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1 Introduction
For a self-map f : X → X, the Lefschetz number L(f ) and the Nielsen number N(f ) give
information concerning the fixed points of f . It is known that the Nielsen number gives
more precise information about the existence of fixed points than the Lefschetz number,
but its computation is in general very difficult. For the periodic points, two Nielsen type
numbers NPn(f ) and N�n(f ) were introduced by Jiang [], which are lower bounds for
the number of periodic points of least period exactly n and the set of periodic points of
period n, respectively.

It is obvious that these Nielsen numbers are much more powerful than the Lefschetz
numbers in describing the periodic point sets of self-maps. Using fiber techniques on nil-
manifolds and some solvmanifolds, Heath and Keppelmann [] (see also []) succeeded in
showing that the Nielsen numbers and the two Nielsen type numbers are related to each
other under certain conditions. However, the computation of the Nielsen type numbers
even on low dimensional infra-homogeneous spaces is a hard problem. See [] for the
Klein bottle and [] for a three-dimensional flat Riemannian manifold.

One of the natural problems in dynamical systems is the study of the existence of pe-
riodic points of least period exactly n. Homotopically, a new concept, namely homotopy
minimal periods,

HPer(f ) =
⋂

g�f

{
n ∈N | Pn(g) �= ∅}

,
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where Pn(g) = Fix(gn) –
⋃

k<n Fix(gk), was introduced by Alsedà et al. []. Since the homo-
topy minimal period is preserved under a small perturbation of a self-map f on a man-
ifold X, we can say that the set HPer(f ) of homotopy minimal periods of f describes the
rigid part of dynamics of f . A complete description of the set of homotopy minimal pe-
riods of all self-maps was obtained on the nilmanifolds with Nil-geometry [, ] and on
the special solvmanifolds with Sol-geometry [, ].

There are four-dimensional geometries which were classified by Filipkiewicz [], see
also []. One of their model spaces is a simply connected four-dimensional unimodular
solvable Lie group Sol

 . This group contains Nil as a nil-radical and the quotient by its
center is Sol. Recall that Nil and Sol are model spaces for three-dimensional geometries.

In this paper, we are concerned with the special solvmanifolds with Sol
 -geometry, i.e.,

the closed manifolds �\Sol
 which are quotient spaces of Sol

 by its lattices �. For all con-
tinuous maps f on any special solvmanifolds with Sol

 -geometry, we will give a complete
description of the Nielsen type numbers NPn(f ) and N�n(f ), and the homotopy minimal
periods HPer(f ).

2 The Lie group Sol4
1 and its Lie algebra

Consider the connected and simply connected four-dimensional matrix Lie group

Sol
 =

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
 y x
 eθ z
  

⎤

⎥⎦ : x, y, z, θ ∈R

⎫
⎪⎬

⎪⎭
.

This Lie group is one of the four-dimensional geometries which were classified by Filip-
kiewicz [], see also []. The Lie algebra of Sol

 is

sol

 =

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
 b a
 θ c
  

⎤

⎥⎦ : a, b, c, θ ∈R

⎫
⎪⎬

⎪⎭
.

Denote

e =

⎡

⎢⎣
  
  
  

⎤

⎥⎦ , e =

⎡

⎢⎣
  
  
  

⎤

⎥⎦ ,

e =

⎡

⎢⎣
  
  
  

⎤

⎥⎦ , e =

⎡

⎢⎣
  
  
  

⎤

⎥⎦ .

Its nontrivial brackets are

[e, e] = e, [e, e] = e, [e, e] = –e,

and hence sol



() := [sol , sol ] = 〈e, e, e〉 and sol



() = Z(sol ) = 〈e〉.
Let ϕ : sol → sol


 be a Lie algebra endomorphism. Since ϕ preserves sol

() and sol



(),
we have

ϕ(e) = pe,
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ϕ(e) = pe + pe + pe,

ϕ(e) = pe + pe + pe,

ϕ(e) = pe + pe + pe + pe,

for some constants pij. Because ϕ preserves the Lie brackets, it follows that ϕ can be ex-
pressed as a matrix of one of the following three forms:

⎡

⎢⎢⎢⎣

xy wx vy u
 x  v
  y w
   

⎤

⎥⎥⎥⎦ ,

⎡

⎢⎢⎢⎣

–   
   
   
   –

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

xy wx vy u
 x  v
  y w
   

⎤

⎥⎥⎥⎦ ,

⎡

⎢⎢⎢⎣

   u
   v
   w
   p

⎤

⎥⎥⎥⎦

(p �= ±).

In particular, we have

Aut
(
sol



)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢⎢⎢⎣

xy wx vy u
 x  v
  y w
   

⎤

⎥⎥⎥⎦

∣∣∣∣∣ x, y, u, v, w ∈ R, xy �= 

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

Let

τ =

⎡

⎢⎢⎢⎣

–   
   
   
   –

⎤

⎥⎥⎥⎦ .

The subgroup of Aut(sol ) with x, y = ± and u = v = w =  is isomorphic to (Z), which
is a maximal compact subgroup. Hence Aut(sol ) has a subgroup generated by (Z) and
τ as a maximal compact subgroup. This group is isomorphic to the dihedral group D()
of order .

A connected solvable Lie group S is called of type (R) (or completely solvable) if ad(X) :
S →S has only real eigenvalues for each X ∈S. It is known that any Lie group S of type
(R) is of type (E), i.e., exp : S→ S is surjective. Remark that sol is a -step unimodular and
completely solvable (or of type (R)) Lie algebra. Hence the exponential map exp : sol →
Sol

 is a diffeomorphism with inverse log, and they are given explicitly as follows:

exp :

⎡

⎢⎣
 b a
 θ c
  

⎤

⎥⎦ 	−→
⎡

⎢⎣
 eθ –

θ
b a + eθ ––θ

θ bc
 θ eθ –

θ
c

  

⎤

⎥⎦ ,

log :

⎡

⎢⎣
 y x
 eθ z
  

⎤

⎥⎦ 	−→
⎡

⎢⎣
 θ

eθ – y x – eθ ––θ

(eθ –) yz
 θ θ

eθ – z
  

⎤

⎥⎦ .

Because Sol
 is simply connected, every Lie group endomorphism is understood as the

composition exp◦ϕ ◦ log.
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The group Sol
 has the three-dimensional Heisenberg group Nil (θ = ) as its nilradical.

Indeed, the derived group of Sol
 is Nil. On the other hand, Sol

 has the center Z(Sol
 ) =

R (y = z = θ = ), and the quotient turns out to be isomorphic to a three-dimensional
solvable Lie group Sol, see Remark .. That is,

Sol

�⏐⏐∼=

 ––––––→ Z
(
Sol


)

––––––→ Sol
 ––––––→ Sol

 /Z
(
Sol


)

––––––→ 

where the isomorphism is given by

⎡

⎢⎣
 y ∗
 eθ z
  

⎤

⎥⎦ 	−→
([

e–θ y
z

]
, –θ

)
.

Consequently, Sol
 fits in the following commutative diagram between short exact se-

quences (cf. []):

 
�⏐⏐

�⏐⏐

R
+ log

––––––→ R
�⏐⏐

�⏐⏐

 ––––––→ R ––––––→ Sol
 ––––––→ Sol ––––––→ 

�⏐⏐=
�⏐⏐

�⏐⏐

 ––––––→ R ––––––→ Nil ––––––→ R
 ––––––→ 

�⏐⏐
�⏐⏐

 

(S)

Remark . Recall that Sol is one of the eight geometries in dimension . We denote by
R

, the vector space R
 with the bilinear form

b(x, y) = –xy + xy.

Let E(, ) denote the group of all isometries of R,. Then E(, ) = R

� O(, ), where

O(, ) denotes the orthogonal group of b:

O(, ) =

{[
α 
 α–

] ∣∣∣ α �= 

}
.

Hence

SE(, ) = R

� SO(, ) = R


�

{[
eθ 
 e–θ

] ∣∣∣ θ ∈R

}
.
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This shows that SE(, ) ∼= R

�σ R, where

σ : R → GL(,R), θ 	→
[

eθ 
 e–θ

]
.

Recall that Sol is the group R

�σ R. We also remark that the map Sol

 → GL(,R),

⎡

⎢⎣
 y ∗
 eθ z
  

⎤

⎥⎦ 	−→
⎡

⎢⎣
  

e–θ y + z cosh(–θ ) sinh(–θ )
e–θ y – z sinh(–θ ) cosh(–θ )

⎤

⎥⎦ ,

is a Lie group homomorphism with kernel Z(Sol
 ) = R. Consequently, this induces that

Sol can be embedded into GL(,R) as

([
y
z

]
, θ

)
	−→

⎡

⎢⎣
  

y + z cosh θ sinh θ

y – z sinh θ cosh θ

⎤

⎥⎦ .

As observed above, Sol can be embedded naturally into the affine group Aff(R) as

([
y
z

]
, θ

)
	−→

⎡

⎢⎣
eθ  y
 e–θ z
  

⎤

⎥⎦ .

3 The lattices of Sol4
1

In this section we study lattices � of Sol
 with [] as our basic reference, and then we

study continuous maps on the solvmanifold �\Sol
 up to homotopy.

Theorem . Every lattice � of Sol
 can be generated by γ, γ, γ, γ with relations

[γ,γ] = γ k
 , [γ,γ] = [γ,γ] = ,

γγγ
–
 = γ

n
 γ

n
 γ

p
 , γγγ

–
 = γ

n
 γ

n
 γ

p
 , γγγ

–
 = γ

for some integers k, p, p with k �=  and N = [nij] ∈ SL(,Z) with trace > .

Notation We denote such a lattice of Sol
 by �k,N ,p.

Proof Consider the derived series of Sol
 : Sol

 ⊃ Nil ⊃ Z(Nil). Taking intersections
with �, we obtain

� = � ⊃ � ⊃ �,
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where � is a lattice of Nil. From the commutative diagram (S), we obtain a commutative
diagram between lattices

 
�⏐⏐

�⏐⏐

�/�
=––––––→ �/��⏐⏐

�⏐⏐

 ––––––→ � ––––––→ � ––––––→ �/� ––––––→ 
�⏐⏐=

�⏐⏐
�⏐⏐

 ––––––→ � ––––––→ � ––––––→ �/� ––––––→ 
�⏐⏐

�⏐⏐

 

(L)

Remark that the bottom exact sequence comes from the short exact sequence  → R →
Nil →R

 → . Then it is well known, for example, in [] that such � is generated by γ,
γ, γ satisfying the relations

[γ,γ] = [γ,γ] = , [γ,γ] = γ k


for some nonzero integer k. In particular, γ is a generator of � ∼= Z and γ̃, γ̃ generate
�/� ∼= Z

. Now, from the middle vertical, we can choose γ ∈ � so that {γ, . . . ,γ}
generates �. We denote by γ̃ and ˜̃γ the images of γ under the projections � → �/�

and � → �/�, respectively. Remark also that {γ̃, γ̃, γ̃} is a generator set of �/�,
which is a lattice of Sol. Because {γ̃, γ̃} generates �/� ∼= Z

 and ˜̃γ generates �/� ∼=
Z, we must have

[γ̃, γ̃] = , γ̃γ̃jγ̃
–
 = γ̃

nj
 γ̃

nj


for some integers nij. Let N = [nij]. Then it can be seen that N ∈ SL(,Z) with trace > . For
details about lattices of Sol, we refer to [, ]. On the other hand, the conjugation by γ

induces an automorphism on �. Because this automorphism must preserve the relation
[γ,γ] = γ k

 , it follows that γγγ
–
 = γ

det(N)
 = γ. Consequently, the theorem is proved.

�

Now we will study an embedding of an abstract group �k,N ,p into Sol
 as a lattice. Let

N be a  ×  hyperbolic integer matrix with trace > . Then N has two distinct irrational
eigenvalues eθ and e–θ with corresponding eigenvectors (y, z) and (y, z). This means
that NQ = Q
, where Q is the matrix with columns (y, z)t and (y, z)t and 
 is the diag-
onal matrix with entries eθ and e–θ . From the identity NQ = Q
, we can now check that
the assignment

γ̃ 	→
⎡

⎢⎣
  
 e–θ 
  

⎤

⎥⎦ , γ̃j 	→
⎡

⎢⎣
 yj 
  zj

  

⎤

⎥⎦
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realizes �/� as a lattice of Sol = Sol
 /Z(Sol

 ). Thus, by lifting γ̃, γ̃, γ̃ ∈ �/� in �,
we have

γ 	→
⎡

⎢⎣
  x

 e–θ 
  

⎤

⎥⎦ , γj 	→
⎡

⎢⎣
 yj xj

  zj

  

⎤

⎥⎦ , γ 	→
⎡

⎢⎣
  x

  
  

⎤

⎥⎦

for some x, x, x, x ∈R. The relation [γ,γ] = γ k
 yields x = (yz – yz)/k, and then the

relation γγjγ
–
 = γ

nj
 γ

nj
 γ

pj
 yields that xj = (yz –yz)pj/k. We can choose x arbitrarily.

Therefore, this gives an embedding � into Sol
 as a lattice.

In the theorem below, we study the homomorphisms on any lattice of Sol
 .

Theorem . Let

�k,N ,p =

〈
γ,γ,γ,γ

∣∣∣
[γ,γ] = γ k

 , [γ,γ] = [γ,γ] = [γ,γ] = ,
γγγ

–
 = γ

n
 γ

n
 γ

p
 ,γγγ

–
 = γ

n
 γ

n
 γ

p


〉

be a lattice of Sol
 . Then any homomorphism φ on �k,N ,p is either one of the following

forms:

Type (I) φ(γ) = γγ
r
 γ

r
 γ

q
 , φ(γ) = γ

μ
 γ

n
n

ν

 γ
q
 , φ(γ) = γ ν

 γ
μ+ n–n

n
ν

 γ
q
 ,

φ(γ) = γ
μ(μ+ n–n

n
ν)– n

n
ν

 ;

Type (II) φ(γ) = γ –
 γ

r
 γ

r
 γ

q
 , φ(γ) = γ

–μ
 γ ν

 γ
q
 , φ(γ) = γ

n–n
n

μ– n
n

ν

 γ
μ
 γ

q
 ,

φ(γ) = γ
–μ–( n–n

n
μ– n

n
ν)ν

 ;
Type (III) φ(γ) = γ m

 γ
r
 γ

r
 γ

q
 , φ(γ) = γ

q
 , φ(γ) = γ

q
 , φ(γ) =  with m �= ±.

Proof For simplicity, we write � = �k,N ,p. Let φ : � → � be any homomorphism. Consider
the derived series of Sol

 : Sol
 ⊃ Nil ⊃ Z(Nil), and its associated sequence � = � ⊃

� ⊃ � obtained by taking intersections with �. Note that � = 〈γ,γ,γ〉 and � = 〈γ〉.
Because Sol

 is of type (R), the homomorphism φ on � extends uniquely to a Lie group
homomorphism � on Sol

 , see, for example, [], Corollary ., or [, ]. Now, � pre-
serves the derived series of Sol

 , and so φ preserves the associated sequence. In particular,
φ|� is a homomorphism on the lattice � of Nil. Since � = 〈γ,γ,γ | [γ,γ] = γ k

 〉, it
follows that

φ(γ) = γ m
 γ

r
 γ

r
 γ

q
 ,

φ(γ) = γ
m
 γ

m
 γ

q
 ,

φ(γ) = γ
m
 γ

m
 γ

q
 ,

φ(γ) = γ
mm–mm
 ,

where mij, ri, qj ∈ Z, see [], Lemma ., for φ|� . Further, φ induces a homomorphism φ̃

on the lattice �/� of Sol so that

φ̃(γ̃) = γ̃ m
 γ̃

r
 γ̃

r
 , φ̃(γ̃) = γ̃

m
 γ̃

m
 , φ̃(γ̃) = γ̃

m
 γ̃

m
 .
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Note that if we put M = [mij], then the relations in the lattice

�/� =
〈
γ̃ · γ̃, γ̃ | [γ̃, γ̃] = , γ̃γ̃γ̃

–
 = γ̃

n
 γ̃

n
 , γ̃γ̃γ̃

–
 = γ̃

n
 γ̃

n


〉

induce the identity NmM = MN . Recall from the observation earlier that there exists a
matrix Q such that Q–NQ = 
. Hence 
m(Q–MQ) = (Q–MQ)
. Because 
 is a diagonal
matrix of determinant , it follows that when m = , Q–MQ is a diagonal matrix; when
m = –, Q–MQ is an off-diagonal matrix; when m �= ±, Q–MQ and hence M is a zero
matrix. These yield the three possibilities for φ̃. For details, we refer to [], Theorem ..
All these observations deduce the proof. �

Remark . (Homomorphisms on � up to conjugacy) Let φ be any homomorphism on
� = �k,N ,p given as in Theorem .. We will observe the effect of φ under the conjugation
μ(γ ) by an element γ ∈ �. Assume

φ(γ) = γ m
 γ

r
 γ

r
 γ

q
 , φ(γ) = γ

m
 γ

m
 γ

q
 ,

φ(γ) = γ
m
 γ

m
 γ

q
 , φ(γ) = γ

mm–mm
 .

For any element γ = γ 
 γ s

 γ t
γ

q
 in �, we have

μ(γ ) ◦ φ(γ) = γ m′
 γ

r′
 γ

r′
 γ

q′


 , μ(γ ) ◦ φ(γ) = γ
m′


 γ

m′


 γ
q′


 ,

μ(γ ) ◦ φ(γ) = γ
m′


 γ

m′


 γ
q′


 , μ(γ ) ◦ φ(γ) = γ

mm–mm
 .

We will first have a look at μ(γ ) ◦ φ mod�, i.e., μ(γ̃ ) ◦ φ̃ on the lattice �/�. Since in
mod�, [γ,γ] ≡  and the conjugation by γ is the multiplication by N on Z

 ≡ 〈γ,γ〉,
we can show easily that

m′ = m,

[
m′

i

m′
i

]
= N

[
mi

mi

]
,

[
r′



r′


]
= N

(
(
N–m – I

)
[

s
t

]
+

[
r

r

])
.

4 Continuous maps on solvmanifolds �\ Sol4
1

Let f : �\Sol
 → �\Sol

 be a continuous map. Fixing a lift f̃ of f on the universal cover
Sol

 , f defines a homomorphism ϕ on the group of covering transformations �, namely,

ϕ(γ ) ◦ f̃ = f̃ ◦ γ , ∀γ ∈ �.

Thus ϕ is a homomorphism in Theorem .. This homomorphism extends uniquely to a
Lie group homomorphism � on Sol

 . This implies that � restricts to a map �� on the
quotient space �\Sol

 which induces the same homomorphism ϕ on �. Further, since
�\Sol

 is aspherical, �� is homotopic to f . Remark also that another choice of a lift of f
results in a new homomorphism on � and on Sol

 which differ by the conjugation by an
element of �.

Since the invariants that we are going to deal with are all homotopy invariants, we will
assume in what follows that every continuous map on �\Sol

 is induced by a Lie group
homomorphism � on Sol

 preserving �.
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Let � be a Lie group homomorphism on Sol
 . Then we obtain the following commuta-

tive diagram:

Sol


�––––––→ Sol
⏐⏐"log

⏐⏐"log

Sol


�∗––––––→ Sol


where �∗ is the differential of �. Assume that � restricts to a homomorphism ϕ on �.
Recall that � preserves the derived series of Sol

 , Sol
 ⊃ Nil ⊃Z(Sol

 ), and its associated
sequence � ⊃ � ⊃ �. Then we could choose a set of generators {γ,γ,γ,γ} so that
γ,γ ∈ Nil and γ ∈ Z(Sol

 ). Furthermore, the image of γ under the projection � →
�/� generates �/� ∼= Z, the images of γ, γ under the projection � → �/� generate
�/� ∼= Z

, and γ generates � ∼= Z. Therefore, {logγ, logγ, logγ, logγ} forms a linear
ordered basis of Sol

 with respect to which �∗ can be expressed as a matrix of the form

�∗ =

⎡

⎢⎣

ϕ  

∗ ϕ 
∗ ∗ ϕ

⎤

⎥⎦ ,

where ϕ, ϕ are integers and ϕ is a  ×  integer matrix. When f is a map on �\Sol
 ,

which is homotopic to a map induced by �, we say that �∗ is a linearization of f . Because
in this paper we are only concerned with the eigenvalues of �∗, we shall denote by �∗ the
diagonal block integer matrix diag{ϕ,ϕ,ϕ}.

The commutative diagram

 ––––––→ Nil ––––––→ Sol
 ––––––→ R ––––––→ 

�⏐⏐
�⏐⏐

�⏐⏐

 ––––––→ � ––––––→ � ––––––→ �/� ––––––→ 

gives rise to a fibration structure on �\Sol
 , called the Mostow fibration,

�\Nil −→ �\Sol
 −→ Z\R

over the circle base with nilmanifold fiber. We remark that any map f on �\Sol
 induced

by a Lie group homomorphism of Sol
 is a fibration map with respect to the above bundle

structure. Indeed, such a Lie group homomorphism � on Sol
 induces maps f , f ′ and f

so that the diagram is commutative

�\Nil ––––––→ �\Sol
 ––––––→ (�/�)\R

⏐⏐"f ′
⏐⏐"f

⏐⏐"f

�\Nil ––––––→ �\Sol
 ––––––→ (�/�)\R

Thus, ϕ is the degree of the induced map f on the base space Z\R, and

�′
∗ =

[
ϕ 
∗ ϕ

]



Jo and Lee Fixed Point Theory and Applications  (2015) 2015:175 Page 10 of 15

is a linearization of f ′, see [] for details. In particular, ϕ = detϕ which was observed
already in Theorem .. Furthermore, we also have the following commutative diagram
induced by �:

�\Z(Sol
 ) ––––––→ �\Sol

 ––––––→ (�/�)\Sol

⏐⏐"f

⏐⏐"f
⏐⏐"f̂

�\Z(Sol
 ) ––––––→ �\Sol

 ––––––→ (�/�)\Sol

Thus,

�̂∗ =
[

ϕ 
∗ ϕ

]

is a linearization of f̂ , see [] for details. In all, we have

�∗ =

⎡

⎢⎣

ϕ  

∗ ϕ 
∗ ∗ ϕ

⎤

⎥⎦ =

[
ϕ 
∗ �′

∗

]
=

[
�̂∗ 
∗ ϕ

]
.

From Theorem ., we immediately obtain the following.

Proposition . Let f : �\Sol
 → �\Sol

 be a continuous map where � = �k,N ,p. Then a
linearization of f is an integer matrix of one of the following:

⎡

⎢⎢⎣


μ ν

n
n

ν μ + n–n
n

ν

ϕ

⎤

⎥⎥⎦ ,

⎡

⎢⎢⎣

–
–μ

n–n
n

μ – n
n

ν

ν μ
ϕ

⎤

⎥⎥⎦ ,

⎡

⎢⎣

m(�= ±)
 
 



⎤

⎥⎦ .

Each linearization is respectively conjugate to

⎡

⎢⎢⎢⎢⎢⎣



μ – n–n–
√

(n+n)–
n

ν 

 μ – n–n+
√

(n+n)–
n

ν

ϕ

⎤

⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎣

–

 μ + n–n–
√

(n+n)–
n

ν

μ + n–n+
√

(n+n)–
n

ν 
ϕ

⎤

⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎣

m(�= ±)
 
 



⎤

⎥⎦ .
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Proof The first part follows from Theorem .. Taking conjugation Q–(·)Q by the matrix

Q =

⎡

⎢⎢⎢⎣

   

 n–n+
√

(n+n)–
n

n–n–
√

(n+n)–
n


   
   

⎤

⎥⎥⎥⎦ ,

we obtain the second part of our assertion. Notice that the middle block of Q consists of
eigenvectors of N . �

Note that homomorphisms of distinct types are not conjugate to each other. We shall
say a map on �\Sol

 is of type (I), (II) or (III) according to its homomorphism on �.

Corollary . Each linearization of a continuous map on �\Sol
 is conjugate to one of

the following:

(I)

⎡

⎢⎢⎣


α 
 β

αβ

⎤

⎥⎥⎦ , (II)

⎡

⎢⎢⎣

–
 γ

δ 
–γ δ

⎤

⎥⎥⎦ , (III)

⎡

⎢⎣

ξ

 
 



⎤

⎥⎦ , (∗)

where α + β ,αβ ,γ δ, ξ ∈ Z with ξ �= ±. Moreover, α =  if and only if β = , and γ =  if
and only if δ = .

Proof Since tr N = n + n > , the number
√

(n + n) –  must be irrational. If α =

μ – n–n–
√

(n+n)–
n

ν = , then ν must be zero and hence μ =  because μ, ν , n, n,
n are all integers. It follows that β = α = . The converse is the same. Similarly, we can
show that γ =  if and only if δ = . �

Remark . If f is of type (II), then f  is of type (I).

Proposition . Let f and f ′ be two continuous maps on the solvmanifold �k,N ,p\Sol


with linearizations �∗ = diag{ϕ,ϕ,ϕ} and �′∗ = diag{ϕ′
,ϕ′

,ϕ′
}, respectively. If f and f ′

are homotopic, then

ϕ′
 = ϕ, ϕ′

 = Nϕ, ϕ′
 = ϕ

for some .

Proof As it was mentioned earlier, we may assume that f , f ′ are induced respectively by
Lie group homomorphisms �,�′ : Sol

 → Sol
 , both of which restrict to homomorphisms

ϕ,ϕ′ : �k,N ,p → �k,N ,p. Because f � f ′, ϕ and ϕ′ differ by the conjugation by an element of
�k,N ,p. Now our assertion follows from Remark .. �

According to this result, det�∗ and ϕ, ϕ are all homotopy invariants. A map becomes
of type (I), (II) or (III) according to what the value of ϕ is , – or the others. It should be
noticed that the ϕ is not a homotopy invariant.
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5 Lefschtez numbers and Nielsen type numbers
Recall that Sol

 is of type (R). Let f be a map on the special solvmanifold �\Sol
 of type (R)

with � = �k,N ,p. Then we may assume that f is induced by a Lie group homomorphism �.
Consider a linearization �∗ = diag{ϕ,ϕ,ϕ} of f . Then the main result, Theorem ., of
[] implies that L(f ) = det(I – �∗). By [], Theorem ., we also have N(f ) = |L(f )|. See
also the main result, Theorem ., of [].

Next we consider the iterations f n of f . Since � induces a map homotopic to f , �n in-
duces a map homotopic to f n. Therefore, �n∗ = diag{ϕn

 ,ϕn
 ,ϕn

 } is a linearization of f n, and
so we have

L
(
f n)

= det
(
I – �n

∗
)

=
(
 – ϕn


)

det
(
I – ϕn


)(

 – ϕn

)
.

Proposition . Let f : �\Sol
 → �\Sol

 be any continuous map on the solvmanifold
�\Sol

 with linearization �∗ = diag{ϕ,ϕ,ϕ}. Then, for all positive integers n,

L
(
f n)

=

⎧
⎪⎪⎨

⎪⎪⎩

 when f is of type (I),

( – (–)n)( – ϕn
 ) when f is of type (II),

 – ϕn
 when f is of type (III),

and N(f n) = |L(f n)|.

Proof If f is of type (I), then ϕ = ϕn
 =  and hence L(f n) = . If f is of type (III), then

ϕ = ϕn
 =  and ϕ = ϕn

 = , and hence L(f n) =  – ϕn
 .

Assume that f is of type (II). By Corollary ., we may assume that

�∗ =

⎡

⎢⎢⎣

–
 γ

δ 
–γ δ

⎤

⎥⎥⎦ , �k+
∗ =

⎡

⎢⎢⎢⎣

–
 γ k+δk

γ kδk+ 
–(γ δ)k+

⎤

⎥⎥⎥⎦ .

Hence

L
(
f k+) = det

(
I – �k+

∗
)

= 
(
 + detϕk+


)(

 – ϕk+


)

= 
(
 – (γ δ)k+)(

 + (γ δ)k+)

= 
(
 – ϕ

(k+)


)
.

Since ϕ = –, L(f k) = , and hence the theorem is proved. �

A connected solvable Lie group S is called of type (NR) (for ‘no roots’) if the eigenvalues
of Ad(x) : S → S are always either equal to  or else they are not roots of unity. Solvable
Lie groups of type (NR) were considered first in Keppelmann and McCord []. Since our
solvmanifold �\Sol

 is of type (NR), we have the following.

Theorem . Let f : �\Sol
 → �\Sol

 be a continuous map with linearization �∗ =
diag{ϕ,ϕ,ϕ}. Then we have
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() If f is of type (I), then

NPn(f ) = N�n(f ) = .

() Suppose f is of type (II). Then we have:
(a) If n is odd and ϕ = ±, then NPn(f ) = N�n(f ) = .
(b) If n is odd and ϕ �= ±, then

NPn(f ) = 
∑

m|n
μ(n/m)

∣∣ – ϕm


∣∣, N�n(f ) = 
∣∣ – ϕn


∣∣.

(c) If n = rn with n odd, then

NPn(f ) = , N�n(f ) =

⎧
⎨

⎩
 when ϕ = ±,

| – ϕ
n
 | when ϕ �= ±.

() If f is of type (III), then

NPn(f ) =
∑

m|n
μ(n/m)

∣∣ – ϕm


∣∣, N�n(f ) =
∣∣ – ϕn


∣∣.

Proof In case (), the Nielsen number N(f m) =  for all positive integers m. The map f has
no essential periodic orbit classes of any period. It follows that NPn(f ) = N�n(f ) = .

Since �\Sol
 is a solvmanifold of type (NR), by [], Theorem ., we have N�m(f ) =

N(f m) and NPm(f ) =
∑

q|m μ(q)N(f
m
q ) for all m|n provided N(f n) �= . This proves our

case ()(b) and case () because of the following reason: When f is of type (III), N(f n) �= ;
when f is of type (II), N(f n) = ( – (–)n)| – ϕn

 |, and N(f n) �=  if and only if n is odd and
ϕ �= ±. In case () when n is odd and ϕ = ±, i.e., in case ()(a), we note that N(f m) = 
for all positive integers m. Hence NPn(f ) = N�n(f ) = .

Consider the case () with n even. Since N(f n) = , it follows that NPn(f ) = . Let n = rn

for odd n. By Proposition ., f q has no essential fixed point class for every even factor q
of n. Thus, the set of essential fixed point classes of f q with q | n is the same as that of f q

with q | n. Thus, N�n(f ) = N�n (f ), which is just N(f n ) = | – ϕ
n
 | if ϕ �= ± and  if

ϕ = ±. �

6 Homotopy minimal periods
In this section, we shall present the homotopy minimal periods for all maps on four-
dimensional solvmanifolds �\Sol

 , which is of type (NR). Our main tool is

HPer(f ) =
{

n | N
(
f n) �= , N

(
f n) �= N

(
f

n
q
)

for all prime q | n
}

. (H)

This formula can be obtained immediately from the following theorem.

Theorem . ([], Theorem .) Let f : M → M be a self-map on a compact PL-manifold
M of dimension ≥ . Then f is homotopic to a map g with Pn(g) = ∅ if and only if NPn(f ) = .



Jo and Lee Fixed Point Theory and Applications  (2015) 2015:175 Page 14 of 15

Table 1 Homotopy minimal periods

HPer(f ) Linearization matrix F is conjugate to

∅

⎡

⎢⎢⎢⎣

1
α 0
0 β

αβ

⎤

⎥⎥⎥⎦ or

⎡

⎢⎢⎢⎣

–1
0 γ

δ 0
–γ δ

⎤

⎥⎥⎥⎦ (γ δ =±1)

{1}

⎡

⎢⎢⎢⎣

–1
0 γ

δ 0
–γ δ

⎤

⎥⎥⎥⎦ (γ δ = 0) or

⎡

⎢⎢⎣

0
0 0
0 0

0

⎤

⎥⎥⎦

N – {2}

⎡

⎢⎢⎣

–2
0 0
0 0

0

⎤

⎥⎥⎦

N

⎡

⎢⎢⎣

ζ

0 0
0 0

0

⎤

⎥⎥⎦ (ζ �= 0,±1, –2)

N – 2N

⎡

⎢⎢⎢⎣

–1
0 γ

δ 0
–γ δ

⎤

⎥⎥⎥⎦ (γ δ �= 0,±1)

Proposition . ([], Proposition .) Let f : M → M be a self-map of a compact solv-
manifold M of type (NR). Then NPn(f ) =  if and only if either N(f n) =  or N(f n) = N(f n/q)
for some prime factor q | n.

Now the following is one of our main results.

Theorem . Let f : �\Sol
 → �\Sol

 be a continuous map with linearization �∗ =
diag{ϕ,ϕ,ϕ}. Then we have

HPer(f ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{} when ϕ = ;

∅ when ϕ = ;

∅ when ϕ = – and ϕ = ±;

{} when ϕ = – and ϕ = ;

N – N when ϕ = – and ϕ �= ,±;

N – {} when ϕ = –;

N otherwise, i.e.,ϕ �= ,±, –.

Proof () If ϕ = , then f is of type (III) and N(f n) =  for all n by Proposition .. Hence
HPer(f ) = {}.

() If ϕ = , then f is of type (I) and so N(f n) =  for all n. This implies that HPer(f ) = ∅.
() If ϕ = –, then f is of type (II). By Proposition ., N(f n) =  for all even n. It follows

that HPer(f ) does not contain any even number, i.e., HPer(f ) ⊂N– N. Let us consider its
subcases:

(-) If ϕ = detϕ = ±, by Proposition ., N(f n) =  for all n. Thus HPer(f ) = ∅.
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(-) If ϕ = detϕ = , by Proposition ., N(f n) =  for all odd n. Since N(f ) �= , we
have  ∈ HPer(f ). By (H), we have n /∈ HPer(f ) for all odd n with n > . Thus
HPer(f ) = {}.

(-) If ϕ = detϕ �= ,±, by Proposition ., N(f n)’s are all distinct for all odd n.
Hence HPer(f ) = N – N.

() If ϕ = –, by Proposition ., we have N(f n) = | – (–)n|. Especially, N(f ) = N(f ) =
. By (H),  ∈ HPer(f ) but  /∈ HPer(f ). Since N(f n+) > N(f n) for all n > , (H) induces that
HPer(f ) = N – {}.

() Consider finally the case where ϕ �= –, –, , . By Proposition . again, we still
have N(f n) = | – ϕn

 |. In this case, we have that N(f n+) > N(f n) for all n. (H) induces that
HPer(f ) = N. �

We tabulate this result according to linearizations in Table . In fact, for each subset
S ⊂ N appearing as HPer(f ) and each form of linearization �∗ listed above, there exists a
self-map f : �\Sol

 → �\Sol
 such that HPer(f ) = S.
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