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Abstract
In this manuscript we extend very recent fixed point theorems in the setting of
Menger spaces in three senses: on the one hand, we introduce the notion ofMenger
probabilistic metric-like space by avoiding a non-necessary constraint (at least, for our
purposes) in the properties that define a Menger space; on the other hand, we
consider a more general class of auxiliary functions in the contractivity condition;
finally, we show that the function t → 1/t – 1 (which appears in many fixed point
theorems in the fuzzy context) can be replaced by more appropriate and general
functions. We illustrate our main statements with an example in which previous
results cannot be applied.

Keywords: probabilistic metric space; Menger space; fixed point; contractive
mapping

1 Introduction
There are two well known extensions of the notion of metric space to frameworks in which
imprecise models are considered: fuzzy metric spaces (see [–]) and probabilistic metric
spaces [–]. The two concepts are very similar, but they are different in nature.

In a metric space, the distance between two points is, necessarily, a non-negative real
number. In , Menger extended the notion of metric space replacing non-negative
numbers by a random variable that only took non-negative real values. Such random vari-
able was characterized by its distribution function. Hence, in this kind of spaces (which
Menger originally called statistical metric spaces), the distance between two points x and
y is given by a distribution function Fxy which can be seen as follows:a for all t ∈ [,∞),
the value Fxy(t) gives the probability of the event that occurs when the distance between x
and y is less than t, that is,

Fxy(t) = P
(
d(x, y) < t

)
for all t ∈ [,∞). ()

Thus, statistical metric spaces depend on the notion of distribution function. Although
there is a great agreement about the global properties that a distribution function must
satisfy, in practice, we can find several papers involving different notions. Such different
definitions lead to different properties and, in some cases, to incomparable results. For
instance, Schweizer and Sklar [], Definition .., established that a distribution function
(briefly, d.f.) is a nondecreasing function F : R → [, ] such that F(–∞) =  and F(∞) = 
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(where R = [–∞,∞] is the extended real line). Note that not all such functions can be
interpreted as cumulative distribution functions for a random variable. However, when
a random experiment is considered, additional properties are required. For instance, if
F is given as in (), it is not difficult to show that F is left-continuous in R = (–∞,∞).
Furthermore, if d only takes non-negative values, then F(t) =  for all t ∈ [–∞, ]. Thus,
Schweizer and Sklar denoted by � the family of all d.f.’s that are left-continuous on R,
and by �+ the family of all F ∈ � such that F(t) =  for all t ∈ [–∞, ]. Functions in �+

were called distance distribution functions (briefly, d.d.f.) because they represent random
variables that only take non-negative values (as in (), where a distance is involved). For
convenience, d.d.f.’s are only considered in [,∞], where F() =  and F(∞) = .

The set �+ of all d.d.f.’s is partially ordered by the binary relation ≤, being F ≤ G when
F(t) ≤ G(t) for all t ∈ (,∞). The minimal and the maximal elements of �+ are ε∞ and ε,
respectively, where

ε∞(t) =

{
, if  ≤ t < ∞,
, if t = ∞,

and ε(t) =

{
, if t = ,
, if  < t ≤ ∞.

On the other hand, many authors call distribution function (see, for instance, []) to
a nondecreasing, left-continuous function F : R → [, ] such that inft∈R F(t) =  and
supt∈R F(t) = . As F is nondecreasing, it follows that

lim
t→–∞ F(t) = inf

t∈R
F(t) =  and lim

t→∞ F(t) = sup
t∈R

F(t) = .

This notion does not coincide with Schweizer and Sklar’s view-point. For instance, ε∞ is
a d.d.f. in Schweizer and Sklar’s sense, but it does not satisfy the condition limt→∞ F(t) = 
(because if t ∈ [,∞), then F(t) = ).

In recent times, many fixed point theorems have been presented in the setting of proba-
bilistic metric spaces. Many of them were inspired by their corresponding results on met-
ric spaces. One of the most attractive, effective ways to introduce contractivity conditions
in the probabilistic framework is based on considering some terms like in the following
expression:


Fxy(t)

– , where x, y ∈ X and t > 

(see [–]). For instance, in [], Kutbi et al. stated the following result (where � and �

are appropriate collections of auxiliary functions that we will describe in Section ).

Theorem  (Kutbi et al. [], Theorem .) Let (X, F , T) be a G-complete Menger space
and let f : X → X be a mapping. Assume that there exist a constant c ∈ (, ) and two
functions φ ∈ � and ψ ∈ � satisfying the inequality


Ffx,fy(φ(ct))

–  ≤ ψ

(


Fx,y(φ(t))
– 

)

for all x, y ∈ X and all t >  such that Fx,y(φ(t)) > . Then f has a unique fixed point.
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We must highlight that the uniqueness of the fixed point was not proved in such result
(it was studied in Theorem . in []). The main aims of the present manuscript are the
following ones:

() to extend the previous result to a wider class of Menger spaces, that we shall call
Menger probabilistic metric-like spaces;

() to show that some conditions in the functions of the family � are not necessary;
() to introduce more general contractivity conditions replacing the function

t → /t –  by an appropriate function h.
For the sake of clarity, we advise the reader that we shall use the terminology introduced

in [].

2 Preliminaries
In this section, we recall some definitions and basic results. Throughout this manuscript,
let N = {, , , . . .} be the set of all non-negative integer numbers and let N

∗ = N�{}.
A fixed point of a self-mapping T : X → X is a point x ∈ X such that Tx = x. We will denote
by Fix(T) the family of all fixed points of T .

Definition  A t-norm (or a triangular norm) is a function ∗ : [, ] × [, ] → [, ] sat-
isfying, for all a, b, c, d ∈ [, ], the following properties:

() Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c).
() Commutativity: a ∗ b = b ∗ a.
() Existence of unity: a ∗  = a.
() Monotonicity: if a ≤ b and c ≤ d, then a ∗ c ≤ b ∗ d.
A t-norm is continuous if it is continuous as a function.

It can be proved that a ∗  =  for all a ∈ [, ]. Examples of t-norms are:

Minimal t-norm: a ∗M b = min(a, b),

Product t-norm: a ∗P b = ab,

Lukasiewicz t-norm: a ∗L b = max(a + b – , ),

Drastic t-norm: a ∗D b =

{
min(a, b), if max(a, b) = ,
, otherwise.

The three first t-norms are continuous, but the drastic t-norm is not continuous.
Given a ∈ [,∞), let εa : [,∞] → [, ] be the function given by

εa(t) =

{
, if  ≤ t ≤ a,
, if a < t ≤ ∞.

()

Functions {εa : a ∈ [,∞)}∪ {ε∞} are called step functions and they are examples of d.d.f.’s.
[].

Definition  A Menger probabilistic metric space (briefly, a Menger PMS) is a triple
(X, F ,∗) where X is a nonempty set, ∗ is a continuous t-norm and F : X × X → �+ is a
mapping satisfying, for all x, y, z ∈ X and all t, s ∈ (,∞), the following properties (for con-
venience, the value F(x, y)(t) will be denoted by Fxy(t)):
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(PM) Fxx(t) =  for all t > ;
(PM) identity: if Fxy(t) =  for all t > , then x = y;
(PM) symmetry: Fxy(t) = Fyx(t);
(PM) triangular inequality: Fxz(t + s) ≥ Fxy(t) ∗ Fyz(s).

This definition of a Menger PMS is taken from Schweizer and Sklar’s notion given in [].
However, it is different from the one we find in [], Definition ., because the authors of
this reference assumed that Fxy is a distribution function in their own sense (in particular,
the random variable can take values on intervals of negative real numbers).

Remark  The reader can observe the following subtle details.
() Since F(X × X) ⊆ �+, each d.d.f. Fxy in a Menger PMS is a nondecreasing function

on [,∞]. Furthermore, it always satisfies Fxy() = . In the following text, we will
often use the monotonicity of Fxy. However, we will never use the fact that
Fxy() = . In this sense, it is possible to consider a similar definition of Menger
space where the probabilistic metric F take values in � rather than in �+. However,
notice that conditions (PM)-(PM) only refer to the interval [,∞).

() In the field of fixed point theory, a fifth assumption is usually considered.

(PM) limt→∞ Fxy(t) =  for all x, y ∈ X .

A discussion about the necessity of this condition can be found in []. Our main
result will not need such property, but it will appear in some corollaries.

The following families of auxiliary functions were considered in [].

Definition  Let � be the family of all functions φ : [,∞) → [,∞) satisfying:
() φ(t) =  if, and only if, t = ;
() φ is strictly increasing and limt→∞ φ(t) = ∞;
() φ is left-continuous in (,∞);
() φ is continuous at t = .

Definition  Let � be the class of all functions ψ : [,∞) → [,∞) satisfying:
() ψ is nondecreasing;
() ψ is continuous at t = ;
() ψ() = ;
() if {an} ⊂ [,∞) is a sequence such that {an} → , then {ψn(an)} →  (where ψn

denotes the nth-iterate of ψ ).

First of all, we show that we do not need to assume that ψ is continuous at t =  for
functions in � under the rest of the assumptions.

Proposition  Let ψ : [,∞) → [,∞) be a nondecreasing function such that ψ() = .
() If ψ is not continuous at t = , then there exists ε >  such that ψ(t) ≥ ε for all t > .
() If ψ satisfies ‘{ψn(an)} →  whenever {an} →  as n → ∞’, then ψ is continuous at

t = .
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Proof () Taking into account that ψ() = , then the continuity condition at t =  is

∀ε > , ∃δ >  :
(|t – | < δ ⇒ ∣

∣ψ(t) – ψ()
∣
∣ < ε

)
.

Assume that ψ is not continuous at t = . Then there exists ε >  verifying

for all δ > , there exists t ∈ (, δ) such that ψ(t) ≥ ε.

By taking δn = /n >  for all n ∈N, we can find a strictly decreasing sequence {an} ⊂ (,∞)
such that

 < an+ < an <

n

and ψ(an) ≥ ε for all n ∈ N.

Next, we show that ψ(t) ≥ ε for all t > . Let t >  be arbitrary. As {an} → , there exists
n ∈N such that  < an < t. As ψ is nondecreasing,

ψ(t) ≥ ψ(an ) ≥ ε.

Then ψ(t) ≥ ε.
() We reason by contradiction. Assume that ψ is not continuous at t = . By the first

item, there exists ε >  such that ψ(t) ≥ ε for all t > . Let an = /n for all n ∈ N. Then
{an} → . By hypothesis, {ψn(an)} → . However, for all n ∈N,

an =

n

>  ⇒ ψ(an) ≥ ε > ,

ψ(an) >  ⇒ ψ(an) ≥ ε > ,

...

ψn–(an) >  ⇒ ψn(an) = ψ
(
ψn–(an)

) ≥ ε.

Since ψn(an) ≥ ε for all n ∈N, {ψn(an)} →  is a contradiction. �

As a consequence of the previous properties, we can express

� =

{

ψ : [,∞) → [,∞)
/

ψ nondecreasing,ψ() = ,
if {an} → , then {ψn(an)} → .

}

3 Menger probabilistic metric-like spaces
In this section, we introduce the notion of Menger probabilistic metric-like space as a nat-
ural way to extend Menger PM-spaces.

Definition  A Menger probabilistic metric-like space (briefly, a Menger PMLS) is a triple
(X, F ,∗) where X is a nonempty set, ∗ is a continuous t-norm and F : X × X → �+ is a
mapping satisfying (PM), (PM), and (PM).

Clearly, every Menger PMS is a Menger PMLS, but the converse is false, as we can see
in the following example.
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Example  Let X = [,∞) be the interval of non-negative real numbers and let F : X ×
X → �+ be the mapping:

Fxy = εmax{x,y} for all x, y ∈ X,

where {εa : a ∈ [,∞)} are the step functions given in (). Let us show that (X, F ,∗P) is a
Menger PMLS that also verifies (PM), but it is not a Menger PMS. Indeed, since F() =
ε() = , then F does not satisfy axiom (PM), so (X, F ,∗P) is not a Menger PMS. However,
conditions (PM), (PM), and (PM) are obvious. Let us prove condition (PM). Let x, y, z ∈
X and t, s > . Since Fxz(t + s) ∈ {, }, (PM) trivially holds if Fxz(t + s) = . Assume that
Fxz(t + s) = . Hence εmax{x,z}(t + s) =  implies that t + s ≤ max{x, z}. Then t + s ≤ x or
t + s ≤ z. In the first case, t ≤ t + s ≤ x, so Fxy(t) = εmax{x,y}(t) = . In the second case, s ≤
t + s ≤ z, so Fyz(s) = εmax{y,z}(s) = . In any case,  ∈ {Fxy(t), Fyz(s)}. Then

Fxy(t) ∗P Fyz(s) = Fxy(t) · Fyz(s) =  = Fxz(t + s),

and this proves that (PM) also holds. Thus, (X, F ,∗P) is a Menger PMLS that also verifies
(PM).

Example  Using X and F as in the previous example, and taking into account that
a ∗P b ≤ a ∗M b for all a, b ∈ [, ], we deduce that (X, F ,∗M) is also a Menger PMLS that,
additionally, verifies (PM), but it is not a Menger PMS.

Definition  Let {xn} be a sequence in a Menger PMLS (X, F ,∗). We will say that:
• {xn} converges to x if for all ε >  and all λ ∈ (, ), there exists n ∈N such that

Fxnx(ε) >  – λ for all n ≥ n (in such a case, we will write {xn} → x);
• {xn} is a Cauchy sequence if for all ε >  and all λ ∈ (, ), there exists n ∈ N such that

Fxnxm (ε) >  – λ for all m > n ≥ n;
• (X, F ,∗) is M-complete if every Cauchy sequence is convergent;
• {xn} is a G-Cauchy sequence if for all ε >  and all p ∈N

∗, we have
limn→∞ Fxnxn+p (ε) = ;

• (X, F ,∗) is G-complete if every G-Cauchy sequence is convergent.

Notice that the t-norm ∗ has not a role in the previous definition. It is clear that ev-
ery Cauchy sequence is also a G-Cauchy sequence. As a consequence, every G-complete
Menger PMLS is an M-complete Menger PMLS, but the converse is false.

Example  Let us show that the Menger PMLS (X, F ,∗P) introduced in Example  is G-
complete. Let {xn} be a G-Cauchy sequence in (X, F ,∗P). We claim that {xn} d→  using the
Euclidean metric d(x, y) = |x – y| for all x, y ∈ X. Let ε >  be arbitrary. Using p = , we have
limn→∞ Fxnxn+ (ε) = . As Fxnxn+ (ε) ∈ {, } for all n ∈ N, we infer that there exists n ∈ N

such that Fxnxn+ (ε) =  for all n ≥ n. Hence

 = Fxnxn+ (ε) = εmax{xn ,xn+}(ε) ⇒ max{xn, xn+} < ε.
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Then xn ≤ max{xn, xn+} < ε for all n ≥ n. This proves that {xn} d→ . Next, we are going
to prove that {xn} converges to  in (X, F ,∗P). Indeed, notice that

Fxn ,(ε) = εmax{xn ,}(ε) = εxn (ε) =

{
, if ε ≤ xn,
, if xn < ε.

As {xn} d→ , given ε > , there exists n ∈N such that xn < ε for all n ≥ n. In particular,

Fxn ,(ε) = εxn (ε) =  >  – λ,

for all n ≥ n, whatever λ ∈ (, ). Thus, {xn} converges to  in (X, F ,∗P) and this space is
G-complete.

In a Menger PMLS (X, F ,∗), the subsets

Nε,λ(x) =
{

y ∈ X : Fxy(ε) >  – λ
}

do not determine a topology on X because we cannot ensure that x ∈ Nε,λ(x) since axiom
(PM) was avoided. However, we are going to show that the limit of a convergent sequence
in a Menger PMLS is unique.

Lemma  If {xn} is a sequence in a Menger PMLS (X, F ,∗) and x, y ∈ X are such that
{xn} → x and {xn} → y, then x = y.

Proof Let t >  be arbitrary. As {xn} → x and {xn} → y, using ε = t/ >  and λk = 
k ∈ (, )

for all k ∈N, k ≥ , there exists xn(k) such that

Fx,xn(k)

(
t


)
>  –


k + 

and Fxn(k),y

(
t


)
>  –


k

.

Therefore,

Fxy(t) ≥ Fx,xn(k)

(
t


)
∗ Fxn(k),y

(
t


)
≥

(
 –


k

)
∗

(
 –


k

)
.

Letting k → ∞ and taking into account that ∗ is continuous, we observe that

Fxy(t) ≥ lim
k→∞

(
 –


k

)
∗

(
 –


k

)
=  ∗  = .

As a consequence, Fxy(t) =  for all t > , so x = y by virtue of (PM). �

The following result characterizes the Menger PMS as a particular subclass of Menger
PMLS.

Lemma  If (X, F ,∗) is a Menger PMLS, then the following conditions are equivalent.
() (X, F ,∗) is a Menger PMS.
() If {xn} ⊆ X is a constant sequence and xn = z for all n ∈N, then {xn} converges to z.
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Proof Assume that (X, F ,∗) is a Menger PMS and let xn = z ∈ X for all n ∈N. Then, for all
ε >  and all λ ∈ (, ),

Fxn ,z(ε) = Fz,z(ε) =  >  – λ for all n ∈ N.

Conversely, assume the second condition and let x ∈ X be arbitrary. Let define xn = x for
all n ∈ N. By hypothesis, {xn} → x. Let ε >  and let λk = /k for all k ∈ N. Then there
exists xn(k) such that Fxx(ε) = Fxn(k),x(ε) >  – λk =  – /k. Letting k → ∞, we deduce that
Fxx(ε) =  for all ε > , so assumption (PM) holds. �

Lemma  If {xn} is a sequence in a Menger PMLS (X, F ,∗) such that

lim
n→∞ Fxn ,xn+ (t) =  for all t > ,

then {xn} is a G-Cauchy sequence in (X, F ,∗).

Proof Let n, p ∈N
∗ be arbitrary and let ε > . We observe that

Fxn ,xn+p (ε) ≥ Fxn ,xn+

(
ε

p

)
∗ Fxn+,xn+

(
ε

p

)
∗ Fxn+,xn+

(
ε

p

)
∗ · · · ∗ Fxn+p–,xn+p

(
ε

p

)
.

If ε and p are fixed, but n → ∞, we deduce, taking into account that ∗ is a continuous
t-norm, that

lim
n→∞ Fxn ,xn+p (ε) ≥

[
lim

n→∞ Fxn ,xn+

(
ε

p

)]
∗

[
lim

n→∞ Fxn+,xn+

(
ε

p

)]
∗ · · ·

∗
[

lim
n→∞ Fxn+p–,xn+p

(
ε

p

)]

=  ∗  ∗ · · · ∗  = .

We have just proved that

lim
n→∞ Fxn ,xn+p (ε) =  for all ε >  and all p ∈N

∗,

which means that {xn} is a G-Cauchy sequence in (X, F ,∗). �

4 Fixed point theorems in Menger probabilistic metric-like spaces
In this section we present an extension of Theorem  in several ways: the probabilistic
metric is more general, the contractivity condition is better and the involved auxiliary
functions form a wider class.

Definition  We shall denote by H the family of all functions h : (, ] → [,∞) satisfy-
ing:

(H) if {an} ⊂ (, ], then {an} →  if, and only if, {h(an)} → ;
(H) if {an} ⊂ (, ], then {an} →  if, and only if, {h(an)} → ∞.
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The previous conditions are guaranteed when h : (, ] → [,∞) is a strictly decreasing
bijection between (, ] and [,∞) such that h and h– are continuous (in a broad sense, it
is sufficient to assume the continuities of h and h– on the extremes of the respective do-
mains). For instance, this is the case of the function h(t) = /t –  for all t ∈ (, ]. However,
the functions in H need not be continuous nor monotone.

Proposition  If h ∈H, then h() = . Furthermore, h(t) =  if, and only if, t = .

Proof Using the sequence an =  for all n ∈ N in (H), we deduce that {h() = h(an)} → ,
so h() = . On the other hand, assume that there exists t ∈ (, ] such that h(t) = . If we
define an = t for all n ∈ N, then {h(an) = } → . By condition (H), {t = an} → , so t = .

�

The main result of the present manuscript is the following one.

Theorem  Let (X, F ,∗) be a G-complete Menger PMLS and let T : X → X be a mapping.
Suppose that there exist c ∈ (, ), φ ∈ �, ψ ∈ �, and h ∈H such that

h
(
FTx,Ty

(
φ(ct)

)) ≤ ψ
(
h
(
Fx,y

(
φ(t)

)))
()

for all x, y ∈ X and all t >  for which Fx,y(φ(t)) > . If there exists x ∈ X such that
limt→∞ Fx,Tx (t) = , then T has at least one fixed point.

Additionally, assume that for all x, y ∈ Fix(T) with x �= y, we have limt→∞ Fxy(t) = . Then
T has a unique fixed point.

Notice that we shall not use the left-continuity of φ neither its strictly monotony. We
shall only use that φ in nondecreasing. Hence, φ belongs to a more general class of auxiliary
functions.

Proof Notice that condition () implies that if Fx,y(φ(t)) > , then h must be applicable to
FTx,Ty(φ(ct)). Hence FTx,Ty(φ(ct)) ∈ dom h = (, ], which means that

Fx,y
(
φ(t)

)
>  ⇒ FTx,Ty

(
φ(ct)

)
> . ()

Let x ∈ X be the point such that Fx,Tx (tx ) > , and let {xn} be the Picard sequence
of T based on x, that is, xn+ = Txn for all n ∈ N. If there exists some n ∈ N such that
xn = xn+, then xn is a fixed point of T , and the existence part of the proof is finished.
On the contrary case, assume that xn �= xn+ for all n ∈N.

Since limt→∞ Fx,Tx (t) = , there exists t >  such that Fx,x (t) = Fx,Tx (t) > . More-
over, as limt→∞ φ(t) = ∞, it follows that there exists s ∈ [,∞) (we can suppose, without
loss of generality, that s ≥ t) such that φ(s) > t. Hence

Fxx

(
φ(s)

) ≥ Fxx (t) > .

It follows from () that

Fxx

(
φ(cs)

)
= FTxTx

(
φ(cs)

)
> ,
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and, by induction, it can be proved that

Fxnxn+

(
φ
(
cns

))
>  for all n ∈N.

If n, m, r ∈ N and r ≤ n, then cns ≤ crs ≤ s ≤ s
cm . Since φ and Fxnxn+ are nondecreasing

functions, it follows that

if n, m, r ∈N and r ≤ n, then

 < Fxnxn+

(
φ
(
cns

)) ≤ Fxnxn+

(
φ
(
crs

)) ≤ Fxnxn+

(
φ(s)

)

≤ Fxnxn+

(
φ

(
s

cm

))
. ()

We claim that

lim
n→∞ Fxn ,xn+ (s) =  for all s > . ()

In order to prove it, let s >  be arbitrary. As limr→∞(crs) =  and φ is continuous at t = ,
then limr→∞ φ(crs) = φ() = . Since s > , there exists r ∈N such that

φ
(
crs

) ≤ s. ()

Let n ∈N be such that n > r. Applying the contractivity condition () to x = xn and y = xn+,
it follows that

h
(
Fxn ,xn+

(
φ
(
crs

)))
= h

(
FTxn–,Txn

(
φ
(
crs

)))

≤ ψ
(
h
(
Fxn–,xn

(
φ
(
cr–s

))))
, ()

where we have used Fxn–,xn (φ(cr–s)) >  by (). Repeating this argument, we find that

h
(
Fxn–,xn

(
φ
(
cr–s

)))
= h

(
FTxn–,Txn–

(
φ
(
cr–s

)))

≤ ψ
(
h
(
Fxn–,xn–

(
φ
(
cr–s

))))
,

where we have used Fxn–,xn– (φ(cr–s)) >  by (). As ψ is nondecreasing, then

ψ
(
h
(
Fxn–,xn

(
φ
(
cr–s

)))) ≤ ψ(h
(
Fxn–,xn–

(
φ
(
cr–s

))))
. ()

Combining inequalities () and (), we deduce that

h
(
Fxn ,xn+

(
φ
(
crs

))) ≤ ψ
(
h
(
Fxn–,xn

(
φ
(
cr–s

))))

≤ ψ(h
(
Fxn–,xn–

(
φ
(
cr–s

))))
.

Inequalities () permit us to repeat this argument n times, and it follows that

h
(
Fxn ,xn+

(
φ
(
crs

))) ≤ ψn(h
(
Fx,x

(
φ
(
cr–ns

))))
= ψn

(
h
(

Fx,x

(
φ

(
s

cn–r

))))
, ()
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for all n > r. As a consequence,

lim
n→∞

s

cn–r = ∞ ⇒ lim
n→∞φ

(
s

cn–r

)
= ∞

⇒ lim
n→∞ Fx,x

(
φ

(
s

cn–r

))
= 

⇒ lim
n→∞ h

(
Fx,x

(
φ

(
s

cn–r

)))
= .

As the sequence {an = h(Fx,x (φ( s
cn–r )))} →  and h ∈ H, we have {ψn(an)} → . By (),

we deduce that

lim
n→∞ h

(
Fxn ,xn+

(
φ
(
crs

)))
= .

In particular, as h ∈H, condition (H) implies that

lim
n→∞ Fxn ,xn+

(
φ
(
crs

))
= .

Taking into account (), we observe that

Fxn ,xn+

(
φ
(
crs

)) ≤ Fxn ,xn+ (s) ≤ .

Therefore,

lim
n→∞ Fxn ,xn+ (s) = ,

which means that () holds. Lemma  guarantees that {xn} is a G-Cauchy sequence in
(X, F ,∗). As it is G-complete, there exists z ∈ X such that {xn} → z, that is,

∀ε > , ∀λ ∈ (, ), ∃n ∈N :
(
Fxnz(ε) >  – λ,∀n ≥ n

)
. ()

We claim that z is a fixed point of T . To prove it, observe that, for all t >  and all n ∈N,

Fz,Tz(t) ≥ Fz,xn+

(
t


)
∗ Fxn+,Tz

(
t


)

= Fz,xn+

(
t


)
∗ FTxn ,Tz

(
t


)
. ()

By (), it is clear that

lim
n→∞ Fz,xn (s) =  for all s > . ()

In particular,

lim
n→∞ Fz,xn+

(
t


)
= . ()
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Let us show that the second factor in () also converges to  when n tends to ∞. Taking
into account that φ is continuous at t = , we have lims→ φ(s) = φ() = . Since t/ > ,
there exists δ >  such that φ(δ) < t/. Since δ/c > , φ(δ/c) > . By (),

lim
n→∞ Fxn ,z

(
φ

(
δ

c

))
= .

Hence, there exists n ∈N such that

Fxn ,z

(
φ

(
δ

c

))
>  for all n ≥ n.

Applying the contractivity condition () to x = z and y = xn+ for n ≥ n, we observe that

h
(
Fxn+,Tz

(
φ(δ)

))
= h

(
FTxn ,Tz

(
φ(δ)

)) ≤ ψ

(
h
(

Fxn ,z

(
φ

(
δ

c

))))
.

Therefore

lim
n→∞ Fxn ,z

(
φ

(
δ

c

))
= 

⇒ lim
n→∞ h

(
Fxn ,z

(
φ

(
δ

c

)))
= 

⇒ lim
n→∞ψ

(
h
(

Fxn ,z

(
φ

(
δ

c

))))
= 

⇒ lim
n→∞ h

(
Fxn+,Tz

(
φ(δ)

))
= 

⇒ lim
n→∞ Fxn+,Tz

(
φ(δ)

)
= .

Taking into account that

Fxn+,Tz
(
φ(δ)

) ≤ Fxn+,Tz

(
t


)
≤ ,

we deduce that

lim
n→∞ FTxn ,Tz

(
t


)
= lim

n→∞ Fxn+,Tz

(
t


)
= . ()

Letting n → ∞ in () and using () and (), we deduce that

Fz,Tz(t) ≥ lim
n→∞

[
Fz,xn+

(
t


)
∗ FTxn ,Tz

(
t


)]

=
[

lim
n→∞ Fz,xn+

(
t


)]
∗

[
lim

n→∞ FTxn ,Tz

(
t


)]
=  ∗  = .

We have just proved that Fz,Tz(t) =  for all t > , and axiom (PM) guarantees that Tz = z,
that is, z is a fixed point of T .

Next, we study the uniqueness of the fixed point of T . Assume that T has two dif-
ferent fixed points x and y, and we will obtain the contradiction x = y. By hypothesis,
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limt→∞ Fxy(t) = . Then there exists t >  such that Fxy(t) > . Moreover, there exists
s >  such that

φ(s) > t.

Consequently, as φ and Fxy are nondecreasing functions,

Fxy
(
φ(s)

) ≥ Fxy(t) > .

By (), we have

Fxy
(
φ(s)

)
>  ⇒ Fxy

(
φ(cs)

)
= FTx,Ty

(
φ(cs)

)
> .

By induction,

Fxy
(
φ
(
cns

))
>  for all n ∈ N.

We claim that

Fxy
(
φ
(
crs

))
=  for all r ∈ N. ()

To prove it, let r ∈N be arbitrary and let n, m ∈N be such that n > r. As cns ≤ crs ≤ s ≤
s
cm , and φ and Fxy are nondecreasing functions, it follows that

if n, m ∈N and r ≤ n, then

 < Fxy
(
φ
(
cns

)) ≤ Fxy
(
φ
(
crs

)) ≤ Fxy
(
φ(s)

) ≤ Fxy

(
φ

(
s

cm

))
. ()

Applying the contractivity condition () to x and y, it follows that

h
(
Fxy

(
φ
(
crs

)))
= h

(
FTx,Ty

(
φ
(
crs

))) ≤ ψ
(
h
(
Fxy

(
φ
(
cr–s

))))
, ()

where we have used Fxy(φ(cr–s)) >  by (). Repeating this argument, we find that

h
(
Fxy

(
φ
(
cr–s

)))
= h

(
FTx,Ty

(
φ
(
cr–s

))) ≤ ψ
(
h
(
Fxy

(
φ
(
cr–s

))))
,

where we have used Fxy(φ(cr–s)) >  by (). As ψ is nondecreasing, we have

ψ
(
h
(
Fxy

(
φ
(
cr–s

)))) ≤ ψ(h
(
Fxy

(
φ
(
cr–s

))))
. ()

Combining inequalities () and (), we deduce that

h
(
Fxy

(
φ
(
crs

))) ≤ ψ
(
h
(
Fxy

(
φ
(
cr–s

)))) ≤ ψ(h
(
Fxy

(
φ
(
cr–s

))))
.

Inequalities () permit us to repeat this argument n times, and it follows that

h
(
Fxy

(
φ
(
crs

))) ≤ ψn(h
(
Fxy

(
φ
(
cr–ns

))))
= ψn

(
h
(

Fxy

(
φ

(
s

cn–r

))))
, ()
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for all n > r. As a consequence,

lim
n→∞

s

cn–r = ∞ ⇒ lim
n→∞φ

(
s

cn–r

)
= ∞

⇒ lim
n→∞ Fxy

(
φ

(
s

cn–r

))
= 

⇒ lim
n→∞ h

(
Fxy

(
φ

(
s

cn–r

)))
= .

As the sequence {an = h(Fxy(φ( s
cn–r )))} →  and h ∈H, we have {ψn(an)} → . By (), we

deduce that

h
(
Fxy

(
φ
(
crs

)))
= .

In particular, as h ∈H, Proposition  implies that

Fxy
(
φ
(
crs

))
= ,

which means that () holds. Next, let us show that Fxy(t) =  for all t > . Let t >  arbi-
trary. Since limn→∞(cns) =  and limn→∞ φ(cns) = φ() = , there exists r ∈ N such that
φ(crs) < t. Hence

 = Fxy
(
φ
(
crs

)) ≤ Fxy(t) = ,

so Fxy(t) = . Varying t > , we conclude that x = y by virtue of (PM), which contradicts
the fact that x �= y. As a result, T can only have a unique fixed point. �

In the following result, condition (PM) guarantees that any initial condition x ∈ X
yields a fixed point.

Corollary  Let (X, F ,∗) be a G-complete Menger PMLS verifying (PM) and let T : X →
X be a mapping. Suppose that there exist c ∈ (, ), φ ∈ �, ψ ∈ �, and h ∈H such that

h
(
FTx,Ty

(
φ(ct)

)) ≤ ψ
(
h
(
Fx,y

(
φ(t)

)))

for all x, y ∈ X and all t >  for which Fx,y(φ(t)) > . Then T has a unique fixed point.

The previous results are also valid for Menger PM-spaces.

Corollary  Let (X, F ,∗) be a G-complete Menger PMS and let T : X → X be a mapping.
Suppose that there exist c ∈ (, ), φ ∈ �, ψ ∈ �, and h ∈H such that

h
(
FTx,Ty

(
φ(ct)

)) ≤ ψ
(
h
(
Fx,y

(
φ(t)

)))

for all x, y ∈ X and all t >  for which Fx,y(φ(t)) > . If there exists x ∈ X such that
limt→∞ Fx,Tx (t) = , then T has at least one fixed point.

Additionally, assume that for all x, y ∈ Fix(T) with x �= y, we have limt→∞ Fxy(t) = . Then
T has a unique fixed point.
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Corollary  Let (X, F ,∗) be a G-complete Menger PMS verifying (PM) and let T : X → X
be a mapping. Suppose that there exist c ∈ (, ), φ ∈ �, ψ ∈ �, and h ∈H such that

h
(
FTx,Ty

(
φ(ct)

)) ≤ ψ
(
h
(
Fx,y

(
φ(t)

)))

for all x, y ∈ X and all t >  for which Fx,y(φ(t)) > . Then T has a unique fixed point.

The following statement trivially follows from Theorem  using h(t) = /t –  for all
t ∈ (, ].

Corollary  Theorem  immediately follows from Theorem .

Example  Let (X, F ,∗P) be the Menger PMLS introduced in Example  and let T : X →
X be the self-mapping defined by Tx = x/ for all x ∈ X. We know that (X, F ,∗P) is a Menger
PMLS that also verifies (PM), but it is not a Menger PMS. In Example  we showed
that (X, F ,∗P) is G-complete. Assume that ψ(t) = φ(t) = t for all t ∈ [,∞), and let h :
(, ] → [,∞) be whatever strictly decreasing bijection between (, ] and [,∞) such
that h and h– are continuous (for instance, h(t) = /t –  for all t ∈ (, ], but any other
function verifying these properties yields the same result). In this context, the contractivity
condition () is equivalent to

h
(
FTx,Ty

(
φ(ct)

)) ≤ ψ
(
h
(
Fx,y

(
φ(t)

)))

⇔ h
(
FTx,Ty(ct)

) ≤ h
(
Fx,y(t)

)

⇔ FTx,Ty(ct) ≥ Fx,y(t).

If c = /, then, for all t > ,

FTx,Ty(ct) = Fx/,y/

(
t


)
= Fx/,y/

(
t


)
= εmax{x/,y/}

(
t


)

=

{
, if  ≤ t

 ≤ max{ x
 , y

 },
, if t

 > max{ x
 , y

 }

}

=

{
, if  ≤ t ≤ max{x, y},
, if t > max{x, y}

}

= εmax{x,y}(t) = Fx,y(t).

As a result, the contractivity condition is verified. Hence, Corollary  guarantees that
T has a unique fixed point (which is z = ). Notice that other previous results are not
applicable to this example because (X, F ,∗P) is not a Menger PMS.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.



Roldán López de Hierro and de la Sen Fixed Point Theory and Applications  (2015) 2015:176 Page 16 of 16

Author details
1Department of Quantitative Methods for Economics and Business, Faculty of Economics and Business Sciences,
University of Granada, Campus Universitario de Cartuja, s/n, Granada, 18011, Spain. 2Institute of Research and
Development of Processes, Faculty of Science and Technology, University of Basque Country, Campus of Leioa, Barrio
Sarriena, Leioa (Bizkaia), 48940, Spain.

Acknowledgements
The authors are very thankful to the anonymous reviewers for their careful reading of this manuscript and for their
constructive reports, which have been very useful to improve the paper. M de la Sen is grateful to the Spanish
Government for its support of this research through Grant DPI2012-30651 and to the Basque Government for its support
of this research through Grants IT378-10 and SAIOTEK S-PE12UN015. He is also grateful to the University of Basque
Country for its financial support through Grant UFI 2011/07. A-F Roldán-López-de-Hierro has been partially supported by
Junta de Andalucía by project FQM-268 of the Andalusian CICYE. He is also grateful to the Department of Quantitative
Methods for Economics and Business of the University of Granada for its support.

Endnote
a At present, a cumulative distribution function is usually defined as probability of a variable which is less than or

equal to t, not less than t; since Menger’s work in probabilistic spaces, it is commonly used the strict inequality.
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