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1 Introduction
The implicit midpoint rule is one of the powerful numerical methods for solving ordinary
differential equations and differential algebraic equations. For related works, please refer
to [–].

For the ordinary differential equation

x′ = f (t), x() = x, (.)

the implicit midpoint rule generates a sequence {xn} by the recursion procedure

xn+ = xn + hf
(

xn + xn+



)
, n ≥ , (.)

where h >  is a stepsize. It is known that if f : RN →R
N is Lipschitz continuous and suffi-

ciently smooth, then the sequence {xn} generated by (.) converges to the exact solution
of (.) as h →  uniformly over t ∈ [, t̄] for any fixed t̄ > .

If we write the function f in the form f (t) = g(t) – t, then differential equation (.) be-
comes x′ = g(t) – t. Then the equilibrium problem associated with the differential equation
is the fixed point problem t = g(t).

Based on the above fact, Alghamdi et al. [] presented the following semi-implicit mid-
point rule for nonexpansive mappings:

xn+ = ( – αn)xn + αnT
(

xn + xn+



)
, n ≥ , (.)

© 2015 Yao et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13663-015-0414-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-015-0414-2&domain=pdf
mailto:nshahzad@kau.edu.sa


Yao et al. Fixed Point Theory and Applications  (2015) 2015:166 Page 2 of 15

where αn ∈ (, ) and T : H → H is a nonexpansive mapping. They proved the weak con-
vergence of (.) under some additional conditions on {αn}.

Furthermore, in [], Xu et al. used contractions to regularize the semi-implicit midpoint
rule (.) and presented the following viscosity implicit midpoint rule for nonexpansive
mappings:

xn+ = αnQ(xn) + ( – αn)T
(

xn + xn+



)
, n ≥ , (.)

where αn ∈ (, ) and Q is a contraction.
Xu et al. [] showed the following strong convergence theorem.

Theorem . Let H be a Hilbert space, C be a nonempty, closed, and convex subset of
H , and T : C → C be a nonexpansive mapping such that Fix(T) �= ∅. Let Q : C → C be a
contraction with coefficient α ∈ [, ). Assume that the sequence {αn} satisfies the following
three restrictions:

(C): limn→∞ αn = ;
(C):

∑∞
n= αn = ∞;

(C): either
∑∞

n= |αn+ – αn| < ∞ or limn→∞ αn+
αn

= .
Then the sequence {xn} generated by (.) converges in norm to a fixed point q of T , which
is also the unique solution of the variational inequality

〈
(I – Q)q, x – q

〉 ≥ , ∀x ∈ Fix(T). (.)

In other words, q is the unique fixed point of the contraction PFix(T)Q, that is, PFix(T)Q(q) = q.

Remark . The usefulness of (.) is that it can be used to find a periodic solution of the
time-dependent nonlinear evolution equation (see [])

du
dt

+ A(t)u = g(t, u), t ≥ ,

where A(t) is a family of closed linear operators in a Hilbert space H and g maps R × H
into H .

Remark . Note that the proof of Theorem . in [] is technical. However, Step  in
the proof of Theorem . is also complicated.

Fixed point method has attracted so much attention. Now we briefly recall some related
historic approaches.

Browder [] introduced an implicit scheme as follows. Fix u ∈ C and, for each t ∈ (, ),
let xt be the unique fixed point in C of the contraction Tt which maps C into C: Ttx =
tu + ( – t)Tx, x ∈ C. Browder proved that s-limt↓ xt = PFix(T)u. That is, the strong limit of
{xt} as t → + is the fixed point of T which is nearest from Fix(T) to u.

Halpern [], on the other hand, introduced an explicit scheme. Again fix a u ∈ C. Then
with a sequence {tn} in (, ) and an arbitrary initial guess x ∈ C, we can define a sequence
{xn} through the recursive formula

xn+ = αnu + ( – αn)Txn, n ≥ . (.)
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Lions [] proved the strong convergence of (.) under conditions (C), (C) and

(C): lim
n→∞

|αn – αn–|
α

n
= .

It is now known that this sequence {xn} converges in norm to the same limit PFix(T)u as
Browder’s implicit scheme if the sequence {αn} satisfies assumptions (C), (C), and (C)
above.

Moudafi [] presented an explicit viscosity method for nonexpansive mappings which
generates a sequence {xn} through the iteration process

xn+ = αnQ(xn) + ( – αn)Txn, n ≥ . (.)

Moudafi proved the strong convergence of (.) under conditions (C), (C), and

(C): lim
n→∞

|αn – αn–|
αnαn–

= .

Refinements in Hilbert spaces and extensions to Banach spaces were obtained by Xu
[]. This technique uses (strict) contractions to regularize a nonexpansive mapping for
the purpose of selecting a particular fixed point of the nonexpansive mapping, for instance,
the fixed point of minimal norm, or of a solution to another variational inequality.

Motivated and inspired by the above work, in this paper we aim to construct a unified
iterative algorithm for finding the fixed points of nonexpansive mappings. We present a
modified semi-implicit midpoint rule with the viscosity technique for nonexpansive map-
pings. We prove that the suggested algorithm converges strongly to a special fixed point
of nonexpansive mappings under some different conditions. Some applications are also
included.

2 Tools
2.1 Some notations
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C
be a nonempty closed convex subset of H .

Recall that a mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ C. We use Fix(T) to denote the set of fixed points of T .
A mapping Q : C → C is said to be contractive if there exists a constant α ∈ (, ) such

that

∥∥Q(x) – Q(y)
∥∥ ≤ α‖x – y‖

for all x, y ∈ C. In this case, Q is called α-contraction.
Let C be a nonempty closed convex subset of H . For every point x ∈ H , there exists a

unique nearest point in C denoted by PCx such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.
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The mapping PC is called the metric projection of H onto C. It is well known that PC is a
nonexpansive mapping and is characterized by the following property:

〈x – PCx, y – PCx〉 ≤ , ∀x ∈ H , y ∈ C. (.)

2.2 Existing algorithm and convergence result
Let C be a nonempty closed convex subset of a real Hilbert space H . Let Q : C → C be an
α-contraction and T : C → C be a nonexpansive mapping with Fix(T) �= ∅.

Algorithm . For given y ∈ C arbitrarily, let the sequence {yn} be defined iteratively by
the manner

yn = αnQ(yn) + ( – αn)Tyn, n ≥ , (.)

where {αn} is a sequence in (, ).

Theorem . ([]) The sequence {yn} generated by (.) converges strongly to q =
PFix(T)Q(q) provided limn→∞ αn = .

3 Some lemmas
The following demiclosedness principles for nonexpansive mappings are well known.

Lemma . ([]) Let C be a nonempty closed convex subset of a Hilbert space H , and let
T : C → C be a nonexpansive mapping with Fix(T) �= ∅. Assume that {yn} is a sequence in
C such that yn ⇀ x† and (I – T)yn → . Then x† ∈ Fix(T).

Lemma . ([]) Let {xn} and {yn} be bounded sequences in a Banach space E and {βn}
be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ = ( –
βn)xn +βnzn for all n ≥  and lim supn→∞(‖zn+ – zn‖–‖xn+ – xn‖) ≤ . Then limn→∞ ‖zn –
xn‖ = .

Lemma . ([]) Let {an}n∈N be a sequence of nonnegative real numbers satisfying the
following relation:

an+ ≤ ( – αn)an + αnσn + δn, n ≥ ,

where
(i) {αn}n∈N ⊂ [, ] and

∑∞
n= αn = ∞;

(ii) lim supn→∞ σn ≤ ;
(iii)

∑∞
n= δn < ∞.

Then limn→∞ an = .

4 Main results
In this section, we firstly present the following unified algorithm.

Let C be a nonempty closed convex subset of a real Hilbert space H . Let T : C → C be
a nonexpansive mapping with Fix(T) �= ∅. Let Q : C → C be an α-contraction.
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Algorithm . For given x ∈ C arbitrarily, let the sequence {xn} be generated by the
manner

xn+ = αnQ(xn) + βnxn + γnT
(

xn + xn+



)
, n ≥ , (.)

where {αn} ⊂ (, ), {βn} ⊂ [, ), and {γn} ⊂ (, ) are three sequences satisfying αn + βn +
γn =  for all n ≥ .

Remark . Equation (.) is well defined. As a matter of fact, for fixed u ∈ C, we can
define a mapping

x �→ Tux := αQ(u) + βu + γ T
(

u + x


)
.

Then we have

‖Tux – Tuy‖ = γ

∥∥∥∥T
(

u + x


)
– T

(
u + y



)∥∥∥∥
≤ γ


‖x – y‖.

This means Tu is a contraction with coefficient γ

 ∈ (, 
 ). Hence, Algorithm . is well

defined.

Now, we show the boundedness of the sequence {xn}.

Conclusion . The sequence {xn} generated by (.) is bounded.

Proof Pick any x† ∈ Fix(T). From (.), we have

∥∥xn+ – x†
∥∥ =

∥∥∥∥αn
(
Q(xn) – Q

(
x†

))
+ αn

(
Q

(
x†

)
– x†

)
+ βn

(
xn – x†

)

+ γn

(
T

(
xn + xn+



)
– x†

)∥∥∥∥
≤ αn

∥∥Q(xn) – Q
(
x†

)∥∥ + αn
∥∥Q

(
x†

)
– x†

∥∥ + βn
∥∥xn – x†

∥∥
+ γn

∥∥∥∥T
(

xn + xn+



)
– x†

∥∥∥∥
≤ αnα

∥∥xn – x†
∥∥ + αn

∥∥Q
(
x†

)
– x†

∥∥ + βn
∥∥xn – x†

∥∥
+

γn


∥∥xn – x†

∥∥ +
γn


∥∥xn+ – x†

∥∥.

It follows that

∥∥xn+ – x†
∥∥ ≤  + βn + (α – )αn

 + βn + αn

∥∥xn – x†
∥∥ +

αn

 + βn + αn

∥∥Q
(
x†

)
– x†

∥∥

=
[

 –
( – α)αn

 + βn + αn

]∥∥xn – x†
∥∥ +

( – α)αn

 + βn + αn


 – α

∥∥Q
(
x†

)
– x†

∥∥

≤ max

{∥∥xn – x†
∥∥,


 – α

∥∥Q
(
x†

)
– x†

∥∥}
.
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By induction, we can deduce

∥∥xn – x†
∥∥ ≤ max

{∥∥x – x†
∥∥,


 – α

∥∥Q
(
x†

)
– x†

∥∥}
.

Hence, {xn} is bounded. This completes the proof. �

Now we give the following result.

Theorem . The sequence {xn} generated by (.) converges strongly to q = PFix(T)Q(q)
provided {αn} satisfies (C)-(C) (as stated in Theorem .) and {βn} satisfies

(C): lim
n→∞

βn

αn
= .

Proof Set yn+ = αnQ(yn) + ( – αn)T( yn+yn+
 ) for all n. Then we have

‖xn+ – yn+‖ =
∥∥∥∥αn

(
Q(xn) – Q(yn)

)
+ βn

(
xn – T

(
yn + yn+



))

+ γn

(
T

(
xn + xn+



)
– T

(
yn + yn+



))∥∥∥∥
≤ ααn‖xn – yn‖ + βn

∥∥∥∥xn – T
(

yn + yn+



)∥∥∥∥ +
γn


‖xn – yn‖

+
γn


‖xn+ – yn+‖. (.)

It is obvious that {xn} and {yn} are bounded by Conclusion .. Hence, we deduce from
(.) that

‖xn+ – yn+‖ ≤
[

 –
( – α)αn

 – γn

]
‖xn – yn‖ + βnM

= ( – σn)‖xn – yn‖ + σn
βn

σn
M, (.)

where σn = (–α)αn
–γn

and M is a constant such that supn{‖xn – T( yn+yn+
 )‖} ≤ M. Note

that lim supn→∞
βn
σn

≤ . Apply Lemma . to (.) to conclude that ‖xn+ – yn+‖ → .
Consequently, xn → q = PFix(T)Q(q) according to Theorem .. This completes the proof.

�
Remark . The proof of Theorem . is very simple.

Remark . In (.), if we choose βn ≡  for all n, then (.) is reduced to (.). Thus, our
Algorithm . includes Algorithm . as a special case, and Theorem . is also a special
case of our Theorem ..

Next, we can define the following algorithm.

Algorithm . For given y ∈ C arbitrarily, let the sequence {yn} be defined iteratively by
the manner

yn = αnQ(yn) + βnyn + γnTyn, n ≥ , (.)

where {αn}, {βn}, and {γn} are the same sequences as stated in Algorithm ..
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Proposition . The sequence {yn} generated by (.) converges strongly to q = PFix(T)Q(q)
provided limn→∞ αn = .

In fact, we can rewrite (.) as yn = αn
–βn

Q(yn) + ( – αn
–βn

)Tyn for all n. Thus, Proposi-
tion . can be deduced from Theorem ..

Next we use Proposition . to show the convergence analysis of Algorithm . under
other control conditions.

Let the sequences {xn} and {yn} be generated by (.) and (.), respectively. Note that
the sequences {xn} and {yn} are all bounded. First, we have the following estimation:

‖xn+ – yn‖ =
∥∥∥∥αn

(
Q(xn) – Q(yn)

)
+ βn(xn – yn) + γn

(
T

(
xn + xn+



)
– Tyn

)∥∥∥∥
≤ αnα‖xn – yn‖ + βn‖xn – yn‖ + γn

‖xn – yn‖


+ γn
‖xn+ – yn‖


.

It follows that

‖xn+ – yn‖ ≤
[

 –
( – α)αn

 + αn + βn

]
‖xn – yn‖

≤
[

 –
( – α)αn

 + αn + βn

]
‖xn – yn–‖ + ‖yn – yn–‖.

It is easily seen that if
∑∞

n= αn = ∞ and limn→∞ ‖yn–yn–‖
αn

= , then we get limn→∞ ‖xn+ –
yn‖ =  by Lemma .. Consequently, xn → q = PFix(T)Q(q) provided limn→∞ αn = .

Next, we estimate ‖yn – yn–‖. From (.), we have

‖yn – yn–‖ =
∥∥αn

(
Q(yn) – Q(yn–)

)
+ (αn – αn–)Q(yn–) + βn(yn – yn–)

+ (βn – βn–)yn– + γn(Tyn – Tyn–) + (γn – γn–)Tyn–
∥∥

≤ (ααn + βn + γn)‖yn – yn–‖ + |αn – αn–|
∥∥Q(yn–)

∥∥
+ |βn – βn–|‖yn–‖ + |γn – γn–|‖Tyn–‖.

Hence,

‖yn – yn–‖
αn

≤ |αn – αn–|
( – α)α

n

(∥∥Q(yn–)
∥∥ + ‖Tyn–‖

)

+
|βn – βn–|
( – α)α

n

(‖yn–‖ + ‖Tyn–‖
)
.

If limn→∞ |αn–αn–|
α

n
= limn→∞ |βn–βn–|

α
n

= , we derive that limn→∞ ‖yn–yn–‖
αn

= . So, we ob-
tain immediately the following theorem.

Theorem . Assume that {αn} satisfies (C), (C), and (C) and {βn} satisfies

(C): lim
n→∞

|βn – βn–|
α

n
= .

Then the sequence {xn} generated by (.) converges strongly to q = PFix(T)Q(q).
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Remark . Note that conditions (C), (C), and (C) were presented by Lions in [].
At the same time, (C) is different from (C). In fact, we can choose βn = β ∈ (, ) in (C).

Next, we will give another control condition instead of (C) and (C).

Theorem . Assume that {αn} satisfies (C) and (C) and {βn} satisfies

(C):  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 

and

(C): lim
n→∞(βn+ – βn) = .

Then the sequence {xn} generated by (.) converges strongly to q = PFix(T)Q(q).

Proof From Conclusion ., we can choose a constant M such that

sup
n

{


 – βn

(∥∥Q(xn)
∥∥ +

∥∥∥∥T
(

xn + xn+



)∥∥∥∥ +
∥∥∥∥xn – T

(
xn + xn+



)∥∥∥∥
)}

≤ M.

Set yn = xn+–βnxn
–βn

for all n ≥ . Thus, we have

yn+ – yn =
xn+ – βn+xn+

 – βn+
–

xn+ – βnxn

 – βn

=
αn+Q(xn+) + ( – αn+ – βn+)T( xn++xn+

 )
 – βn+

–
αnQ(xn) + ( – αn – βn)T( xn+xn+

 )
 – βn

=
αn+

 – βn+

(
Q(xn+) – Q(xn)

)

+
 – αn+ – βn+

 – βn+

[
T

(
xn+ + xn+



)
– T

(
xn + xn+



)]

+
(

αn+

 – βn+
–

αn

 – βn

)(
Q(xn) – T

(
xn + xn+



))
.

It follows that

‖yn+ – yn‖ ≤
(

αn+

 – βn+
+

αn

 – βn

)∥∥∥∥Q(xn) – T
(

xn + xn+



)∥∥∥∥
+

 – αn+ – βn+

 – βn+

[‖xn+ – xn‖


+
‖xn+ – xn+‖



]

+
ααn+

 – βn+
‖xn+ – xn‖. (.)

From (.), we have

‖xn+ – xn+‖ =
∥∥∥∥αn+

(
Q(xn+) – Q(xn)

)
+ (αn+ – αn)Q(xn)

+ βn+(xn+ – xn) + (βn+ – βn)
(

xn – T
(

xn + xn+



))
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+ ( – αn+ – βn+)
(

T
(

xn+ + xn+



)
– T

(
xn + xn+



))

+ (αn – αn+)T
(

xn + xn+



)∥∥∥∥
≤ ααn+‖xn+ – xn‖ + (αn+ + αn)

∥∥Q(xn)
∥∥ + βn+‖xn+ – xn‖

+ ( – αn+ – βn+)
(‖xn+ – xn‖


+

‖xn+ – xn+‖


)

+ (αn + αn+)
∥∥∥∥T

(
xn + xn+



)∥∥∥∥ + |βn+ – βn|
∥∥∥∥xn – T

(
xn + xn+



)∥∥∥∥.

It follows that

‖xn+ – xn+‖ ≤
[

 –
( – α)αn+

 + αn+ + βn+

]
‖xn+ – xn‖

+
(αn+ + αn)

 + αn+ + βn+

(∥∥Q(xn)
∥∥ +

∥∥∥∥T
(

xn + xn+



)∥∥∥∥
)

+
|βn+ – βn|

 + αn+ + βn+

∥∥∥∥xn – T
(

xn + xn+



)∥∥∥∥
≤ ‖xn+ – xn‖ + M

(
αn + αn+ + |βn+ – βn|

)
. (.)

Substitute (.) into (.) to get

‖yn+ – yn‖ ≤
[

 –
( – α)αn+

 – βn+

]
‖xn+ – xn‖ + M

(
αn+ + αn + |βn+ – βn|

)
.

Hence,

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

This together with Lemma . implies that

lim
n→∞‖yn – xn‖ = .

Note that

yn – xn =
xn+ – xn

 – βn
.

So,

lim
n→∞‖xn+ – xn‖ = . (.)

Again, from (.), we have

‖xn – Txn‖ ≤ ‖xn – xn+‖ + ‖xn+ – Txn‖
≤ ‖xn – xn+‖ + αn

∥∥Q(xn) – Txn
∥∥ + βn‖xn – Txn‖

+ ( – αn – βn)


‖xn – xn+‖.
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It follows that

‖xn – Txn‖ ≤ αn

 – βn

∥∥Q(xn) – Txn
∥∥ +

 – αn – βn

( – βn)
‖xn+ – xn‖.

This together with (C) and (.) implies that

lim
n→∞‖xn – Txn‖ = . (.)

Next, we prove that

lim sup
n→∞

〈
q – Q(q), q – xn

〉 ≤ , (.)

where q ∈ Fix(T) is the unique fixed point of the contraction PFix(T)Q, that is, q =
PFix(T)Q(q).

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that {xni} converges
weakly to a point x̆ and

lim sup
n→∞

〈
PFix(T)Q(q) – Q(q), PFix(T)Q(q) – xn

〉

= lim
i→∞

〈
PFix(T)Q(q) – Q(q), PFix(T)Q(q) – xni

〉
. (.)

By Lemma . and (.), we deduce x̆ ∈ Fix(T). This together with (.) implies that

lim sup
n→∞

〈
PFix(T)Q(q) – Q(q), PFix(T)Q(q) – xn

〉

= lim
i→∞

〈
PFix(T)Q(q) – Q(q), PFix(T)Q(q) – xni

〉

=
〈
PFix(T)Q(q) – Q(q), PFix(T)Q(q) – x̆

〉
≤ .

Finally, we prove that xn → q. From (.), we have

‖xn+ – q‖ = αn
〈
Q(xn) – Q(q), xn+ – q

〉
+ αn

〈
Q(q) – q, xn+ – q

〉

+ ( – αn – βn)
〈
T

(
xn + xn+



)
– q, xn+ – q

〉

+ βn〈xn – q, xn+ – q〉
≤ αnα‖xn – q‖‖xn+ – q‖ + αn

〈
Q(q) – q, xn+ – q

〉

+ ( – αn – βn)


(‖xn – q‖ + ‖xn+ – q‖)‖xn+ – q‖

+ βn‖xn – q‖‖xn+ – q‖

≤  + βn + (α – )αn


‖xn – q‖ +

 – βn – ( – α)αn


‖xn+ – q‖

+ αn
〈
Q(q) – q, xn+ – q

〉
.
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It follows that

‖xn+ – q‖ ≤
[

 –
( – α)αn

 + βn + ( – α)αn

]
‖xn – q‖

+
αn

 + βn + ( – α)αn

〈
Q(q) – q, xn+ – q

〉
. (.)

Apply Lemma . and (.) to (.) to deduce that xn → q. This completes the proof. �

Remark . Note that condition (C) has been used in a large number of references.
Theorems ., ., and . demonstrate the strong convergence of Algorithm . under
different control conditions on parameters {αn} and {βn}. Our algorithm and results pro-
vide a unified framework for the class problem of algorithmic approach to the fixed point
of nonlinear operators.

5 Applications
5.1 Application to variational inequalities
Let C be a nonempty closed convex subset of a real Hilbert space H . Let A : H → H be a
single-valued monotone operator such that C ⊂ dom(A). Now we consider the following
variational inequality:

〈
Ax∗, x – x∗〉 ≥ , x ∈ C. (.)

It is known that (.) is equivalent to the fixed point problem, for any λ > ,

PC(I – λA)x∗ = x∗. (.)

If A is Lipschitzian and α-inverse-strongly monotone, then PC(I – λA) is nonexpansive
provided  < λ < α. Thus, we can get the following theorem.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
A : H → H be a Lipschitzian and α-inverse-strongly monotone operator. Let Q : C → C be
a contraction. Assume (.) is solvable. Let {xn} be a sequence generated by the manner

xn+ = αnQ(xn) + βnxn + γnPC(I – λA)
(

xn + xn+



)
, n ≥ , (.)

where λ ∈ (, α) and {αn} and {βn} satisfy one of the following conditions: (C), (C), (C),
and (C) or (C), (C), (C), and (C) or (C), (C), (C), and (C). Then the sequence
{xn} converges strongly to a solution x∗ of (.) which is also a solution to the variational
inequality

〈
(I – Q)x∗, x – x∗〉 ≥ , x ∈ A–().

5.2 Application to hierarchical minimization
Consider the following hierarchical minimization problem:

min
x∈S

ψ(x), (.)
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where S := arg minx∈H ψ(x) and ψ, ψ are two lower semi-continuous convex functions
from H to R. Assume that S �= ∅. Set S = arg minx∈S ψ(x) and assume S �= ∅.

Assume that ψ and ψ are differentiable and their gradients satisfy the Lipschitz con-
tinuity conditions

∥∥∇ψ(x) – ∇ψ(y)
∥∥ ≤ L‖x – y‖,

∥∥∇ψ(x) – ∇ψ(y)
∥∥ ≤ L‖x – y‖ (.)

for all x, y ∈ H . Note that the Lipschitz continuity (.) implies that ∇ψi is 
Li

-inverse-
strongly monotone. Consequently, (I – γi∇ψi) is nonexpansive provided  < γi < /Li and
S = Fix((I – γ∇ψ)).

The optimality condition for x∗ ∈ S to be a solution of the hierarchical minimization
(.) is the variational inequality

x∗ ∈ S,
〈∇ψ

(
x∗), x – x∗〉 ≥ , x ∈ S. (.)

Hence, we have the following theorem.

Theorem . Assume that the hierarchical minimization problem (.) is solvable. As-
sume (.) and  < γi < /Li. Let Q : C → C be a contraction. Define a sequence {xn} by the
manner

xn+ = αnQ(xn) + βnxn + γnPS (I – λ∇ψ)
(

xn + xn+



)
, n ≥ , (.)

where {αn} and {βn} satisfy one of the following conditions: (C), (C), (C), and (C) or
(C), (C), (C), and (C) or (C), (C), (C), and (C). Then the sequence {xn} converges
strongly to a solution x∗ of (.) which is also a solution to the variational inequality

〈
(I – Q)x∗, x – x∗〉 ≥ , x ∈ S.

5.3 Periodic solution of a nonlinear evolution equation
Consider the time-dependent nonlinear equation of evolution in H given by

du
dt

+ A(t)u = f (t, u), t ≥ , (.)

where A(t) is a family of closed linear operators in a Hilbert space H and f maps R × H
into H .

We assume that A(t) and f (t, u) are periodic in t with a common period ξ > .
An interesting result on the existence of periodic solutions of equation (.) is due to

Browder [].

Theorem . Suppose that A(t) and f (t, u) are periodic in T of period ξ >  and satisfy
the following assumptions:

(i) For each t and each pair u, v ∈ H ,

Re
〈
f (t, u) – f (t, v), u – v

〉 ≤ .
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(ii) For each t and each u ∈ D(A(t)), Re〈A(t)u, u〉 ≥ .
(iii) There exists a mild solution u of equation (.) on R

+ for each initial value v ∈ H .
(iv) There exists some R >  such that

Re
〈
f (t, u), u

〉
< 

for ‖u‖ = R and all t ∈ [, ξ ].
Then there exists an element v of H with ‖v‖ < R such that the mild solution of equation
(.) with the initial condition u() = v is of period ξ .

Define a mapping T : H → H by

Tv = u(ξ ), v ∈ H , (.)

where u solves (.) with u() = v.
Then each fixed point of T corresponds to a periodic solution of equation (.) with

period ξ . Since




d
dt

{∥∥u(t)
∥∥} = – Re

〈
A(t)u(t), u(t)

〉
+ Re

〈
f
(
t, u(t)

)
, u(t)

〉

≤ Re
〈
f
(
t, u(t)

)
, u(t)

〉
,

we see that for any value of t in [, ξ ] for which ‖u(t)‖ = R, we have d
dt {‖u(t)‖} < . Hence,

‖u(ξ )‖ ≤ R, and T maps the closed ball B := {v ∈ H : ‖v‖ ≤ R} into itself.
At the same time, we note that T is nonexpansive. As a matter of fact, if v and v are two

elements of B, u(t) and u(t) are the corresponding mild solutions, we have




d
dt

{∥∥u(t) – u(t)
∥∥} = – Re

〈
A(t)

(
u(t) – u(t)

)
, u(t) – u(t)

〉

+ Re
〈
f
(
t, u(t)

)
– f

(
t, u(t)

)
, u(t) – u(t)

〉
≤ .

Hence, ‖u(ξ ) – u(ξ )‖ ≤ ‖u() – u()‖, i.e., ‖Tv – Tv‖ ≤ ‖v – v‖.
Consequently, T has a fixed point which we denote by v, and the corresponding solution

u of (.) with the initial condition u() = v is a desired periodic solution of (.) with
period ξ . In other words, to find a periodic solution u of (.) is equivalent to finding a
fixed point of T .

Thus, our method is applicable to (.). It turns out that under one of the following
conditions: (C), (C), (C), and (C) or (C), (C), (C), and (C) or (C), (C), (C), and
(C), the sequence {vn} generated by the manner

vn+ = αnQ(vn) + βnvn + γnT
(

vn + vn+



)
, n ≥ 

converges strongly to a fixed point v of T , and the mild solution of (.) with the initial
value u() = ξ is a periodic solution of (.).
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5.4 Fredholm integral equation
Consider a Fredholm integral equation of the form

x(t) = g(t) +
∫ t


F
(
t, s, x(s)

)
ds, t ∈ [, ], (.)

where g is a continuous function on [, ] and F : [, ] × [, ] × R → R is continuous.
Note that if F satisfies the Lipschitz continuity condition

∣∣F(t, s, x) – F(t, s, y)
∣∣ ≤ |x – y|, t, s ∈ [, ], x, y ∈R,

then equation (.) has at least one solution in L[, ] (see []).
Define a mapping T : L[, ] → L[, ] by

(Tx)(t) = g(t) +
∫ t


F
(
t, s, x(s)

)
ds, t ∈ [, ]. (.)

It is easily seen that T is nonexpansive. In fact, we have, for x, y ∈ L[, ],

‖Tx – Ty‖ =
∫ 



∣∣Tx(t) – Ty(t)
∣∣ dt

=
∫ 



∣∣∣∣
∫ 



(
F
(
t, s, x(s)

)
– F

(
t, s, y(s)

))
ds

∣∣∣∣


dt

≤
∫ 



∣∣∣∣
∫ 



∣∣x(s) – y(s)
∣∣ds

∣∣∣∣


dt

≤
∫ 



∣∣x(s) – y(s)
∣∣ ds

= ‖x – y‖.

This means that to find the solution of integral equation (.) is reduced to finding a fixed
point of the nonexpansive mapping T in the Hilbert space L[, ].

Initiating with any function y ∈ L[, ], define a sequence of functions {yn} in L[, ]
by

yn+ = αnQ(yn) + βnyn + γnT
(

yn + yn+



)
, n ≥ .

Then the sequence {yn} converges strongly in L[, ] to the solution of integral equation
(.) under one of the following conditions: (C), (C), (C), and (C) or (C), (C), (C),
and (C) or (C), (C), (C), and (C).
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