is, lim infx→+∞ f (t, x)/x = +∞), yet being used in
[], Theorem . and [], Corollary .. Therefore, in a sense, our results improve and
generalize those in [, ].

Remark . The following natural question concerning the optimality of conditions
(H) and (H) remains open to the authors: ‘Find an optimal constant λ∗ such that if
lim infx→+∞ f (t, x)/x > λ∗ then Theorems . and . remain valid.’ In other words, ‘Are
(H) and (H) also necessary conditions in order to get at least one positive solution in
Theorems . and . respectively?’
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