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Abstract
By using the concept of a class of functions, theR-functions, we provide some fuzzy
fixed point theorems on a space of fuzzy sets equipped with the supremummetric.
By presenting a technique of constructing a sequence of successive approximations,
we obtain some interesting results that improve many existing results. The related
cases are also shown and discussed.
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1 Introduction
By using a natural generalization of the concept of a set, the fuzzy set, which was intro-
duced initially by Zadeh [], considering mathematical programming problems which are
expressed as optimizing some goal function given certain constraints, this be relaxed by
means of a subjective gradation. In , Heilpern [] used the concept of fuzzy sets and
introduced a class of fuzzy mappings, which is a generalization of the set-valued map-
ping, and proved a fixed point theorem for fuzzy contraction mappings in metric linear
spaces. It is worth noting that the result announced by Heilpern [] is a fuzzy extension
of the Banach contraction principle. Subsequently, several other authors have studied the
existence of fixed points of fuzzy mappings; for example, Estruch and Vidal [] proved a
fixed point theorem for fuzzy contraction mappings over a complete metric space, which
is a generalization of the given Heilpern fixed point theorem, and Sedghi et al. [] gave an
extended version of the Estruch and Vidal [] theorem (for more examples, see [–]).

Although many kinds of fixed point theorems for fuzzy contraction mappings in com-
plete metric spaces have been studied extensively in recent years, we have to point out that
one has given most attention to the class of fuzzy sets with nonempty compact α-cut sets
in the metric space X, but little attention to the class of fuzzy sets with nonempty bounded
or closed, or even bounded closed, α-cut sets. However, it is well known that all compact
sets are bounded closed sets in a general metric space and the converse is not always true.

In , Qui and Shu [] established the completeness of CB(X) with respect to the
completeness of the metric space X, where CB(X) denotes the class of fuzzy sets with
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nonempty bounded closed α-cut sets equipped with the generalized Hausdorff metric
d∞, which takes the supremum on the Hausdorff distances between the corresponding
α-cut sets. Also they proved the following common fixed point theorem for a family of
fuzzy mappings.

Theorem . [] Let (X, d) be a complete metric space and let {Fi} be a sequence of self-
mappings of CB(X). If there exists a constant q ∈ (, ) such that for each μ,μ ∈ CB(X),
and for arbitrary positive integers i and j, i �= j,

d∞
(
Fi(μ), Fj(μ)

) ≤ qM(i,j)(μ,μ),

where

M(i,j)(μ,μ) = max

{
d∞(μ,μ),ρ∞

(
μ, Fi(μ)

)
,ρ∞

(
μ, Fj(μ)

)
,

ρ∞(μ, Fi(μ)) + ρ∞(μ, Fj(μ))


}
.

Then there exists a μ∗ ∈ CB(X) such that μ∗ ⊆ Fi(μ∗) for all i ∈N.

Later, by using the concept of d∞ metric, Qiu et al. [] proved the following common
fixed point theorem, but under the assumption of a compact cut set C(X) instead of a
closed bounded cut set CB(X).

Theorem . [] Let (X, d) be a compact metric space and let {Fi}∞i= be a sequence of
self-mappings of C(X). Let � : [,∞) → [,∞) be a non-decreasing function satisfying the
following condition: � is continuous from the right and

∞∑

n=

�n(t) < ∞, for all t > ,

where �n denotes the nth iterative function of �. Suppose that for arbitrary positive integers
i and j, i �= j,

d∞
(
Fi(μ), Fj(μ)

) ≤ �
(
M(i,j)(μ,μ)

)
,

where M(i,j)(μ,μ) is defined as in Theorem .. Then there exists a μ∗ ∈ C(X) such that
μ∗ ⊆ Fi(μ∗) for all i ∈ N.

Notice that Theorem . can be used to apply to a larger class of mappings than that
of Theorem .. However, after careful consideration, one may see that Theorem . is
relevant when the considered space is a compact metric space instead of a complete metric
space, which has been considered in Theorem ..

Based on the above remarks, here we will present an extension of Theorem ., but in
a complete metric space setting. In fact, we will use the concept of a class of functions,
so-called R-functions, to show some fixed point theorems for self-mappings of CB(X)
with the supremum metric for fuzzy sets. Of course, our results improve and extend those
results which have been presented in [] and [].
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2 Preliminaries
In this section, we will provide some important basic concepts and useful results. Let (X, d)
be a metric space, and let CB(X) be the set of all nonempty bounded closed subsets of X.
Recall that the Hausdorff metric is a function H on CB(X) defined by

H(A, B) = max
{

sup
x∈B

d(x, A), sup
x∈A

d(x, B)
}

:= max
{
ρ(B, A),ρ(A, B)

}
, for all A, B ∈ CB(X),

where ρ(A, B) = supx∈A d(x, B) is the Hausdorff separation of A from B.

2.1 Fuzzy sets and fuzzy mappings
Let I = [, ]. A fuzzy set μ of a metric space X is defined by its membership function μ(x),
which is a mapping from X into I . We denote by F(X) the set of all fuzzy mappings on X,
that is, F(X) := {μ|μ : X → [, ]}. For any α ∈ (, ], the α-cut of the fuzzy set μ is defined
by

[μ]α =
{

x ∈ X : μ(x) ≥ α
}

,

where α ∈ (, ], and we separately specify the support [μ] of μ to be the closure of the
union of [μ]α for  < α ≤ . We denote by CB(X) the totality of fuzzy sets μ : X → I for
which, for each α ∈ I , the α-cut of μ is a nonempty closed bounded subset of X.

Let μ,μ ∈ F(X). Then μ is said to be included in μ, denoted by μ ⊆ μ, if and only
if μ(x) ≤ μ(x) for each x ∈ X. Thus we have μ ⊆ μ if and only if [μ]α ⊆ [μ]α for all
α ∈ I . Let X, Y be any underling sets and U, V are subsets of F(X) and F(Y ), respectively.
A mapping F : U → V is said to be a fuzzy mapping, i.e., F(μ) ∈ V for each μ ∈ U. An
element μ∗ ∈ U is said to be a fixed point of a fuzzy self-mapping F on U if and only if
μ∗ ⊆ F(μ∗).

The d∞-metric (called supremum or generalized Hausdorff metric) is a metric on CB(X)
which is defined as follows:

d∞(μ,μ) = sup
≤α≤

H
(
[μ]α , [μ]α

)

= max
{
ρ∞(μ,μ),ρ∞(μ,μ)

}
, (.)

where μ,μ ∈ CB(X), and

ρ∞(μ,μ) = sup
≤α≤

ρ
(
[μ]α , [μ]α

)

is the Hausdorff separation of μ from μ. Notice that the supremum in (.) may be not
attained, and so it cannot be replaced by a maximum. To clarify this, we include the fol-
lowing example, which can be found in [].

Example . Let X be a set of real numbers and μ,ν ∈ F(X) be fuzzy subsets of X such
that the corresponding level sets are

[μ]α = [ν]α = [, ] for  ≤ α ≤ 


,
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and

[μ]α = {}, [ν]α =
[
, ( – α)

]
for




≤ α ≤ .

It follows that

H
(
[μ]α , [ν]α

)
=

⎧
⎨

⎩
 for  ≤ α ≤ 

 ,

( – α) for 
 ≤ α ≤ .

Then d∞(μ,ν) = sup≤α≤ H([μ]α , [ν]α) = , but this is not attained.

Note that if {μn} be a sequence in CB(X), then it follows from the definition of d∞ that
{μn} converges with respect to the d∞-metric if and only if [μn]α converges uniformly
in α ∈ I with respect to the Hausdorff metric. Further, we know that the metric space
(CB(X), d∞) is complete provided (X, d) is complete (see []). Here, we collect some useful
properties of the d∞-metric, which will be used in order to obtain our results.

Lemma . [] Let μ,μ,μ ∈ CB(X). The following items are true:
(i) ρ∞(μ,μ) =  if and only if μ ⊆ μ,

(ii) if μ ⊆ μ, then ρ∞(μ,μ) ≤ d∞(μ,μ),
(iii) ρ∞(μ,μ) ≤ d∞(μ,μ) + ρ∞(μ,μ).

Theorem . [] Let (X, d) be a metric space and μ,μ ∈ CB(X). Then for any β > 
and any μ ∈ CB(X) satisfying μ ⊆ μ, there exists a μ ∈ CB(X) such that μ ⊆ μ and
d∞(μ,μ) ≤ βd∞(μ,μ).

2.2 R-Functions
In this subsection, we will recall an important tool related to our considered class of map-
pings. A function ϕ : [,∞) → [, ) is said to be an R-function if

lim sup
s→t+

ϕ(s) <  for all t ∈ [,∞).

Note that if ϕ : [,∞) → [, ) is a non-decreasing function or a non-increasing function,
then ϕ is an R-function. This means the set of R-functions is a rich class. In [], Du
proved some of the following characterizations for the class of R-functions.

Theorem . [] Let ϕ : [,∞) → [, ) be a function. Then the following statements are
equivalent.

(a) ϕ is an R-function.
(b) For any nonincreasing sequence {xn}n∈N in [,∞), we have  ≤ supn∈N ϕ(xn) < .

3 Fixed point theorems for fuzzy mappings induced by R-functions
Now, we are in a position to present our main results.

Theorem . Let (X, d) be a complete metric space and let {Fi}∞i= be a sequence of fuzzy
self-mappings of CB(X). Assume that there exists an R-function ϕ : [,∞) → [, ) such
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that for each μ,μ ∈ CB(X), and for arbitrary positive integers i and j, i �= j,

d∞
(
Fi(μ), Fj(μ)

) ≤ ϕ
(
d∞(μ,μ)

)
M(i,j)(μ,μ), (.)

where M(i,j)(μ,μ) is defined as in Theorem .. Then there exists a μ∗ ∈ CB(X) such that
μ∗ ⊆ Fi(μ∗) for all positive integers i.

Proof Let us define a function k : [,∞) → [, ) by

k(t) =
 + ϕ(t)


, for all t ∈ [,∞).

Note that we have  ≤ ϕ(t) < k(t) <  for all t ∈ [,∞).
We will start by picking a fuzzy set μ ∈ CB(X). We subsequently choose μ ⊆ F(μ)

and a positive real number ε such that ε ∈ ( –k(d∞(μ,μ))
 ,  – k(d∞(μ,μ))). Next, by

using this ε, we can find a positive real number β such that β ∈ (, –ε
k(d∞(μ,μ)) ). Now, by

Theorem ., there exists μ ∈ CB(X) such that μ ⊆ F(μ) and

d∞(μ,μ) ≤ βd∞
(
F(μ), F(μ)

)
.

Next, let us to choose a positive real number ε such that ε ∈ ( –k(d∞(μ,μ))
 ,  –

k(d∞(μ,μ))), and then pick a positive real number β such that β ∈ (, –ε
k(d∞(μ,μ)) ).

Similarly to the above, by Theorem ., we can find μ ∈ CB(X) such that μ ⊆ F(μ)
and

d∞(μ,μ) ≤ βd∞
(
F(μ), F(μ)

)
.

By continuing this process, we obtain two sequences of positive real numbers {εn}, {βn}
and a sequence {μn} in CB(X) such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μn+ ⊆ Fn+(μn),

d∞(μn+,μn+) ≤ βnd∞(Fn+(μn), Fn+(μn+)),

εn ∈ ( –k(d∞(μn ,μn+))
 ,  – k(d∞(μn,μn+)),

βn ∈ (, –εn
k(d∞(μn ,μn+)) ),

(.)

for each n ∈ N.
In order to complete the proof, we will divide it into three steps.
Step . We show that supn∈N βnk(d∞(μn,μn+)) < .
Note that, by Lemma .(iii), we have

ρ∞
(
μn–, Fn(μn–)

) ≤ d∞(μn–,μn) + ρ∞
(
μn, Fn(μn–)

)
,

for each n ∈ N. Subsequently, since μn ⊆ Fn(μn–), in view of Lemma .(i) we obtain

ρ∞
(
μn–, Fn(μn–)

) ≤ d∞(μn–,μn),

for each n ∈ N.
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Using this fact, we now derive

M(n+,n+)(μn,μn+)

= max
{

d∞(μn,μn+),ρ∞
(
μn, Fn+(μn)

)
,ρ∞

(
μn+, Fn+(μn+)

)
,

/
[
ρ∞

(
μn+, Fn+(μn)

)
+ ρ∞

(
μn, Fn+(μn+)

)]}

≤ max
{

d∞(μn,μn+), d∞(μn,μn+), d∞(μn+,μn+), /
[
d∞(μn,μn+)

+ ρ∞
(
μn+, Fn+(μn+)

)]}

≤ max
{

d∞(μn,μn+), d∞(μn+,μn+), /
[
d∞(μn,μn+) + d∞(μn+,μn+)

]}

= max
{

d∞(μn,μn+), d∞(μn+,μn+)
}

.

Using this one, in view of the inequalities (.) and (.), we obtain

d∞(μn+,μn+) < βnk
(
d∞(μn,μn+)

)
max

{
d∞(μn,μn+), d∞(μn+,μn+)

}
. (.)

Then, by inequality (.), we must have

max
{

d∞(μn,μn+), d∞(μn+,μn+)
}

= d∞(μn,μn+). (.)

Indeed, if (.) is not true, we would have

d∞(μn+,μn+) < βnk
(
d∞(μn,μn+)

)
d∞(μn+,μn+),

by inequality (.). This leads to a contradiction, since  < βnk(d∞(μn,μn+)) <  – εn < 
for all n ∈ N. This shows that (.) holds. Subsequently, since βnk(d∞(μn,μn+)) ∈ (, ),
we have

d∞(μn+,μn+) < βnk
(
d∞(μn,μn+)

)
d∞(μn,μn+)

< d∞(μn,μn+). (.)

This means the sequence {d∞(μn,μn+)} is strictly decreasing in [,∞). Thus, by applying
Theorem ., we know that

 ≤ sup
n∈N

ϕ
(
d∞(μn,μn+)

)
< .

This implies

sup
n∈N

k
(
d∞(μn,μn+)

)
=




[
 + sup

n∈N
ϕ
(
d∞(μn,μn+)

)]
< . (.)

On the other hand, we observe that

βnk
(
d∞(μn,μn+)

)
<  – εn

<  –
(

 – k(d∞(μn,μn+))


)

=
 + k(d∞(μn,μn+))


.



Suantai et al. Fixed Point Theory and Applications  (2015) 2015:167 Page 7 of 13

Using this together with (.), we can conclude that

sup
n∈N

βnk
(
d∞(μn,μn+)

)
< ,

as required.
Step . We show that {μn} is a Cauchy sequence in CB(X).
According to step , let us put c := supn∈N βnk(d∞(μn,μn+)) ∈ (, ). Then, by (.), we

have

d∞(μn+,μn+) < βnk
(
d∞(μn,μn+)

)
d∞(μn,μn+)

≤ cd∞(μn,μn+),

for each n ∈ N. By using this relation, we deduce that

d∞(μn+,μn+) < cd∞(μn,μn+) < · · · < cn+d∞(μ,μ),

for each n ∈ N.
So, for arbitrary positive integers m and k, we see that

d∞(μk ,μk+m) ≤
k+m–∑

i=k

d∞(μi,μi+)

<
k+m–∑

i=k

cid∞(μ,μ)

≤ ck

 – c
d∞(μ,μ).

Since c ∈ (, ), we can conclude that {μn} is a Cauchy sequence in CB(X), as required.
Step . We show that there is μ∗ ∈ CB(X) such that μ∗ ⊂ Fi(μ∗), for all i ∈N.
Since {μn} is a Cauchy sequence in a complete metric space (CB(X), d∞), there is μ∗ ∈

CB(X) such that μn → μ∗ as n → ∞. We now show that μ∗ ⊆ Fi(μ∗) for all i ∈N.
Let i ∈ N be arbitrary. Firstly, by Lemma .(iii) and (iv), let us notice that

ρ∞
(
μ∗, Fi(μ∗)

) ≤ d∞(μ∗,μj) + ρ∞
(
μj, Fi(μ∗)

)

≤ d∞(μ∗,μj) + d∞
(
Fj(μj–), Fi(μ∗)

)
, (.)

since μj ⊂ Fj(μj–) for arbitrary natural numbers j such that i �= j.
Subsequently, by using (.) and Lemma .(iii), we derive

d∞
(
Fj(μj–), Fi(μ∗)

) ≤ ϕ
(
d∞(μj–,μ∗)

)
max

{
d∞(μj–,μ∗),ρ∞

(
μj–, Fj(μj–)

)
,

ρ∞
(
μ∗, Fi(μ∗)

)
, /

[
ρ∞

(
μ∗, Fj(μj–)

)
+ ρ∞

(
μj–, Fi(μ∗)

)]}

≤ ϕ
(
d∞(μj–,μ∗)

)
max

{
d∞(μj–,μ∗),ρ∞

(
μj–, Fj(μj–)

)
,

d∞(μ∗,μj) + d∞
(
Fj(μj–), Fi(μ∗)

)
, /

[
d∞(μ∗,μj)

+ ρ∞
(
μj, Fj(μj–)

)
+ d∞(μj–,μ∗) + ρ∞

(
μ∗, Fi(μ∗)

)]}
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≤ ϕ
(
d∞(μj–,μ∗)

)
max

{
d∞(μj–,μ∗),ρ∞

(
μj–, Fj(μj–)

)
,

d∞(μj,μ∗) + d∞
(
Fj(μj–), Fi(μ∗)

)
, /

[
d∞(μj,μ∗)

+ d∞(μj–,μ∗) + ρ∞
(
μ∗, Fi(μ∗)

)]}
. (.)

We now consider the following two possible cases:
Case . If

d∞(μj,μ∗) + d∞
(
Fj(μj–), Fi(μ∗)

)

= max
{

d∞(μj–,μ∗),ρ∞
(
μj–, Fj(μj–)

)
, d∞(μj,μ∗)

+ d∞
(
Fj(μj–), Fi(μ∗)

)
, /

[
d∞(μj,μ∗) + d∞(μj–,μ∗) + ρ∞

(
μ∗, Fi(μ∗)

)]}
,

then, by inequality (.), we have

d∞
(
Fj(μj–), Fi(μ∗)

) ≤ ϕ
(
d∞(μj–,μ∗)

)[
d∞(μj,μ∗) + d∞(Fj(μj–), Fi(μ∗)

]
.

This is equivalent to

d∞
(
Fj(μj–), Fi(μ∗)

) ≤ ϕ(d∞(μj–,μ∗))d∞(μj,μ∗)
 – ϕ(d∞(μj–,μ∗))

.

Using, the previous argument together with inequality (.), we have

ρ∞
(
μ∗, Fi(μ∗)

) ≤ d∞(μ∗,μj) +
ϕ(d∞(μj–,μ∗))d∞(μj,μ∗)

 – ϕ(d∞(μj–,μ∗))

=
d∞(μ∗,μj)

 – ϕ(d∞(μj–,μ∗))
. (.)

Note that, since d∞(μj,μ∗) →  as j → ∞, without loss of generality (passing to a sub-
sequence if necessary), we may assume that {d∞(μj,μ∗)}∞j= is a nonincreasing sequence.
Subsequently, by Theorem ., we have

 ≤ sup
j∈N

ϕ
(
d∞(μj,μ∗)

)
< .

Subsequently, by inequality (.), we obtain

ρ∞
(
μ∗, Fi(μ∗)

) ≤ d∞(μj,μ∗)
 – ϕ(d∞(μj–,μ∗))

≤ d∞(μj,μ∗)
 – supj∈N ϕ(d∞(μj–,μ∗))

. (.)

Letting j → ∞ in inequality (.), we have

ρ∞
(
μ∗, Fi(μ∗)

) ≤ .

This implies, by Lemma .(i), that μ∗ ⊆ Fi(μ∗).
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Case . Assume

d∞(μj,μ∗) + d∞
(
Fj(μj–), Fi(μ∗)

)

�= max
{

d∞(μj–,μ∗),ρ∞
(
μj–, Fj(μj–)

)
, d∞(μj,μ∗)

+ d∞
(
Fj(μj–), Fi(μ∗)

)
, /

[
d∞(μj,μ∗) + d∞(μj–,μ∗)

+ ρ∞
(
μ∗, Fi(μ∗)

)]}
.

In this situation, by inequality (.), we have

d∞
(
Fj(μj–), Fi(μ∗)

)

≤ ϕ
(
d∞(μj–,μ∗)

)
max

{
d∞(μj–,μ∗),ρ∞

(
μj–, Fj(μj–)

)
,

/
[
d∞(μj,μ∗) + d∞(μj–,μ∗) + ρ∞

(
μ∗, Fi(μ∗)

)]}

≤ ϕ
(
d∞(μj–,μ∗)

)
max

{
d∞(μj–,μ∗), d∞(μj–,μj), /

[
d∞(μj,μ∗)

+ d∞(μj–,μ∗) + ρ∞
(
μ∗, Fi(μ∗)

)]}
.

So, it follows by inequality (.) that

ρ∞
(
μ∗, Fi(μ∗)

) ≤ d∞(μ∗,μj) + ϕ
(
d∞(μj–,μ∗)

)
max

{
d∞(μj–,μ∗), d∞(μj–,μj),

/
[
d∞(μj,μ∗) + d∞(μj–,μ∗) + ρ∞

(
μ∗, Fi(μ∗)

)]}

≤ d∞(μ∗,μj) + sup
j∈N

ϕ
(
d∞(μj–,μ∗)

)
max

{
d∞(μj–,μ∗), d∞(μj–,μj),

/
[
d∞(μj,μ∗) + d∞(μj–,μ∗) + ρ∞

(
μ∗, Fi(μ∗)

)]}

< d∞(μ∗,μj) + max
{

d∞(μj–,μ∗), d∞(μj–,μj),

/
[
d∞(μj,μ∗) + d∞(μj–,μ∗) + ρ∞

(
μ∗, Fi(μ∗)

)]}
. (.)

Letting j → ∞ in inequality (.), we obtain

ρ∞
(
μ∗, Fi(μ∗)

) ≤ ρ∞(μ∗, Fi(μ∗))


,

which implies that ρ∞(μ∗, Fi(μ∗)) = . Again, by Lemma .(i), it follows that μ∗ ⊆ Fi(μ∗).
Hence, by Cases  and , the proof is completed. �

Remark . Theorem . recovers Theorem . as a special case. Meanwhile, it improves
Theorem . since we are considering a larger class of metric space settings.

Using Theorem ., we also obtain the following result.

Corollary . Let (X, d) be a complete metric space and let {Fi}∞i= be a sequence of fuzzy
self-mappings of CB(X). If there exist nonnegative constants a, b, c, a + b + c < , such
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that for each μ,μ ∈ CB(X), and for arbitrary positive integers i and j, i �= j,

d∞
(
Fi(μ), Fj(μ)

) ≤ ad∞(μ,μ) + b
{
ρ∞

(
μ, Fi(μ)

)
+ ρ∞

(
μ, Fi(μ)

)}

+ c
{
ρ∞

(
μ, Fi(μ)

)
+ ρ∞

(
μ, Fi(μ)

)}
, (.)

then there exists a μ∗ ∈ CB(X) such that μ∗ ⊆ Fi(μ∗) for all i ∈N.

Proof Let us define an R function ϕ : [,∞) → [, ) by

ϕ(t) = a + b + c for all t ∈ [,∞).

Then one can derive that the relation (.) is transformed to (.), and so the required
result follows immediately from Theorem .. �

Next, motivated by the idea of Berinde [], we now present another fuzzy fixed point
theorem.

Theorem . Let (X, d) be a complete metric space and let {Fi}∞i= be a sequence of fuzzy
self-mappings of CB(X). If there exist an R-function ϕ : [,∞) → [, ) and L ≥  such that
for each μ,μ ∈ CB(X), and for arbitrary positive integers i and j, i �= j,

d∞
(
Fi(μ), Fj(μ)

) ≤ ϕ
(
d∞(μ,μ)

) [ρ∞(μ, Fi(μ)) + ρ∞(μ, Fj(μ))]


+ Lρ∞
(
μ, Fi(μ)

)
, (.)

then there exists a μ∗ ∈ CB(X) such that μ∗ ⊆ Fi(μ∗) for all i ∈N.

Proof Let us construct and consider again a function k and the sequences which we have
defined in (.). Recall that, by our constructive method, we also know that

ρ∞
(
μn–, Fn(μn–)

) ≤ d∞(μn–,μn),

for each n ∈ N. Using this together with (.), we derive

d∞(μn+,μn+) ≤ βnd∞
(
Fn+(μn), Fn+(μn+)

)

≤ βnϕ
(
d∞(μn,μn+)

) [ρ∞(μn, Fn+(μn)) + ρ∞(μn+, Fn+(μn+))]


+ βnLρ∞
(
μn+, Fn+(μn)

)

≤ βnϕ
(
d∞(μn,μn+)

) [d∞(μn,μn+) + d∞(μn+,μn+)]


< βnk
(
d∞(μn,μn+)

) [d∞(μn,μn+) + d∞(μn+,μn+)]


,

for each n ∈ N. This is equivalent to

d∞(μn+,μn+) <
βnk(d∞(μn,μn+))

 – βnk(d∞(μn,μn+))
d∞(μn,μn+), (.)
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for each n ∈ N. Observe that, since βnk(d∞(μn,μn+)) ∈ (, ), we also have

βnk(d∞(μn,μn+))
 – βnk(d∞(μn,μn+))

∈ (, ),

for all n ∈ N. Thus, by (.), we see that {d∞(μn,μn+)} is a strictly decreasing sequence
in [,∞). Since ϕ is an R-function, by applying Theorem ., we have

 ≤ sup
n∈N

ϕ
(
d∞(μn,μn+)

)
< .

Next, as we have done in order to prove Theorem ., we write

λ := sup
n∈N

βnk
(
d∞(μn,μn+)

)
< .

Let us take c := λ
–λ

. It follows that c ∈ (, ) and, by (.), we also have

d∞(μn+,μn+) <
βnk(d∞(μn,μn+))

 – βnk(d∞(μn,μn+))
d∞(μn,μn+)

≤ cd∞(μn,μn+). (.)

Now, again by reasoning along the lines of proving Theorem ., we can show that there
is a μ∗ ∈ CB(X) which is the limit point of the considered sequence {μn}, under the supre-
mum metric d∞, and it satisfies

 ≤ sup
j∈N

ϕ
(
d∞(μj,μ∗)

)
< . (.)

Finally, we will show that μ∗ ⊆ Fi(μ∗) for all i ∈ N. Let i ∈N be arbitrary. Note again that

ρ∞
(
μ∗, Fi(μ∗)

) ≤ d∞(μ∗,μj) + ρ∞
(
μj, Fi(μ∗)

)

≤ d∞(μ∗,μj) + d∞
(
Fj(μj–), Fi(μ∗)

)
, (.)

for each j ∈N such that j �= i. Consider

d∞
(
Fj(μj–), Fi(μ∗)

)

≤ ϕ
(
d∞(μj–,μ∗)

) [ρ∞(μj–, Fj(μj–)) + ρ∞(μ∗, Fi(μ∗))]


+ Lρ∞
(
μ∗, Fj(μj–)

)

≤ ϕ
(
d∞(μj–,μ∗)

)d∞(μj–,μj)


+ ϕ
(
d∞(μj–,μ∗)

)ρ∞(μ∗, Fi(μ∗))


+ L
(
d∞(μ∗,μj) + ρ∞

(
μj, Fj(μj–)

))

≤ ϕ
(
d∞(μj–,μ∗)

)d∞(μj–,μj)


+ ϕ
(
d∞(μj–,μ∗)

)ρ∞(μ∗, Fi(μ∗))


+ Ld∞(μ∗,μj) + Lρ∞
(
μj, Fj(μj–)

)
,
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where j ∈N with j �= i. Subsequently, from (.) together with (.), we obtain

ρ∞
(
μ∗, Fi(μ∗)

) ≤ d∞(μ∗,μj) + ϕ
(
d∞(μj–,μ∗)

)d∞(μj–,μj)


+ ϕ
(
d∞(μj–,μ∗)

)ρ∞(μ∗, Fi(μ∗))


+ Ld∞(μ∗,μj) + Lρ∞
(
μj, Fj(μj–)

)

≤ ( + L)d∞(μ∗,μj) + sup
j∈N

ϕ
(
d∞(μj,μ∗)

)d∞(μj–,μj)


+ sup
j∈N

ϕ
(
d∞(μj–,μ∗)

)ρ∞(μ∗, Fi(μ∗))


< ( + L)d∞(μ∗,μj) +
d∞(μj–,μj)


+

ρ∞(μ∗, Fi(μ∗))


. (.)

By letting j → ∞ on the right of inequality (.), we have

ρ∞
(
μ∗, Fi(μ∗)

) ≤ ρ∞(μ∗, Fi(μ∗))


,

which implies that ρ∞(μ∗, Fi(μ∗)) = . Then, by Lemma .(i), we have μ∗ ⊆ Fi(μ∗). Since
i ∈ N is arbitrary, we complete the proof. �

The following result can be deduced from Theorem ..

Corollary . Let (X, d) be a complete metric space and let {Fi}∞i= be a sequence of fuzzy
self-mappings of CB(X). If there exist an R-function ϕ : [,∞) → [, ) and L ≥  such that
for each μ,μ ∈ CB(X), and for arbitrary positive integers i and j, i �= j,

d∞
(
Fi(μ), Fj(μ)

) ≤ ϕ
(
d∞(μ,μ)

)[
ρ∞

(
μ, Fi(μ)

)
ρ∞

(
μ, Fj(μ)

)]/

+ Lρ∞
(
μ, Fi(μ)

)
, (.)

then there exists a μ∗ ∈ CB(X) such that μ∗ ⊆ Fi(μ∗) for all i ∈N.

Proof Since for each a, b ∈R
+, we have

√
ab ≤ a+b

 , the required result follows immediately
from our Theorem .. �

Remark . Corollary . recovers a result which has presented in [], when L = .

4 Conclusions
In this paper we have presented fuzzy fixed point theorems on the space of fuzzy sets under
a kind of supremum metric setting. We would like to point out that this kind of space is
very general and interesting. Moreover, as one can observe, a fixed point in this situation
is, in fact, a fixed (fuzzy) set. This means that our presented results are very general and
we recover many existing results on fixed point theory as regards both single-valued and
set-valued mappings.

Competing interests
The authors declare that they have no competing interests.



Suantai et al. Fixed Point Theory and Applications  (2015) 2015:167 Page 13 of 13

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand. 2Department of
Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand. 3Research Center for Academic
Excellence in Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand.

Acknowledgements
This paper is partially supported by the Thailand Research Fund under the project RTA5780007. N Petrot is partially
supported by Naresuan University Project R2558C098. W Saksirikun is supported by the Thailand Research Fund through
the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0248/2553).

Received: 15 May 2015 Accepted: 6 September 2015

References
1. Zadeh, LA: Fuzzy sets. Inf. Control 8, 338-353 (1965)
2. Heilpern, S: Fuzzy mappings and fixed point theorem. J. Math. Anal. Appl. 83, 566-569 (1981)
3. Estruch, VD, Vidal, A: A note on fixed fuzzy points for fuzzy mappings. Rend. Ist. Mat. Univ. Trieste 32, 39-45 (2001)
4. Sedghi, S, Shobe, N, Altun, I: A fixed fuzzy point for fuzzy mappings in complete metric spaces. Math. Commun. 13,

289-294 (2008)
5. Anastassiou, GA: Multivariate fuzzy perturbed neural network operators approximation. J. Nonlinear Sci. Appl. 7(6),

383-406 (2014)
6. Azama, A, Beg, I: Common fuzzy fixed points for fuzzy mappings. Fixed Point Theory Appl. 2013, 14 (2013)
7. Bose, RK, Sahani, D: Fuzzy mappings and fixed point theorems. Fuzzy Sets Syst. 21, 53-58 (1987)
8. Butnariu, D: Fixed point for fuzzy mapping. Fuzzy Sets Syst. 7, 191-207 (1982)
9. Kaur, S, Kaur, J: Integrability and L1-convergence of fuzzy trigonometric series with special fuzzy coefficients.

J. Nonlinear Sci. Appl. 8(1), 23-39 (2015)
10. Lee, BS, Cho, SJ: A fixed point theorem for contractive type fuzzy mappings. Fuzzy Sets Syst. 61, 309-312 (1994)
11. Moreno, JM, Roldan, A, Roldan, C, Cho, YJ: Multi-dimensional coincidence point theorems for weakly compatible

mappings with the CLRg-property in (fuzzy) metric spaces. Fixed Point Theory Appl. 2015, 53 (2015)
12. Qiu, D, Shu, L: Supremummetric on the space of fuzzy sets and common fixed point theorems for fuzzy mappings.

Inf. Sci. 178, 3595-3604 (2008)
13. Rashwan, RA, Ahmad, MA: Common fixed point theorems for fuzzy mappings. Arch. Math. 38, 219-226 (2002)
14. Turkoglu, D, Rhoades, BE: A fixed fuzzy point for fuzzy mapping in complete metric spaces. Math. Commun. 10,

115-121 (2005)
15. Qiu, D, Shu, L, Guan, J: Common fixed point theorems for fuzzy mappings under �-contraction condition. Chaos

Solitons Fractals 41, 360-367 (2009)
16. Diamond, P, Kloeden, P: Metric Spaces of Fuzzy Sets Theory and Applications. World Scientific, Singapore (1994)
17. Du, W-S: On coincidence point and fixed point theorems for nonlinear multivalued maps. Topol. Appl. 159, 49-56

(2012)
18. Berinde, V: Approximating fixed points of weak contractions using Picard iteration. Nonlinear Anal. Forum 9(1), 43-53

(2004)


	Fuzzy ﬁxed point theorems on the complete fuzzy spaces under supremum metric
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Fuzzy sets and fuzzy mappings
	R-Functions

	Fixed point theorems for fuzzy mappings induced by R-functions
	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


