
Alghamdi et al. Fixed Point Theory and Applications  (2015) 2015:181 
DOI 10.1186/s13663-015-0424-0

R E S E A R C H Open Access

Projective contractions, generalized
metrics, and fixed points
Maryam A Alghamdi1, Naseer Shahzad2* and Oscar Valero3

*Correspondence:
nshahzad@kau.edu.sa
2Operator Theory and Applications
Research Group, Department of
Mathematics, King Abdulaziz
University, P.O. Box 80203, Jeddah,
21859, Saudi Arabia
Full list of author information is
available at the end of the article

Abstract
In 1981, Borsík and Doboš studied the aggregation problem for metric spaces. Thus,
they characterized those functions that allow one to merge a collection of metrics
providing a single metric as a result (Borsík and Doboš in Math. Slovaca 31:193-205,
1981).
Later on, in 1994, the notion of partial metric space was introduced by Matthews

with the aim of providing an appropriate mathematical tool for program verification
(Matthews in Ann. N.Y. Acad. Sci. 728:183-197, 1994). In the aforesaid reference, an
extension of the well-known Banach fixed point theorem to the partial metric
framework was given and, in addition, an application of such a result to denotational
semantics and program verification was provided.
Inspired by the applicability of partial metric spaces to computer science and by the

fact that there are partial metrics useful in such a field which can be induced through
aggregation, in 2012 Massanet and Valero analyzed the aggregation problem in the
partial metric framework (Massanet and Valero in Proc. of the 17th Spanish
Conference on Fuzzy Technology and Fuzzy Logic (Estylf 2012), pp.558-563, 2012).
In this paper, motivated by the fact that fixed point techniques are essential in order

to apply partial metric spaces to computer science and that, as we have pointed out
above, some of such partial metrics can be induced by aggregation, we introduce a
new notion of contraction between partial metric spaces which involves aggregation
functions. Besides, since fixed point theory in partial metric spaces from an
aggregation viewpoint still is without exploring, we provide a fixed point theorem in
the spirit of Matthews for the new type of contractions and, in addition, we give
examples which illustrate that the assumptions in such a result cannot be weakened.
Furthermore, we provide conditions that vouch the existence and uniqueness of fixed
point for this new class of contractions. Finally, we discuss the well-posedness for this
kind of fixed point problem and the limit shadowing property for the new sort of
contractions.

Keywords: partial metric; fixed point; aggregation function; homogeneous function;
projective contraction

1 Introduction
In many practical problems appears the need to process simultaneously a few numerical
values which are provided by some sources (possibly of different natures) with the aim of
making a decision in order to elaborate a plan of action or to solve a problem. A natu-
ral way to achieve this goal consists of merging the aforementioned values into a simple
one by means of an aggregation function in such a way that the obtained numerical value
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is used to take the desired decision under an appropriate criterion for the problem un-
der consideration (see, for instance, []). In many situations the numerical values that are
merged represent distances between different objects. Motivated, in part, by the afore-
said facts Borsík and Doboš began in  a research line on the aggregation of metrics
[]. Concretely, they studied the properties that a function must satisfy in order to merge a
collection of metrics into a single one. Next we recall a few facts about the aforementioned
functions.

From now on, the letters R, R+, and N will denote the set of real numbers, the set of
nonnegative real numbers, and the set of positive integer numbers, respectively.

Following [], a function � : Rn
+ → R+ (n ∈ N) is a metric aggregation function (met-

ric preserving in []) provided that the function M� : X × X → R+ is a metric for every
collection of metric spaces {(Xi, di)}n

i=, where

M�(x, y) = �
(
d(x, y), . . . , dn(xn, yn)

)

for all x = (x, . . . , xn), y = (y, . . . , yn) ∈ X with X =
∏n

i=Xi.
According to [], we will denote by O the set of all functions � : Rn

+ → R+ satisfying
�(x) =  ⇔ x = ̄, where ̄ ∈ R

n
+ with ̄ = (, . . . , ). We will consider the pointwise order

relation � on R
n
+, i.e., x � y ⇔ xi ≤ yi for all i = , . . . , n. Of course, a function � : Rn

+ →R+

is said to be:
(i) monotone provided that �(x) ≤ �(y) for all x, y ∈R

n
+ with x � y,

(ii) subadditive provided that �(x + y) ≤ �(x) + �(y) for all for all x, y ∈R
n
+.

On account of [], a function � : Rn
+ →R+ is called homogeneous provided that �(αx) =

α�(x) for all x ∈R
n
+ and α ∈R+.

The next result yields the first interesting property about metric aggregation functions
that Borsík and Doboš proved.

Proposition  Let � : Rn
+ → R+. If � is monotone and subadditive, and � ∈O, then � is

a metric aggregation function.

It is clear that Proposition  does not characterize metric aggregation functions because
there are metric aggregation functions that are not monotone (see Example  in []). In-
spired by this fact, Borsík and Doboš gave a characterization of metric aggregation func-
tions by means of triplets (for a detailed discussion we refer the reader to []). Let us
recall that the triplet of nonnegative real numbers (a, b, c) forms a triangle triplet when-
ever a ≤ b + c, b ≤ a + c, and c ≤ b + a. The result that characterizes metric aggregation
functions states the following (Theorem ., []).

Theorem  A function � : Rn
+ → R+ is a metric aggregation function if and only if the

following properties hold:
() � ∈O.
() Let x, y, z ∈R

n
+. If (ai, bi, ci) is a triangle triplet for all i = , . . . , n, then so is

(�(x),�(y),�(z)).

More recently, inspired by the original work of Borsík and Doboš, Castiñeira et al. stud-
ied in depth the aggregation problem when different classes of generalized metrics, as
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pseudometrics, are considered in [–] and, Petruşel et al. discussed when the contrac-
tive character of a mapping is preserved by transformations of metrics obtained by means
of metric aggregation functions in [].

In the last years the interest in partial metric spaces, a generalization of the notion of
metric space, has grown because they are efficient tools in modeling some processes that
arise in a natural way in the few fields of computer science. For instance, applications of
partial metric spaces to denotational semantics and program verification can be found in
[–], applications to logic programming have been given in [, ] and applications to
asymptotic complexity analysis of algorithms can be looked up in [, ].

Let us introduce the basics of partial metric spaces in order to achieve our main target
in our subsequent study.

According to [], a partial metric on a (nonempty) set X is a function p : X × X → R
+

such that for all x, y, z ∈ X:
(i) p(x, x) = p(x, y) = p(y, y) ⇔ x = y.

(ii) p(x, x) ≤ p(x, y).
(iii) p(x, y) = p(y, x).
(iv) p(x, z) ≤ p(x, y) + p(y, z) – p(y, y).
Of course, a partial metric space is a pair (X, p) such that X is a (nonempty) set and p is a

partial metric on X. Clearly, the metric notion can be retrieved as a particular case of the
partial metric one. In particular, a metric on a set X is a partial metric p on X such that
p(x, x) =  for all x ∈ X. Moreover, every partial metric p on X generates a T topology
T (p) on X which has as a base the family of open p-balls {Bp(x, ε) : x ∈ X, ε > }, where
Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > . One deduces immediately
that a sequence (xn)n∈N in a partial metric space (X, p) converges to a point x ∈ X with
respect to T (p) ⇔ p(x, x) = limn→∞ p(x, xn).

On account of [], a sequence (xn)n∈N in a partial metric space (X, p) is said to be a Cauchy
sequence if limn,m→∞ p(xn, xm) exists in R+. Moreover, a partial metric space (X, p) is called
complete provided that every Cauchy sequence (xn)n∈N in X converges, with respect to
T (p), to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

The aforementioned applications of partial metric spaces are obtained by means of fixed
point techniques which are based on the so-called Matthews fixed point theorem. In order
to recall such a fixed point theorem, let us introduce the notion of a contraction in the
partial metric framework (see [, ]):

A mapping from a partial metric space (X, p) into itself is said to be a contraction if there
exists c ∈ [, [ such that

p
(
f (x), f (y)

) ≤ cp(x, y) ()

for all x, y ∈ X. The preceding constant c is said to be the contractive constant of the con-
traction f . In the light of the above notion, the Matthews fixed point theorem can be stated
as follows.

Theorem  Let (X, p) be a complete partial metric space and let F : X → X. If F is a con-
traction from (X, p) into itself, then F has a unique fixed point x. Moreover, p(x, x) = 
and for each x ∈ X, limn→+∞ Fn(x) = x in (X, p).

Motivated by the above-mentioned utility of partial metric spaces and the fact that there
are partial metrics used in such applications (see for instance [, ]) which are obtained
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by means of aggregation, Massanet and Valero introduced the notion of a partial metric
aggregation function in [].

Let us recall that a function � : Rn
+ → R+ is a partial metric aggregation function pro-

vided that the function P� : X × X → R+ is a partial metric for every arbitrary collection
of partial metric spaces {(Xi, pi)}n

i=, where

P�(x, y) = �
(
p(x, y), . . . , pn(xn, yn)

)

for all x = (x, . . . , xn), y = (y, . . . , yn) ∈ X with X =
∏n

i=Xi.
Examples of partial metric aggregation functions are given; see Examples , , and 

in Section .
The characterization and a few properties, in the spirit of Theorem  and Proposition ,

of partial metric aggregation functions were stated without proof in [] and they will be
detailed in Section .

As we have pointed out before, there are partial metrics that are used in the applica-
tions to computer science that can be obtained by means of suitable aggregation func-
tions and, besides, fixed point theory is crucial in such applications. So it seems natural
and interesting to ask whether Theorem  can be extended to the aggregation framework,
i.e., for contractions defined between partial metric spaces such that the partial metric is
induced by a partial metric aggregation function. Thus the main proposal of this paper is
twofold. On the one hand, we introduce a new notion of contraction in the partial metric
context which involves aggregation functions in such a way that the contractive notion of
Matthews can be retrieved as a particular case of our new one. On the other hand, we pro-
vide conditions that ensure the existence and uniqueness of fixed point for this new kind
of contractions. In particular we show that homogeneity and a sort of contractivity are
required for the involved aggregation function. Moreover, completeness is also required
for the partial metric induced by such an aggregation function. Furthermore, examples
which illustrate that the assumptions in such a fixed point result cannot be weakened are
given. Finally, we discuss the well-posedness for this kind of fixed point problem and the
limit shadowing property for the new sort of contractions.

2 The aggregation of partial metrics
This section is devoted to the presentation of the basics about the partial metric aggrega-
tion problem. Concretely, we introduce those properties of partial aggregation functions
that will be required to accomplish our target, i.e., to develop a fixed point theory in par-
tial metric spaces from an aggregation perspective. Thus we provide the characterization,
in the spirit of Theorem , of partial metric aggregation functions and we show, in ad-
dition, that, contrary to the metric aggregation functions, they are monotone functions.
It is worth to mention that the aforesaid results were published for the first time in [].
Nonetheless, they were presented in the aforesaid reference without proof. We have in-
cluded their detailed proofs, on the one hand, because their proof cannot be found in the
literature and, on the other hand, because they are crucial in our subsequent study and the
inclusion of the proof will help the reader to delve into the techniques that will be made
use of in the next section.

First of all we show that, contrary to the metric case (see Section ), every partial aggre-
gation function is always monotone. We will take advantage of this fact in the characteri-
zation of partial metric aggregation functions and in the next section.
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Proposition  Let � : Rn
+ →R+ be a partial metric aggregation function. Then � is mono-

tone.

Proof Define pmax : R+ ×R+ →R+ by pmax(a, b) = max{a, b} for all a, b ∈R+. It is clear that
pmax is a partial metric on R+. Since � is a partial metric aggregation function we see that
the mapping Pφ : Rn

+ ×R
n
+ →R+, defined by

P�(x, y) = �
(
pmax(x, y), . . . , pmax(xn, yn)

)

for all x = (x, . . . , xn), y = (y, . . . , yn) ∈R
n
+, is a partial metric.

Consider x, y ∈ R
n
+ with x � y. Then

�(x) = �
(
pmax(x, x), . . . , pmax(xn, xn)

)
= P�(x, x)

≤ P�(x, y) = �
(
pmax(x, y), . . . , pmax(xn, yn)

)
= �(y). �

The following lemmas are technical results that prove to be extremely useful in order to
provide the announced characterization.

Lemma  For every a, b, c, d ∈ R
+ such that a ≤ c + d – b with b ≤ c and b ≤ d, there

exist x, y, z ∈ R

+ with p(x, y) = c + d – b, p(x, z) = c, p(z, y) = d, and p(z, z) = b, where

p : R
+ × R


+ → R+ is the partial metric defined by p(x, y) = max{x, y} + max{x, y} for

all x = (x, x), y = (y, y) ∈R

+.

Proof It is not hard to see that p is a partial metric on R

+. Moreover, a straightforward

computation shows that the following points of R
+ hold the required conditions:

x =
(

c –
b


,
b


)
, y =

(
b


, d –
b


)
, z =

(
b


,
b


)
. �

Lemma  For every a, b, c ∈ R+ such that a ≥ b and a ≥ c, there exist x, y ∈ I(R)
with pI(R)(x, y) = a, pI(R)(x, x) = b, and pI(R)(y, y) = c, where pI(R) : I(R) × I(R) → R+

is the partial metric defined by pI(R)([x, x], [y, y]) = max{x, y} – min{x, y} for all
[x, x], [y, y] ∈ I(R).

Proof It is not hard to see that pI(R) is a partial metric on I(R). Moreover, an easy com-
putation shows that the following elements of I(R) satisfy the required conditions:

x = [–b, ], y = [–a, –a + c]. �

The next result describes those functions that able one to merge a collection of partial
metrics into a single one.

Theorem  Let � : Rn
+ →R+. Then � is a partial metric aggregation function if and only

if it satisfies the following two properties for all x, y, z, w ∈R
n
+:

() �(x) + �(y) ≤ �(z) + �(w) whenever x + y � z + w, y � z, and y � w.
() If y � x, z � x, and �(x) = �(y) = �(z), then x = y = z.

Proof Assume that � is a partial metric aggregation function. Next we prove assertions
() and (). Let x, y, z, w ∈R

n
+ such that x + y � z + w, y � z, and y � w. Lemma  guarantees
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the existence of x̄i, ȳi, z̄i ∈ R

+ such that p(x̄i, ȳi) = zi + wi – yi, p(x̄i, z̄i) = zi, p(z̄i, ȳi) = wi,

and p(z̄i, z̄i) = yi for all i = , . . . , n. Set X =
∏n

i= R

+. Then x̄ = (x̄, . . . , x̄n), ȳ = (ȳ, . . . , ȳn), z̄ =

(z̄, . . . , z̄n) ∈ X. Consider the partial metric P� on X given by

P�(x̄, ȳ) = �
(
p(x̄, ȳ), . . . , p(x̄n, ȳn)

)

for all x̄, ȳ ∈ X. Clearly we have

�(z + w – y) = P�(x̄, ȳ) ≤ P�(x̄, z̄) + P�(z̄, ȳ) – P�(z̄, z̄) = �(z) + �(w) – �(y).

Moreover, �(x) ≤ �(z + w – y) ≤ �(z) + �(w) – �(y), since x � z + w – y, and, by Proposi-
tion , the partial metric aggregation function is monotone. It follows that

�(x) + �(y) ≤ �(z) + �(w)

whenever x + y � z + w, y � z, and y � w. So we have proved that assertion () holds.
Next, let x, y, z ∈ R

n
+ with y � x, z � x, and �(x) = �(y) = �(z). By Lemma  there

exist x̄i, ȳi ∈ I(R) such that pI(R)(x̄i, ȳi) = xi, pI(R)(x̄i, x̄i) = yi, and pI(R)(ȳi, ȳi) = zi for all
i = , . . . , n. Set X =

∏n
i= I(R). Then x̄ = (x̄, . . . , x̄n), ȳ = (ȳ, . . . , ȳn), z̄ = (z̄, . . . , z̄n) ∈ X. Con-

sider the partial metric P� on X induced by

P�(x̄, ȳ) = �
(
p(x̄, ȳ), . . . , p(x̄n, ȳn)

)

for all x̄, ȳ ∈ X. Clearly we have P�(x̄, ȳ) = Pφ(x̄, x̄) = P�(ȳ, ȳ), since �(x) = �(y) = �(z). Con-
sequently, x̄ = ȳ and, thus, we conclude that x = y = z because x̄ = [–y, ] and ȳ = [–x, –x+z].
So we have proved that assertion () holds.

Conversely we suppose that assertions () and () hold. In order to show that � is a par-
tial aggregation function let {(Xi, pi)}n

i= be an arbitrary family of partial metric spaces.
Consider x, y ∈ X =

∏
i∈I Xi such that P�(x, y) = P�(x, x) = P�(y, y). Then assertion ()

guarantees that pi(xi, yi) = pi(xi, xi) = pi(yi, yi) for all i = , . . . , n, since pi(xi, xi) ≤ pi(xi, yi)
and pi(yi, yi) ≤ pi(xi, yi) for all i = , . . . , n and �(p(x, y), . . . , pn(xn, yn)) = �(p(x, x), . . . ,
pn(xn, xn)) = �(p(y, y), . . . , pn(yn, yn)). It follows that xi = yi for all i = , . . . , n and, hence,
that x = y.

Now, consider x, y ∈ X. Taking y = w = ̄ in assertion () we see that � is monotone.
Since pi(xi, xi) ≤ pi(xi, yi) for all i = , . . . , n we obtain

P�(x, x) = �
(
p(x, x), . . . , pn(xn, xn)

) ≤ �
(
p(x, y), . . . , pn(xn, yn)

)
= P�(x, y),

where P� is the partial metric induced by aggregation of the family of partial metric spaces
{(Xi, pi)}n

i= through �.
Moreover, we have

P�(x, y) = �
(
p(x, y), . . . , pn(xn, yn)

)
= �

(
p(y, x), . . . , pn(yn, xn)

)
= P�(y, x)

for all x, y ∈ X.
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Finally, consider x, y, z ∈ X. Assertion () provides

P�(x, y) = �
(
p(x, y), . . . , pn(xn, yn)

)

≤ �
(
p(x, z), . . . , pn(xn, zn)

)

+ �
(
p(z, y), . . . , pn(zn, yn)

)

– �
(
p(z, z), . . . , pn(zn, zn)

)

= P�(x, z) + P�(z, y) – P�(z, z),

since

pi(xi, yi) ≤ pi(xi, zi) + pi(zi, yi) – pi(zi, zi),

pi(zi, zi) ≤ pi(xi, zi) and pi(zi, zi) ≤ pi(zi, yi)

for all i = , . . . , n. �

Notice that from the preceding result we deduce that, in general, if � is a partial metric
aggregation then � /∈O (see also Proposition ). An instance of a partial metric aggrega-
tion function which does not belong to O will be provided in Example  later on. Observe
that the preceding fact shows a distinguishing feature of partial metric aggregation func-
tions with respect to the metric ones.

3 Fixed point theory in partial metric spaces and aggregation functions
In this section we present the promised fixed point theorem for partial metric spaces from
an aggregation perspective. In order to state a fixed point theorem in the spirit of Matthews
(Theorem ) in the aggregation framework one needs to have two main elements, namely,
appropriate notions of contraction and completeness. In order to introduce both type of
notions in our new context, let us recall that if {Xi}n

i= is a family of nonempty sets, X =
∏n

i=Xi and F is a mapping from X into X, then the coordinate functions of F are the
functions Fi : X → Xi, i = , . . . , n, such that

F(x) =
(
F(x), . . . , Fn(x)

)

for all x ∈ X.
Next we introduce the new kind of contraction concept in those partial metric spaces

whose partial metrics have been obtained via the aggregation of a family of partial metric
spaces.

Definition  Let {(Xi, pi)}n
i= be a family of arbitrary partial metric spaces, X =

∏n
i=Xi

and � : Rn
+ → R+ a partial metric aggregation function. A mapping F : X → X is said to

be a projective �-contraction from (X, P�) into itself, provided there exist n constants
c, . . . , cn ∈ [, [ such that

pi
(
Fi(x), Fi(y)

) ≤ ci�
(
p(x, y), . . . , pn(xn, yn)

)

for all x, y ∈ X and for all i = , . . . , n, where P� is the partial metric induced by aggregation
of the family of partial metric spaces {(Xi, pi)}n

i= through �.
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Notice that if n =  and � is the identity function in Definition , then one obtains as a
particular case of the projective �-contraction notion the classical one, due to Matthews
(see inequality () in Section ).

The result below yields a property of partial metric aggregation functions that will be
crucial in order to guarantee the completeness of the partial metric obtained via aggrega-
tion later on.

Proposition  Let � : Rn
+ → R+ be a partial metric aggregation function. If there exists

x ∈R
n
+ such that �(x) = , then x = ̄.

Proof Consider the partial metric Pφ : Rn
+ × R

n
+ → R+ introduced in the proof of Propo-

sition . Assume that �(x) = . Then, by Proposition , we see that � is monotone and,
thus, that �( x

 ) ≤ �(x). Therefore �( x
 ) = , since �(x) = . It follows that

P�

(
x


, x
)

= �

(
pmax

(
x


, x

)
, . . . , pmax

(
xn


, xn

))
= �(x) = ,

P�(x, x) = �
(
pmax(x, x), . . . , pmax(xn, xn)

)
= �(x) = ,

P�

(
x


,
x


)
= �

(
pmax

(
x


,

x



)
, . . . , pmax

(
xn


,

xn



))
= �

(
x


)
= .

Hence we obtain x
 = x; and therefore, x = ̄. �

Note that, similar to Proposition  and Theorem , the preceding result gives a prop-
erty of partial aggregation functions that permits one to discriminate between metric and
partial aggregation functions (compare Theorem ).

The next result affords the second requirement in order to state the fixed point theorem.
Thus it guarantees the completeness of the partial metric obtained by means of aggrega-
tion.

From now on, we will set i = (, . . . , ,
i

︷︸︸︷
 , , . . . , ) for all i = , . . . , n.

Lemma  Let � : Rn
+ →R+ be an homogeneous partial metric aggregation function such

that �(, . . . , ) =  = �(i) for all i = , . . . , n. Let {(Xi, pi)}n
i= be a family of arbitrary par-

tial metric spaces and X =
∏n

i=Xi. Assume that, for each i = , . . . , n, the partial metric
space (Xi, pi) is complete. Then the partial metric space (X, P�) is complete, where P� is
the partial metric induced by aggregation of the family of partial metric spaces {(Xi, pi)}n

i=

through �.

Proof Let (xk)k∈N be a Cauchy sequence in (X, P�). Then we see that there exists r ∈ R
+

such that limk,j→∞ P�(xk , xj) = r. Then, given ε > , there exists k ∈N such that P�(xk , xj) <
ε + r for all k, j ≥ k. It follows that

�
(
p

(
xk

 , xj

)
, . . . , pn

(
xk

n, xj
n
))

< ε + r

for all k, j ≥ k. By Proposition , � is monotone, and the monotonicity of � shows that

�
(
pi

(
xk

i , xj
i
) · i

) ≤ �
(
p

(
xk

 , xj

)
, . . . , pn

(
xk

n, xj
n
))

< ε + r
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for all i = , . . . , n. The homogeneity of � yields pi(xk
i , xj

i) = pi(xk
i , xj

i)�(i) = �(pi(xk
i , xj

i) · i)
for all i = , . . . , n. It follows that pi(xk

i , xj
i) < ε + r for all k, j ≥ k and for all i = , . . . , n. Thus

we deduce that there exist xi ∈ Xi such that limk→∞ xk
i = xi in (Xi, pi) and pi(xi, xi) = r =

limk,j→∞ pi(xk
i , xj

i) for all i = , . . . , n, since (Xi, pi) is a complete partial metric space for all
i = , . . . , n. Then, given ε > , there exists j ∈ N such that pi(xi, xj

i) – p(xi, xi) < ε
 for all

j ≥ j for all i = , . . . , n.
Next we prove that limk→∞ xk = x in (X, P�) with x = (x, . . . , xn). Indeed, by assertion ()

in the statement of Theorem , we have

P�

(
x, xj) – P�(x, x) = �

(
p

(
x, xj


)
, . . . , pn

(
xn, xj

n
))

– �
(
p(x, x), . . . , pn(xn, xn)

)

≤ �

(
ε


, . . . ,

ε



)
.

Since � is homogeneous we obtain �( ε
 , . . . , ε

 ) = ε
�(, . . . , ) < ε. So

P�

(
x, xj) – P�(x, x) < ε

for all j ≥ j. Hence we deduce that P�(x, xj) – P�(x, x) < ε eventually and, thus, that
limj→∞ P�(x, xj) = P�(x, x). Moreover, P�(x, x) = �(p(x, x), . . . , pn(xn, xn)) = �(r, . . . , r) =
r�(, . . . , ) = r. Consequently, we see that the partial metric space (X, P�) is complete. �

In the next result we prove that every projective �-contraction is a contraction from the
partial metric space obtained through aggregation into itself.

Theorem  Let {(Xi, pi)}n
i= be a family of arbitrary partial metric spaces and X =

∏n
i=Xi.

If � is an homogeneous partial metric aggregation function such that �(, . . . , ) ≤  and F
is a �-projective contraction, then F is a contraction from the partial metric space (X, P�)
into itself, where P� is the partial metric induced by aggregation of the family of partial
metric spaces {(Xi, pi)}n

i= through �.

Proof Proposition  guarantees that � is a monotone mapping. Let x, y ∈ X. Then the
monotonicity of � and the fact that F is a projective �-contraction yields

P�

(
F(x), F(y)

)

= �
(
p

(
F(x), F(y)

)
, . . . , pn

(
Fn(x), Fn(y)

))

≤ �
(
c�

(
p(x, y), . . . , pn(xn, yn)

)
, . . . , cn�

(
p(x, y), . . . , pn(xn, yn)

))

≤ �
(
c�

(
p(x, y), . . . , pn(xn, yn)

)
, . . . , c�

(
p(x, y), . . . , pn(xn, yn)

))
,

where c = max{c, . . . , cn}. From the fact that � is homogeneous we deduce that

�
(
c�

(
p(x, y), . . . , pn(xn, yn)

)
, . . . , c�

(
p(x, y), . . . , pn(xn, yn)

))

= c�(, . . . , )�
(
p(x, y), . . . , pn(xn, yn)

)

and, hence,

P�

(
F(x), F(y)

) ≤ c�(, . . . , )P�(x, y) ≤ cP�(x, y).
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Therefore, the mapping F : X → X is a contraction from the partial metric space (X, P�)
into itself. �

The existence and uniqueness of fixed point for �-projective contractions are warranted
by the result below.

Corollary  Let {(Xi, pi)}n
i= be a family of arbitrary complete partial metric spaces

and X =
∏n

i=Xi. If � is an homogeneous partial metric aggregation function such that
�(, . . . , ) =  = �(i) for all i = , . . . , n and F is a �-projective contraction, then F has
a unique fixed point x. Moreover, P�(x, x) =  and for each x ∈ X, limn→+∞ Fn(x) = x

in (X, P�), where P� is the partial metric induced by aggregation of the family of partial
metric spaces {(Xi, pi)}n

i= through �.

Proof By Theorem  we see that F is a contraction from the partial metric space (X, P�)
into itself. Lemma  guarantees that the partial metric space (X, P�) is complete. By
Theorem  we deduce that F has a unique fixed point x ∈ X such that, for each x ∈ X,
limn→∞ Fn(x) = x in (X, P�) and P�(x, x) = . �

Observe that whenever n =  and � is the identity function in the statements of The-
orem  and Corollary  we retrieve as a particular case Theorem . Thus the former
results can be understood as an extension of the latter one.

The following example shows that the assumption ‘� is homogeneous’ cannot be omit-
ted in the statement of Theorem  in order to guarantee that a projective �-contraction
is also a contraction from (X, P�) into itself.

Example  Let ([, ], pmax) be the complete partial metric space such that pmax denotes
the restriction of the partial metric introduced in Proposition  to [, ]. Consider the
family of complete partial metric spaces {([, ], pi)}i=, such that p = p = pmax. Define
the function � : R

+ →R+ by �(x) = x+x
 + 

 for all x ∈R

+. It is not hard to see that for

the function � assertions () and () hold in the statement of Theorem  and, thus, it is
a partial metric aggregation function. Moreover, it is clear that �(, ) ≤ . However, �

is not homogeneous. Indeed, 
 = �(, ) 	=  · �(, ) = .

Next, consider the mapping F : [, ] → [, ] defined by F(x) = (, ) for all x ∈ [, ].
It is clear that F is a projective �-contraction. Nevertheless F is not a contraction from
([, ], P� ) into itself, where P� is the partial metric induced by aggregation of the family
of partial metric spaces {([, ], pi)}i=, through �. Indeed,

P�

(
F(, ), F(, )

)
= P�

(
(, ), (, )

)
= �(, ) =




.

Therefore, there does not exist c ∈ [, [ such that

P�

(
F(, ), F(, )

) ≤ cP�

(
(, ), (, )

)
.

In the next example we show that the assumption ‘�(, . . . , ) ≤ ’ cannot also be omitted
in the statement of Theorem  in order to guarantee that a projective �-contraction is
also a contraction from (X, P�) into itself.
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Example  Let ([, ], pi)i=, be the family of complete partial metric spaces such that
p = p = pmax. Define the function �+ : R

+ → R+ by �+(x) = x + x for all x ∈ R

+. It

is obvious that the function �+ is a homogeneous partial metric aggregation function.
Nevertheless �+(, ) = . Next consider the mapping F : [, ] → [, ] defined by F(x) =
( x+x

 , x+x
 ) for all x ∈ [, ]. Then we have

pmax
(
Fi(x), Fi(y)

)
= pmax

(
x + x


,

y + y



)

=



pmax(x + x, y + y)

≤ 


max{x, y} +



max{x, y}

=


�+

(
pmax(x, y), pmax(x, y)

)

for all x, y ∈ [, ] and for i = , . So, F is a projective �+-contraction. However, F is
not a contraction from the quasi-metric space ([, ], P�+ ) into itself, where P�+ is the
partial metric induced by aggregation of the family of partial metric spaces {([, ], pi)}i=,

through �+. Indeed, take x, y ∈ [, ] given by x = (, ) and y = (, ). Then there does not
exist c ∈ [, [ such that

P�+

(
F(, ), F(, )

) ≤ cP�+

(
(, ), (, )

)
,

since P�+ (F(, ), F(, )) = P�+ ((, ), (, )) = .

Now, a natural question is whether any contraction from the partial metric space (X, P�)
into itself is a projective �-contraction provided the partial metric aggregation function
� satisfies �(, . . . , ) ≤  and is homogeneous. In the next example we show that the an-
swer to such an inquiry is negative and, thus, Theorem  is not a trivial consequence of
Theorem .

Example  Let ([, ], pi)i=, be the family of complete partial metric spaces such that
p = p = pmax. Define the function � 


: R

+ → R+ by � 


(x) = x+x
 for all x ∈ R


+. Clearly

� 


is an homogeneous partial metric aggregation function for which � 


(, ) ≤ . Con-
sider the mapping F : [, ] → [, ] defined by F(x) = ( x+x

 , ) for all x ∈ [, ]. Then
we have

P� 


(
F(x), F(y)

)
= max

{
x + x


,

y + y



}

≤ 


max

{
x


,

y



}
+




max

{
x


,

y



}

=



P� 


(x, y)

for all x, y ∈ [, ], where P� 


is the partial metric induced by aggregation of the family
of partial metric spaces {([, ], pi)}i=, through � 


.

It follows that F is a contraction from the partial metric space ([, ], P� 


) into itself.
Next we show that F is not a projective � 


-contraction. To this end, consider x, y ∈ [, ]
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with x = (, ) and y = (, ). Thus pmax(F(x), F(y)) = pmax(, ) =  and pmax(x, y) =
pmax(x, y) = pmax(, ) = . Consequently there does not exist c ∈ [, [ such that

pmax
(
F(x), F(y)

) ≤ c� 


(
pmax(x, y), pmax(x, y)

)
,

since � 


(pmax(x, y), pmax(x, y)) = � 


(, ) = .

According to [], given a partial metric space (X, p) and a contraction f : X → X with
fixed point x∗ ∈ X, we will say that:

(i) The fixed point problem for such a mapping is well-posed with respect to p
whenever the following property is satisfied:
If {xn}n∈N is a sequence in X such that limn→∞ p(xn, f (xn)) = , then {xn}n∈N
converges to x∗ with respect to τ (p).

(ii) The contraction f has the limit shadowing property with respect to p provided that
the following property is satisfied:
If {xn}n∈N is a sequence in X such that limn→∞ p(xn+, f (xn)) = , then
limn→∞ p(xn, f n(x)) =  for all x ∈ X .

In Theorem . of [], it was proved that the fixed point problem for contractions
in the partial metric context is well-posed and, in addition, that every contraction has
the limit shadowing property provided that the partial metric space is complete. Taking
into account the preceding facts we discuss the same properties in the case of projective
�-contractions in the result below.

Corollary  Let {(Xi, pi)}n
i= be a family of arbitrary complete partial metric spaces and

X =
∏n

i=Xi. Assume that � is an homogeneous partial metric aggregation function such
that �(, . . . , ) =  = �(i) for all i = , . . . , n and that F is a projective �-contraction, then

() the fixed point problem for F is well-posed with respect to P�,
() F has the shadowing property with respect to P�,

where P� is the partial metric induced by aggregation of the family of partial metric spaces
{(Xi, pi)}n

i= through �.

Proof By Theorem  we see that a projective �-contraction is a contraction from (X, P�)
into itself. Moreover, by Lemma , we see that the partial metric space (X, P�) is complete.
Thus we deduce, by Theorem . in [], that the fixed point problem for F is well-posed
with respect to P� and, besides, F has the shadowing property with respect to P�. �

In Theorem . of [], it was also proved that if f is a contraction from a complete partial
metric space (X, p) into itself, x∗ is the fixed point of f and g is a mapping from X into itself
with fixed point y∗, then the following property holds:

If there exists η >  such that p(f (x), g(x)) < η for all x ∈ X and c is the contractive con-
stant of f , then p(x∗, y∗) ≤ η

–c .
Hereafter we will say that a contraction f from a partial metric space (X, p) into itself with

a unique fixed point x∗ and contractive constant c has the bounding fixed point property
with respect to p whenever, given a mapping g from X into itself with fixed point y∗, the
existence of η >  such that p(f (x), g(x)) < η for all x ∈ X implies that p(x∗, y∗) ≤ η

–c .
The next result provides conditions under which projective �-contractions enjoy the

bounding fixed point property.
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Corollary  Let {(Xi, pi)}n
i= be a family of arbitrary complete partial metric spaces and

X =
∏n

i=Xi. Assume that � is an homogeneous partial metric aggregation function such
that �(, . . . , ) =  = �(i) for all i = , . . . , n and that F is a projective �-contraction. Then
F has the bounding fixed point property with respect to P�, where P� is the partial metric
induced by aggregation of the family of partial metric spaces {(Xi, pi)}n

i= through �.

Proof The same arguments as those in the proof of Corollary  give the thesis. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Faculty of Science - AL Faisaliah Campus, King Abdulaziz University, P.O. Box 4087, Jeddah,
21491, Saudi Arabia. 2Operator Theory and Applications Research Group, Department of Mathematics, King Abdulaziz
University, P.O. Box 80203, Jeddah, 21859, Saudi Arabia. 3Departamento de Ciencias Matemáticas e Informática,
Universidad de las Islas Baleares, Ctra. de Valldemossa km. 7.5, Palma de Mallorca, 07122, Spain.

Acknowledgements
This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant
No. (363-540-D1435). The authors, therefore gratefully acknowledge the DSR technical and financial support.

Received: 23 May 2015 Accepted: 14 September 2015

References
1. Grabisch, M, Marichal, JL, Mesiar, R, Pap, E: Aggregation Functions. Cambridge University Press, New York (2009)
2. Borsík, J, Doboš, J: On a product of metric spaces. Math. Slovaca 31, 193-205 (1981)
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