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Abstract
In this paper, we introduce and analyze a new general hybrid iterative algorithm for
finding a common element of the set of common zeros of two families of finite
maximal monotone mappings, the set of fixed points of a nonexpansive mapping
and the set of solutions of the variational inequality problem for a monotone,
Lipschitz-continuous mapping in a real Hilbert space. Our algorithm is based on four
well-known methods: Mann’s iteration method, composite method,
outer-approximation method and extragradient method. We prove the strong
convergence theorem for the proposed algorithm. The results presented in this paper
extend and improve the corresponding results of Wei and Tan (Fixed Point Theory
Appl. 2014:77, 2014). Some special cases are also discussed.
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1 Introduction
Let H be a real Hilbert space and C be a nonempty, closed, and convex subset of H . A map-
ping T : C → C is said to be monotone if

〈Tx – Ty, x – y〉 ≥ , ∀x, y ∈ C.

A multi-valued mapping T : H → H is said to be maximal monotone if its graph is not
properly contained in the graph of any other monotone mapping. Lots of researches are
focused on the maximal monotone mapping due to its importance.

In , to solve the inclusion problem  ∈ Ax, Rockafellar [] introduced the following
proximal point method:

x ∈ H , xn+ = Jrn xn, n = , , , . . . ,

where Jrn = (I + rnA)– and A : H → H is a maximal monotone mapping. It is shown that
the iterative sequence {xn} converges weakly to a zero of A under some appropriate condi-
tions. The strong convergence of the sequence has been extensively discussed by Zegeye
and Shahzad [] and Hu and Liu [] in Banach spaces.
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In , Wei and Tan [] introduced the following Mann-type composite viscosity iter-
ative scheme for finding the common zeros of two families of finite maximal monotone
mappings. In particular, they proved the following theorem.

Theorem . ([], Theorem .) Let H be a real Hilbert space, C be a nonempty closed and
convex subset of H , Ai, Bj (i = , , . . . , k; j = , , . . . , l) : C → C be two families of m-accretive
mappings. Suppose

SAk Ak–···A
rn = JAk

rn JAk–
rn · · · JA

rn , Trn = aI + aJB
rn + aJB

rn + · · · + alJBl
rn ,

with JAi
rn = (I + rnAi)–, JBj

rn = (I + rnBj)–,
∑l

m= am =  and am ∈ (, ). The sequences {xn},
{yn}, and {un} are generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x ∈ C,
yn = βnf (xn) + ( – βn)SAkAk–···A

rn xn,
un = vnf (yn) + ( – vn)Trn yn,
xn+ = αnf (un) + ( – αn)un,

for every n = , , , . . . , where f : C → C is a contraction. If D = (
⋂k

i= A–
i ) ∩ (

⋂l
j= B–

j ) is
nonempty, {αn}, {βn}, and {vn} are three sequences in (, ) and {rn} ⊂ (, +∞) satisfy the
following conditions:

(i)
∑∞

n= |αn+ – αn| < +∞, and αn →  as n → ∞;
(ii)

∑∞
n= βn = +∞,

∑∞
n= |βn+ – βn| < +∞, and βn →  as n → ∞;

(iii)
∑∞

n= |vn+ – vn| < +∞, and vn →  as n → ∞;
(iv)

∑∞
n= |rn+ – rn| < +∞, and rn → r∗ ≥ ε >  as n → ∞.

Then {xn} converges strongly to a point p ∈ D, which is the unique solution of the following
variational inequality:

〈
f (p) – p, p – q

〉 ≥ , ∀q ∈ D.

Remark . Actually, the m-accretive mapping in a Hilbert space defined in Wei and Tan
[] is a maximal monotone mapping.

Theorem . gives rise naturally to the question we concerned: the real sequences {αn},
{βn}, {vn}, and {rn} are satisfying the conditions (i), (ii), (iii), and (iv). When is the restric-
tions of the real sequences relaxed? The purpose of our paper is to give an affirmative
answer to the question. Moreover, a new algorithm and an extensive problem are consid-
ered.

On the other hand, the variational inequality problem is to find u ∈ C such that

〈Au, v – u〉 ≥ , ∀v ∈ C,

where A : C → H is a nonlinear mapping. The set of solutions of the variational inequality
problem is denoted by VI(C, A). The variational inequality problem was first discussed
by Lions []. For finding a solution of the variational inequality problem in Euclidean
space Rn, Korpelevich [] introduced the following extragradient method:
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⎧
⎪⎨

⎪⎩

x = x ∈ C,
xn = PC(xn – λAxn),
xn+ = PC(xn – λAxn),

for every n = , , , . . . where C is a nonempty, closed, and convex subset of Rn, A : C →
Rn is a monotone and ρ-Lipschitz-continuous mapping, λ ∈ (, 

ρ
). She showed that if

VI(C, A) is nonempty, then the generated sequences {xn} and {xn} converge to the same
point z ∈ VI(C, A). The extragradient iterative process was successfully generalized and
extended not only to Euclidean but also to Hilbert and Banach spaces; see, e.g., the recent
references of [–].

Furthermore, Iiduka and Takahashi [] introduced the following outer-approximation
method:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C,
yn = αnxn + ( – αn)SPC(xn – λnAxn),
Cn = {z ∈ C : ‖yn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, x – xn〉 ≥ },
xn+ = PCn∩Qn x,

for every n = , , , . . . , where A : C → H is an ρ-inverse strongly monotone mapping,
S : C → C is a nonexpansive mapping,  < a ≤ λn ≤ b < ρ and  ≤ αn ≤ c < . They
showed that if F(S)∩VI(C, A) is nonempty, then the generated sequence {xn} converges to
PF(S)∩VI(C,A)x. The outer-approximation method was originally introduced by Haugazeau
in  and was successfully generalized and extended in recent papers [–].

In this paper, inspired and motivated by the above work, we introduce the following
general hybrid iterative algorithm, which is based on four well-known methods: Mann’s
iteration method, the composite method, the outer-approximation method, and the extra-
gradient method.

Algorithm . Let H be a real Hilbert space, C be a nonempty, closed, and convex subset
of H , A : C → H be a monotone and ρ-Lipschitz-continuous mapping, S : C → C be a
nonexpansive mapping, Ai, Bj (i = , , . . . , k; j = , , . . . , l) : C → C be two families of finite
maximal monotone mappings. Suppose

SAk Ak–···A
rn = JAk

rn JAk–
rn · · · JA

rn , Trn = aI + aJB
rn + aJB

rn + · · · + alJBl
rn ,

with JAi
rn = (I + rnAi)–, JBj

rn = (I + rnBj)–,
∑l

m= am =  and am ∈ (, ). The sequences {xn},
{yn}, {zn}, and {wn} are generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C,
yn = PC(xn – λnAxn),
zn = αnxn + ( – αn)SPC(xn – λnAyn),
wn = ( – βn – γn)zn + βnSAk Ak–···A

rn zn + γnTrn zn,
Cn = {z ∈ C : ‖wn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, x – xn〉 ≥ },
xn+ = PCn∩Qn x,

for every n = , , , . . . .
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Our algorithm is first used for finding the common zeros of two families of finite maxi-
mal monotone mappings. By using Algorithm ., we will find a common element of the set
of common zeros of two families of finite maximal monotone mappings, the set of fixed
points of a nonexpansive mapping and the set of solutions of the variational inequality
problem for a monotone, Lipschitz-continuous mapping. We will prove the strong con-
vergence theorem for the proposed algorithm, which extends and improves the corre-
sponding results in the early and recent literature; see, e.g., [, , , , ].

2 Preliminaries
Throughout our paper, let H be a real Hilbert space with the inner product 〈·, ·〉 and norm
‖ ·‖, C be a nonempty, closed, and convex subset of H , and I be the identity mapping on H .
We write xn

w−→ x to indicate that the sequence {xn} converges weakly to x and xn → x to
indicate that the sequence {xn} converges strongly to x. For every point x ∈ H , there exists
an unique nearest point in C, denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.

PC is said to be the metric projection of H onto C. A mapping T : C → C is said to be
ρ-Lipschitz-continuous if

‖Tx – Ty‖ ≤ ρ‖x – y‖, ∀x, y ∈ C.

T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

Obviously, the -Lipschitz-continuous mapping is a nonexpansive mapping. It is well
known that PC is nonexpansive.

We use F(T) to denote the set of fixed points of T , that is, F(T) = {x ∈ C : Tx = x}. We
use T– to denote the set of zeros of T , that is, T– = {x ∈ C : Tx = }. We use JT

r (r > )
to denote the resolvent operator of T , that is, JT

r = (I + rT)–. As is well known, JT
r is non-

expansive and F(JT
r ) = T–.

It is well known that a monotone mapping T is maximal if and only if for (x, f ) ∈ H × H ,
〈x – y, f – g〉 ≥  for every (y, g) ∈ Graph(T) implies f ∈ Tx. Next we provide an example
to illustrate the concept of maximal monotone mapping. Let A : C → H be a monotone,
ρ-Lipschitz-continuous mapping and NCv be the normal cone to C at v ∈ C, i.e., NCv =
{ω ∈ H : 〈v – u, w〉 ≥ ,∀u ∈ C}. Define

Tv =

{
Av + NCv, if v ∈ C,
φ, if v /∈ C,

it is well known that in this case T is maximal monotone and  ∈ Tv if and only if v ∈
VI(C, A); see []. At the same time, it is well known that H satisfies Opial’s condition [],
i.e., for any sequence {xn} with xn

w−→ x, the inequality

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖
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holds for every y ∈ H with y �= x. H also admits Kadec-Klee property, i.e., sequential weak
convergence on the unit sphere coincides with norm convergence; see [].

In order to prove our main results, we need the following lemmas.

Lemma . [] For ∀x ∈ H and ∀y ∈ C, PC is characterized by the properties:
(i) 〈x – PCx, PCx – y〉 ≥ ;

(ii) ‖PCx – y‖ + ‖x – PCx‖ ≤ ‖x – y‖.

Lemma . [] For ∀x ∈ H , ∀y ∈ A– and r > ,

∥
∥JA

r x – y
∥
∥ +

∥
∥x – JA

r x
∥
∥ ≤ ‖x – y‖.

Lemma . [] Let H be a real Hilbert space, C be a nonempty, closed, and convex subset
of H , Ai, Bj (i = , , . . . , k; j = , , . . . , l) : C → C be two families of finite maximal monotone
mappings such that (

⋂k
i= A–

i ) ∩ (
⋂l

j= B–
j ) is nonempty. Suppose

SAk Ak–···A
rn = JAk

rn JAk–
rn · · · JA

rn , Trn = aI + aJB
rn + aJB

rn + · · · + alJBl
rn ,

with JAi
rn = (I + rnAi)–, JBj

rn = (I + rnBj)–,
∑l

m= am = , am ∈ (, ) and rn > . Then
SAk Ak–···A

rn : C → C and Trn : C → C are nonexpansive.

Lemma . [] Let H , C, Ai, Bj, SAkAk–···A
rn , and Trn be the same as those in Lemma ., sup-

pose (
⋂k

i= A–
i ) ∩ (

⋂l
j= B–

j ) is nonempty, then F(SAkAk–···A
rn ) =

⋂k
i= A–

i  and
F(Trn ) =

⋂l
j= B–

j .

3 Strong convergence theorems
Theorem . Let H be a real Hilbert space, C be a nonempty, closed, and convex subset
of H , A : C → H be a monotone and ρ-Lipschitz-continuous mapping, S : C → C be a
nonexpansive mapping, Ai, Bj (i = , , . . . , k; j = , , . . . , l) : C → C be two families of finite
maximal monotone mappings such that D = (

⋂k
i= A–

i ) ∩ (
⋂l

j= B–
j ) ∩ F(S) ∩ VI(C, A) is

nonempty. Suppose

SAk Ak–···A
rn = JAk

rn JAk–
rn · · · JA

rn , Trn = aI + aJB
rn + aJB

rn + · · · + alJBl
rn ,

with JAi
rn = (I + rnAi)–, JBj

rn = (I + rnBj)–,
∑l

m= am =  and am ∈ (, ).
If {αn}, {βn}, {γn}, {λn}, and {rn} satisfy the following conditions:

(i)  ≤ αn ≤ b < ;
(ii)  < c ≤ βn ≤ ;

(iii)  < d ≤ γn ≤ , βn + γn ≤ ;
(iv)  < p ≤ λn ≤ q < 

ρ
;

(v)  < η ≤ rn < +∞,
where b, c, d, p, q and η are constants, then the sequences {xn}, {yn}, {zn}, and {wn} generated
by Algorithm . converge strongly to PDx.

Proof We will split the proof into five steps.
Step . D = (

⋂k
i= A–

i ) ∩ (
⋂l

j= B–
j ) ∩ F(S) ∩ VI(C, A) ⊂ Cn ∩ Qn.

First, we show D ⊂ Cn.
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Put tn = PC(xn – λnAyn). Take a fixed p ∈ D arbitrarily, then we get p ∈ (
⋂k

i= A–
i ) ∩

(
⋂l

j= B–
j ), p ∈ F(S) and p ∈ VI(C, A). From Lemma .(ii) and the monotonicity of A, we

have

‖tn – p‖

≤ ‖xn – λnAyn – p‖ – ‖xn – λnAyn – tn‖

= ‖xn – p‖ – ‖xn – tn‖ + λn〈Ayn, p – tn〉
= ‖xn – p‖ – ‖xn – tn‖ + λn

(〈Ayn – Ap, p – yn〉 + 〈Ap, p – yn〉 + 〈Ayn, yn – tn〉
)

≤ ‖xn – p‖ – ‖xn – tn‖ + λn〈Ayn, yn – tn〉
= ‖xn – p‖ –

(‖xn – yn‖ + 〈xn – yn, yn – tn〉 + ‖yn – tn‖) + λn〈Ayn, yn – tn〉
= ‖xn – p‖ –

(‖xn – yn‖ + ‖yn – tn‖) + 〈xn – λnAyn – yn, tn – yn〉. (.)

Since yn = PC(xn – λnAxn), A is ρ-Lipschitz-continuous and by Lemma .(i), we have

〈xn – λnAyn – yn, tn – yn〉
= 〈xn – λnAxn – yn, tn – yn〉 + 〈λnAxn – λnAyn, tn – yn〉
≤ 〈λnAxn – λnAyn, tn – yn〉
≤ λnρ‖xn – yn‖‖tn – yn‖. (.)

Substituting (.) into (.) and by condition (iv), we have

‖tn – p‖

≤ ‖xn – p‖ –
(‖xn – yn‖ + ‖yn – tn‖) + λnρ‖xn – yn‖‖tn – yn‖

≤ ‖xn – p‖ –
(‖xn – yn‖ + ‖yn – tn‖) +

(
λ

nρ
‖xn – yn‖ + ‖tn – yn‖)

≤ ‖xn – p‖ +
(
λ

nρ
 – 

)‖xn – yn‖

≤ ‖xn – p‖. (.)

From (.), Algorithm ., the convexity of ‖ · ‖ and the nonexpansiveness of S, we have

‖zn – p‖ =
∥
∥αnxn + ( – αn)Stn – p

∥
∥

≤ αn‖xn – p‖ + ( – αn)‖Stn – p‖

≤ αn‖xn – p‖ + ( – αn)‖tn – p‖

≤ ‖xn – p‖ + ( – αn)
(
λ

nρ
 – 

)‖xn – yn‖

≤ ‖xn – p‖. (.)

By (.), Algorithm ., Lemma ., and Lemma ., we have

‖wn – p‖ =
∥
∥( – βn – γn)zn + βnSAk Ak–···A

rn zn + γnTrn zn – p
∥
∥

≤ ( – βn – γn)‖zn – p‖ + βn
∥
∥SAk Ak–···A

rn zn – p
∥
∥ + γn‖Trn zn – p‖
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≤ ( – βn – γn)‖zn – p‖ + βn‖zn – p‖ + γn‖zn – p‖

= ‖zn – p‖

≤ ‖xn – p‖ + ( – αn)
(
λ

nρ
 – 

)‖xn – yn‖

≤ ‖xn – p‖. (.)

By virtue of the definition of Cn and (.), we have p ∈ Cn. So, D ⊂ Cn, for every n =
, , , . . . .

Next, through the mathematical induction method, we will prove that {xn} is well defined
and D ⊂ Cn ∩Qn, n = , , , . . . . For n = , x = x ∈ C, Q = C. Hence D ⊂ C ∩Q. Suppose
that {xn} is given and D ⊂ Ck ∩ Qk for some k ∈ N . Because D is nonempty, Ck ∩ Qk is
nonempty. It is obvious that Cn is closed and Qn is closed and convex. As Cn = {z ∈ C :
‖zn – xn‖ + 〈zn – xn, xn – z〉 ≤ }, we also have Cn is convex, for every n = , , , . . . .
Thus, Ck ∩ Qk is a nonempty closed convex subset of C, so there exists an unique element
xk+ ∈ Ck ∩ Qk such that xk+ = PCk∩Qk x. It is obvious that

〈xk+ – z, x – xk+〉 ≥ , ∀z ∈ Ck ∩ Qk .

Since D ⊂ Ck ∩ Qk , we have

〈xk+ – z, x – xk+〉 ≥ , ∀z ∈ D.

That is, z ∈ Qk+. Hence D ⊂ Qk+. Therefore, we get D ⊂ Ck+ ∩ Qk+. Thus, D ⊂ Cn ∩ Qn,
for every n = , , , . . . .

Step . {xn}, {yn}, {zn}, {tn} and {wn} are all bounded.
Let p = PDx, then p ∈ D ⊂ Cn ∩ Qn from step . From xn+ = PCn∩Qn x and the definition

of the metric projection, we have

‖xn+ – x‖ ≤ ‖p – x‖, (.)

for every n = , , , . . . . Therefore, {xn} is bounded. By virtue of (.), (.) and (.), we
also obtain {tn}, {zn} and {wn} are also bounded.

Again from (.), conditions (i) and (v), we have

‖xn – yn‖ ≤ 
( – αn)( – λ

nρ
)

(‖xn – p‖ – ‖wn – p‖)

≤ 
( – αn)( – λ

nρ
)

(‖xn – p‖ + ‖wn – p‖)(‖xn – p‖ – ‖wn – p‖)

≤ 
( – αn)( – λ

nρ
)

(‖xn – p‖ + ‖wn – p‖)‖xn – wn‖

≤ 
( – b)( – qρ)

(‖xn – p‖ + ‖wn – p‖)‖xn – wn‖. (.)

So, {yn} is bounded.
Step . limn→∞ ‖xn – yn‖ = , limn→∞ ‖xn – zn‖ = , limn→∞ ‖xn – wn‖ =  and

limn→∞ ‖xn – tn‖ = .
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As Qn = {z ∈ C : 〈xn – z, x – xn〉 ≥ }, we have 〈xn – z, x – xn〉 ≥  for all z ∈ Qn and by
the definition of the metric projection, we have xn = PQn x. Because of xn+ = PCn∩Qn x ∈
Cn ∩ Qn ⊂ Qn and (.), we have

‖xn – x‖ ≤ ‖xn+ – x‖ ≤ ‖p – x‖,

for every n = , , , . . . . Therefore there exists limn→∞ ‖xn – x‖. By Lemma .(ii), we have

‖xn+ – xn‖ ≤ ‖xn+ – x‖ – ‖xn – x‖,

this implies that

lim
n→∞‖xn+ – xn‖ = . (.)

By xn+ ∈ Cn and the definition of Cn, we have ‖xn+ – wn‖ ≤ ‖xn+ – xn‖ and hence

‖wn – xn‖ ≤ ‖wn – xn+‖ + ‖xn+ – xn‖ ≤ ‖xn+ – xn‖. (.)

From (.) and (.), we have

lim
n→∞‖xn – wn‖ = . (.)

From conditions (i), (iv), (.) and (.), we have

lim
n→∞‖xn – yn‖ = . (.)

In (.), using another technique, by condition (iv), we get

‖tn – p‖ ≤ ‖xn – p‖ –
(‖xn – yn‖ + ‖yn – tn‖) + λnρ‖xn – yn‖‖tn – yn‖

≤ ‖xn – p‖ –
(‖xn – yn‖ + ‖yn – tn‖) +

(‖xn – yn‖ + λ
nρ

‖tn – yn‖)

= ‖xn – p‖ +
(
λ

nρ
 – 

)‖tn – yn‖. (.)

From (.) and (.), we have

‖zn – p‖ ≤ αn‖xn – p‖ + ( – αn)‖tn – p‖

≤ ‖xn – p‖ + ( – αn)
(
λ

nρ
 – 

)‖tn – yn‖. (.)

By (.) and (.), we have

‖wn – p‖ ≤ ‖zn – p‖ ≤ ‖xn – p‖ + ( – αn)
(
λ

nρ
 – 

)‖tn – yn‖. (.)

So, (.) implies that

‖tn – yn‖ ≤ 
( – αn)( – λ

nρ
)

(‖xn – p‖ – ‖wn – p‖)

≤ 
( – αn)( – λ

nρ
)

(‖xn – p‖ + ‖wn – p‖)‖xn – wn‖. (.)
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Since {xn}, {wn} are bounded, and by conditions (i), (iv), (.), and (.), we have

lim
n→∞‖yn – tn‖ = . (.)

By ‖xn – tn‖ ≤ ‖xn – yn‖ + ‖yn – tn‖, (.) and (.), we get

lim
n→∞‖xn – tn‖ = . (.)

From (.), (.), Lemma ., Lemma . and Lemma ., we have, for ∀p ∈ D,

‖wn – p‖ ≤ ( – βn – γn)‖zn – p‖ + βn
∥
∥SAk Ak–···A

rn zn – p
∥
∥ + γn‖Trn zn – p‖

≤ ( – βn)‖zn – p‖ + βn
∥
∥SAkAk–···A

rn zn – p
∥
∥

≤ ( – βn)‖zn – p‖ + βn
(∥
∥SAk–···A

rn zn – p
∥
∥

–
∥
∥SAk Ak–···A

rn zn – SAk–···A
rn zn

∥
∥)

≤ ‖zn – p‖ – βn
∥
∥SAk Ak–···A

rn zn – SAk–···A
rn zn

∥
∥

≤ ‖xn – p‖ – βn
∥
∥SAk Ak–···A

rn zn – SAk–···A
rn zn

∥
∥. (.)

Then (.) implies that

∥
∥SAk Ak–···A

rn zn – SAk–···A
rn zn

∥
∥ ≤ 

βn

(‖xn – p‖ – ‖wn – p‖)

≤ 
βn

(‖xn – p‖ + ‖wn – p‖)‖xn – wn‖. (.)

From (.), (.), condition (ii), we have

SAk Ak–···A
rn zn – SAk–···A

rn zn → , n → ∞. (.)

Again, using a similar technique to (.), we have

‖wn – p‖ ≤ ( – βn)‖zn – p‖ + βn
∥
∥SAk–···A

rn zn – p
∥
∥

≤ ( – βn)‖zn – p‖ + βn
(∥
∥SAk–Ak–···A

rn zn – p
∥
∥

–
∥
∥SAk–···A

rn zn – SAk–Ak–···A
rn zn

∥
∥)

≤ ‖zn – p‖ – βn
∥
∥SAk–Ak–···A

rn zn – SAk–Ak–···A
rn zn

∥
∥

≤ ‖xn – p‖ – βn
∥
∥SAk–Ak–···A

rn zn – SAk–Ak–···A
rn zn

∥
∥.

Using the same method in (.) and (.), we have

SAk–Ak–···A
rn zn – SAk–···A

rn zn → , n → ∞. (.)

By induction, we have the following results:

SAk–Ak–···A
rn zn – SAk–···A

rn zn → , n → ∞, (.)
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· · · ,

SAA
rn zn – SA

rn zn → , n → ∞, (.)

SA
rn zn – zn → , n → ∞. (.)

From (.)-(.), we claim

SAk Ak–···A
rn zn – zn → , n → ∞. (.)

By Lemma ., Lemma ., Lemma ., (.), and the convexity of ‖ ·‖, ∀p ∈ D, we have

‖wn – p‖ ≤ ( – βn – γn)‖zn – p‖ + βn
∥
∥SAk Ak–···A

rn zn – p
∥
∥ + γn‖Trn zn – p‖

≤ ( – γn)‖zn – p‖ + γn‖Trn zn – p‖

≤ ( – γn)‖zn – p‖ + γn

(

a‖zn – p‖ +
l∑

j=

aj
∥
∥JBj

rn zn – p
∥
∥

)

≤ ( – γn)‖zn – p‖ + γn

(

a‖zn – p‖ +
l∑

j=

aj
(‖zn – p‖ –

∥
∥JBj

rn zn – zn
∥
∥)

)

≤ ‖zn – p‖ – γn

l∑

j=

aj
∥
∥JBj

rn zn – zn
∥
∥

≤ ‖xn – p‖ – γn

l∑

j=

aj
∥
∥JBj

rn zn – zn
∥
∥. (.)

Then (.) implies that

∥
∥JBj

rn zn – zn
∥
∥ ≤ 

γn
∑l

j= aj

(‖xn – p‖ – ‖wn – p‖)

≤ 
γn

∑l
j= aj

(‖xn – p‖ + ‖wn – p‖)‖xn – wn‖. (.)

From the boundedness of {xn} and {wn}, condition (iii), (.) and (.), we have

JBj
rn zn – zn → , n → ∞. (.)

For j = , , . . . , l. From (.), we have

lim
n→∞‖Trn zn – zn‖ = . (.)

By Algorithm ., we have

‖wn – zn‖ = βn
∥
∥SAkAk–···A

rn zn – zn
∥
∥ + γn‖Trn zn – zn‖.

By (.) and (.), we have

lim
n→∞‖wn – zn‖ = . (.)
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By (.) and (.), we get

lim
n→∞‖xn – zn‖ = . (.)

By (.) and (.), we get

lim
n→∞‖zn – tn‖ = . (.)

Step . W (xn) ⊂ D, where W (xn) denotes the set of all the weak limit points of {xn}.
Since {xn} is bounded, there exists a subsequence of {xn}; for simplicity, we still denote

it by {xn}, such that xn
w−→ u as n → ∞. In the following, we will prove u ∈ D.

First, we show u ∈ F(S). Assume u /∈ F(S), i.e., u �= Su. Since zn = αnxn + ( – αn)Stn, we
have

( – αn)‖Stn – tn‖ =
∥
∥αn(tn – xn) + (zn – tn)

∥
∥

≤ αn‖tn – xn‖ + ‖zn – tn‖. (.)

By virtue of condition (i), (.), (.) and (.), we have

lim
n→∞‖Stn – tn‖ = . (.)

By (.) and xn
w−→ u, we have tn

w−→ u, where {tn} is a subsequence of {tn} for simplicity.
From (.) and Opial’s condition [], we have

lim inf
n→∞ ‖tn – u‖ < lim inf

n→∞ ‖tn – Su‖

= lim inf
n→∞ ‖tn – Stn + Stn – Su‖

≤ lim inf
n→∞ ‖tn – Stn‖ + lim inf

n→∞ ‖Stn – Su‖

≤ lim inf
n→∞ ‖tn – u‖.

This is a contradiction. So, we obtain u ∈ F(S).
Second, we show u ∈ ⋂k

i= A–
i . From xn – zn →  and xn

w−→ u, we have zn
w−→ u,

where {zn} is a subsequence of {zn} for simplicity. From (.)-(.), we have SA
rn zn

w−→ u,
SAA

rn zn
w−→ u, SAk–Ak–···A

rn zn
w−→ u and SAk Ak–···A

rn zn
w−→ u.

Since (I + rnA)SA
rn zn = zn, by (.) and condition (v), we have

ASA
rn zn =


rn

(
zn – SA

rn zn
) → , n → ∞.

So, Au =  and then u ∈ A–
 .

Since (I + rnA)SAA
rn zn = SA

rn zn, and by (.), we have

ASAA
rn zn =


rn

(
SA

rn zn – SAA
rn zn

) → , n → ∞.

So, Au =  and then u ∈ A–
 .
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By induction, we have

AkSAk Ak–···AA
rn zn =


rn

(
SAk–···AA

rn zn – SAkAk–···AA
rn zn

) → , n → ∞.

So, Aku =  and then u ∈ A–
k . Thus, u ∈ ⋂k

i= A–
i .

Third, we show u ∈ ⋂l
j= B–

j . In fact, by virtue of (.) and condition (v), we have

BjJ
Bj
rn zn =


rn

(
zn – JBj

rn zn
) → , n → ∞.

So, Bju = , for j = , , . . . , l. We can easily see that u ∈ ⋂l
j= B–

j .
Finally, we show u ∈ VI(C, A). Let

Tv =

{
Av + NCv, if v ∈ C,
φ, if v /∈ C,

where NCv is the normal cone to C at v ∈ C. Let G(T) be the graph of T and (v,ω) ∈ G(T).
So, we have ω ∈ Tv = Av + NCv and hence ω – Av ∈ NCv. From the definition of the normal
cone and tn = PC(xn – λnAyn) ∈ C, we have

〈v – tn,ω – Av〉 ≥ . (.)

From Lemma .(i), we have

〈xn – λnAyn – tn, tn – v〉 ≥ , ∀v ∈ C,

and hence
〈

v – tn,
tn – xn

λn
+ Ayn

〉

≥ . (.)

For simplicity, we assume that {yn} and {tn} are also subsequences of {yn} and {tn} respec-
tively. Because of xn – yn → , xn – tn →  and xn

w−→ u, we have yn
w−→ u and xtn

w−→ u.
By the monotonicity of A, (.), and (.), we obtain

〈v – tn,ω〉 ≥ 〈v – tn, Av〉

≥ 〈v – tn, Av〉 –
〈

v – tn,
tn – xn

λn
+ Ayn

〉

= 〈v – tn, Av – Atn〉 + 〈v – tn, Atn – Ayn〉 –
〈

v – tn,
tn – xn

λn

〉

≥ 〈v – tn, Atn – Ayn〉 –
〈

v – tn,
tn – xn

λn

〉

.

Hence, we obtain 〈v – u,ω – 〉 ≥  as n → ∞. Since T is maximal monotone, we have
 ∈ Tu and so u ∈ VI(C, A).

Simply stated, u ∈ D. We get W (xn) ⊂ D.
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Step . xn → PDx as n → ∞.
Let p = PDx, ∀u ∈ W (xn), from step , we have u ∈ D. Suppose xn

w−→ u as n → ∞,
where {xn} is looked as a subsequence of {xn} for simplicity. From the definition of the
metric projection and the weak lower semi-continuity of ‖ · ‖, we have

‖p – x‖ ≤ ‖u – x‖ ≤ lim inf
n→∞ ‖xn – x‖ ≤ lim sup

n→∞
‖xn – x‖ ≤ ‖p – x‖.

So, we obtain

lim
n→∞‖xn – x‖ = ‖u – x‖.

From xn – x
w−→ u – x and the Kadec-Klee property, we have xn – x → u – x and hence

xn → u.
Since xn = PQn x, p ∈ D ⊂ Cn ∩ Qn ⊂ Qn and Lemma .(i), we have

–‖p – xn‖ = 〈p – xn, xn – x〉 + 〈p – xn, x – p〉 ≥ 〈p – xn, x – p〉.

As n → ∞, we get –‖p – u‖ ≥ 〈p – u, x – p〉 ≥ . Hence u = p. This implies that
xn → p = PDx as n → ∞. From step , it is easy to see yn → PDx, zn → PDx and wn → PDx
as n → ∞.

This completes the proof. �

From Theorem ., we can get some strong convergence theorems.

Theorem . Let H be a real Hilbert space, C be a nonempty, closed, and convex subset
of H , A : C → H be a monotone and ρ-Lipschitz-continuous mapping, Ai, Bj (i = , , . . . , k;
j = , , . . . , l) : C → C be two families of finite maximal monotone mappings such that D =
(
⋂k

i= A–
i ) ∩ (

⋂l
j= B–

j ) ∩ VI(C, A) is nonempty. Suppose

SAk Ak–···A
rn = JAk

rn JAk–
rn · · · JA

rn , Trn = aI + aJB
rn + aJB

rn + · · · + alJBl
rn ,

with JAi
rn = (I + rnAi)–, JBj

rn = (I + rnBj)–,
∑l

m= am =  and am ∈ (, ).
The sequences {xn}, {yn}, {zn} and {wn} are generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C,
yn = PC(xn – λnAxn),
zn = PC(xn – λnAyn),
wn = ( – βn – γn)zn + βnSAk Ak–···A

rn zn + γnTrn zn,
Cn = {z ∈ C : ‖wn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, x – xn〉 ≥ },
xn+ = PCn∩Qn x,

if {βn}, {γn}, {λn} and {rn} satisfy the following conditions:
(i)  < c ≤ βn ≤ ;

(ii)  < d ≤ γn ≤ , βn + γn ≤ ;
(iii)  < p ≤ λn ≤ q < 

ρ
;

(iv)  < η ≤ rn < +∞,
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for every n = , , , . . . , where c, d, p, q and η are constants, then the sequences {xn}, {yn},
{zn}, and {wn} converge strongly to PDx.

Proof Put S = I and αn =  for all n = , , , . . . . By Theorem ., we get the desired re-
sults. �

Theorem . Let H be a real Hilbert space, C be a nonempty, closed, and convex subset of
H , S : C → C be a nonexpansive mapping, Ai, Bj (i = , , . . . , k; j = , , . . . , l) : C → C be two
families of finite maximal monotone mappings such that D = (

⋂k
i= A–

i ) ∩ (
⋂l

j= B–
j ) ∩

F(S) is nonempty. Suppose

SAk Ak–···A
rn = JAk

rn JAk–
rn · · · JA

rn , Trn = aI + aJB
rn + aJB

rn + · · · + alJBl
rn ,

with JAi
rn = (I + rnAi)–, JBj

rn = (I + rnBj)–,
∑l

m= am =  and am ∈ (, ).
The sequences {xn}, {zn}, and {wn} are generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C,
zn = αnxn + ( – αn)SPCxn,
wn = ( – βn – γn)zn + βnSAk Ak–···A

rn zn + γnTrn zn,
Cn = {z ∈ C : ‖wn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, x – xn〉 ≥ },
xn+ = PCn∩Qn x,

if {αn}, {βn}, {γn}, and {rn} satisfy the following conditions:
(i)  ≤ αn ≤ b < ;

(ii)  < c ≤ βn ≤ ;
(iii)  < d ≤ γn ≤ , βn + γn ≤ ;
(iv)  < η ≤ rn < +∞,

for every n = , , , . . . , where b, c, d and η are constants, then the sequences {xn}, {zn} and
{wn} converge strongly to PDx.

Proof Let A =  in Theorem ., we obtain the result. �

Theorem . Let H be a real Hilbert space, C be a nonempty, closed, and convex subset
of H , Ai, Bj (i = , , . . . , k; j = , , . . . , l) : C → C be two families of finite maximal monotone
mappings such that D = (

⋂k
i= A–

i ) ∩ (
⋂l

j= B–
j ) is nonempty. Suppose

SAk Ak–···A
rn = JAk

rn JAk–
rn · · · JA

rn , Trn = aI + aJB
rn + aJB

rn + · · · + alJBl
rn ,

with JAi
rn = (I + rnAi)–, JBj

rn = (I + rnBj)–,
∑l

m= am =  and am ∈ (, ). The sequences {xn}
and {yn} are generated by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C,
yn = ( – βn – γn)xn + βnSAk Ak–···A

rn xn + γnTrn xn,
Cn = {z ∈ C : ‖yn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, x – xn〉 ≥ },
xn+ = PCn∩Qn x,
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if {βn}, {γn}, and {rn} satisfy the following conditions:
(i)  < c ≤ βn ≤ ;

(ii)  < d ≤ γn ≤ , βn + γn ≤ ;
(iii)  < η ≤ rn < +∞,

for every n = , , , . . . , where c, d, and η are constants, then the sequences {xn} and {yn}
converge strongly to PDx.

Proof Let A = , S = I and αn =  for all n = , , , . . . in Theorem ., we obtain the result.
If Ai, Bj (i = , , . . . , k; j = , , . . . , l) : H → H are set-valued mappings, the resolvent op-

erator JT
r (r > ) of T , is defined by JT

r x = {z ∈ H : x ∈ z + rTz} = (I + rT)–x, ∀x ∈ H , where
I denote the identity mapping on H . As is well known, JT

r : H → H is a single valued map-
ping. We have the following strong convergence theorem. �

Theorem . Let H be a real Hilbert space, A : H → H be a monotone and ρ-Lipschitz-
continuous mapping, S : H → H be a nonexpansive mapping, Ai, Bj (i = , , . . . , k;
j = , , . . . , l) : H → H be two families of finite set-valued maximal monotone mappings
such that D = (

⋂k
i= A–

i ) ∩ (
⋂l

j= B–
j ) ∩ F(S) ∩ A– is nonempty. Suppose

SAk Ak–···A
rn = JAk

rn JAk–
rn · · · JA

rn , Trn = aI + aJB
rn + aJB

rn + · · · + alJBl
rn ,

with JAi
rn = (I + rnAi)–, JBj

rn = (I + rnBj)–,
∑l

m= am =  and am ∈ (, ).
The sequences {xn}, {yn} and {zn} are generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ H ,
yn = αnxn + ( – αn)S(xn – λnA(xn – λnAxn)),
zn = ( – βn – γn)yn + βnSAk Ak–···A

rn yn + γnTrn yn,
Cn = {z ∈ C : ‖zn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, x – xn〉 ≥ },
xn+ = PCn∩Qn x,

if {αn}, {βn}, {γn}, {λn}, and {rn} satisfy the following conditions in Theorem ., then the
sequences {xn}, {yn} and {zn} converge strongly to PDx.

Proof As is well known, PH = I and VI(H , A) = A–. Using the similar arguments to those
in the proof of Theorem ., we get the desired result immediately. �

Remark . Theorems .-. greatly improve and extend the previous work in the fol-
lowing respects:

() We study the problem of finding a common element of the set of common zeros of
two families of finite maximal monotone mappings, the set of fixed points of a
nonexpansive mapping and the set of solutions of the variational inequality problem
for a monotone, Lipschitz-continuous mapping, i.e., (

⋂k
i= A–

i ) ∩ (
⋂l

j= B–
j ) ∩

F(S) ∩ VI(C, A). The problems of finding common elements of [], Theorem . and
[], Theorems . and . are all special cases of our problem.

() The hybrid iterative Algorithm . greatly generalizes and extends some
corresponding algorithms in [, , , , ]. It is first used for finding common
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zeros of two families of finite maximal monotone mappings. The method of proof is
also different from the earlier ones.

() All parameter sequences {αn}, {βn}, {γn}, {λn} and {rn} satisfy weaker restrictions in
our theorems than those in the theorems of [, ]. For example,  ≤ αn ≤ b < ,
neither

∑∞
n= |αn+ – αn| < +∞, nor αn →  as n → ∞.

4 Applications
In this section, we will give several examples from the practice with numerical analysis
with their new algorithms.

Let H be a real Hilbert space, ϕ : H → R ∪ {+∞} be a proper, convex, lower semicontin-
uous functional. The subdifferentiable operator of ϕ, denoted by ∂ϕ : H → H , is defined
at x ∈ H by

∂ϕ(x) =
{

u ∈ H : ϕ(y) ≥ ϕ(x) + 〈y – x, u〉,∀y ∈ H
}

.

For each x ∈ H , ∂ϕ(x) is called the subgradient of ϕ at x. Using different methods, Rockafel-
lar [] and Alves and Svaiter [] proved that the subdifferentiable operator is a maximal
monotone mapping, respectively. Thus, from Theorem ., we get the following result
immediately.

Theorem . Let H be a real Hilbert space, A : H → H be a monotone and ρ-Lipschitz-
continuous mapping, S : H → H be a nonexpansive mapping, ϕi,ϕj (i = , , . . . , k;
j = , , . . . , l) : H → R ∪ {+∞} be two finite families of proper, convex, lower semicontin-
uous functionals, ∂ϕi and ∂ϕj be their subdifferentiable operators, respectively, such that
D = (

⋂k
i= ∂ϕ–

i ) ∩ (
⋂l

j= ∂ϕ–
j ) ∩ A– is nonempty. Suppose

S∂ϕk∂ϕ,k–···∂ϕ
rn = J∂ϕk

rn J∂ϕ,k–
rn · · · J∂ϕ

rn , Trn = aI + aJ∂ϕ
rn + aJ∂ϕ

rn + · · · + alJ∂ϕl
rn ,

with J∂ϕi
rn = (I + rn∂ϕi)–,

∑l
m= am =  and am ∈ (, ). The sequences {xn}, {yn} and {zn} are

generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ H ,
yn = αnxn + ( – αn)S(xn – λnA(xn – λnAxn)),
zn = ( – βn – γn)yn + βnS∂ϕk∂ϕ,k–···∂ϕ

rn yn + γnTrn yn,
Cn = {z ∈ C : ‖zn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, x – xn〉 ≥ },
xn+ = PCn∩Qn x,

if {αn}, {βn}, {γn}, {λn}, and {rn} satisfy the conditions in Theorem ., then the sequences
{xn}, {yn}, and {zn} converge strongly to PDx.

We also know a mapping T : C → C is called pseudocontractive if

‖Tx – Ty‖ ≤ ‖x – y‖ +
∥
∥(I – T)x – (I – T)y

∥
∥, ∀x, y ∈ C.

It is equivalent to the following definition:

〈Tx – Ty, x – y〉 ≤ ‖x – y‖, ∀x, y ∈ C.
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If T is a pseudocontractive, ρ-Lipschitz-continuous mapping, then A = I – T is monotone
and (ρ + )-Lipschitz-continuous mapping, and F(T) = VI(C, A), more details see [, ].
So, by Theorem ., we have the following result immediately.

Theorem . Let H be a real Hilbert space, C be a nonempty, closed, and convex subset
of H , T : C → C be a pseudocontractive and ρ-Lipschitz-continuous mapping, S : C → C
be a nonexpansive mapping, Ai, Bj (i = , , . . . , k; j = , , . . . , l) : C → C be two families of
finite maximal monotone mappings such that D = (

⋂k
i= A–

i ) ∩ (
⋂l

j= B–
j ) ∩ F(S) ∩ F(T)

is nonempty. Suppose

SAk Ak–···A
rn = JAk

rn JAk–
rn · · · JA

rn , Trn = aI + aJB
rn + aJB

rn + · · · + alJBl
rn ,

with JAi
rn = (I + rnAi)–, JBj

rn = (I + rnBj)–,
∑l

m= am =  and am ∈ (, ).
The sequences {xn}, {yn}, {zn}, and {wn} are generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C,
yn = PC(xn – λn(xn – Txn)),
zn = αnxn + ( – αn)SPC(xn – λn(yn – Tyn)),
wn = ( – βn – γn)zn + βnSAk Ak–···A

rn zn + γnTrn zn,
Cn = {z ∈ C : ‖wn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, x – xn〉 ≥ },
xn+ = PCn∩Qn x,

for every n = , , , . . . . If {αn}, {βn}, {γn}, {λn}, and {rn} satisfy the following conditions:
(i)  ≤ αn ≤ b < ;

(ii)  < c ≤ βn ≤ ;
(iii)  < d ≤ γn ≤ , βn + γn ≤ ;
(iv)  < p ≤ λn ≤ q < 

ρ+ ;
(v)  < η ≤ rn < +∞,

where b, c, d, p, q and η are constants, then the sequences {xn}, {yn}, {zn}, and {wn} converge
strongly to PDx.
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