
Dang and Ye Fixed Point Theory and Applications (2015) 2015:182
DOI 10.1186/s13663-015-0429-8

R E S E A R C H Open Access

A fixed point iterative approach to integer
programming and its distributed
computation
Chuangyin Dang1* and Yinyu Ye2

*Correspondence:
mecdang@cityu.edu.hk
1Department of Systems
Engineering and Engineering
Management, City University of
Hong Kong, Kowloon, Hong Kong,
China
Full list of author information is
available at the end of the article

Abstract
Integer programming is concerned with the determination of an integer or
mixed-integer point in a polytope. It is an NP-hard problem and has many
applications in economics and management. Although several popular methods
have been developed for integer programming in the literature and extensively
utilized in practices, it remains a challenging problem and appeals for more
endeavors. By constructing an increasing mapping satisfying certain properties, we
develop in this paper an alternative method for integer programming, which is called
a fixed point iterative method. Given a polytope, the method, within a finite number
of iterations, either yields an integer or mixed-integer point in the polytope or proves
no such point exists. As a very appealing feature, the method can easily be
implemented in a distributed way. Furthermore, the construction implies that
determining the uniqueness of Tarski’s fixed point is an NP-hard problem, and the
method can be applied to compute all integer or mixed-integer points in a polytope
and directly extended to convex nonlinear integer programming. Preliminary
numerical results show that the method seems promising.

MSC: 90C10

Keywords: integer or mixed-integer point; polytope; integer programming; linear
programming; self-dual embedding technique; increasing mapping; Tarski’s fixed
point theorem; fixed point iterative method

1 Introduction
Integer programming is concerned with the determination of an integer or mixed-integer
point in a polytope. As a powerful mechanism, integer programming has been extensively
applied in economics [,] and management []. Integer programming is an NP-complete
problem []. To solve such a problem, several methods have been developed in the liter-
ature. As an application of linear programming, the cutting plane method was pioneered
in []. The method iteratively refines a feasible set or objective function by means of linear
inequalities. The branch-and-bound method was formulated in []. The method gradu-
ally improves upper and lower bounds of the objective function by solving linear programs
and systematically enumerates candidate solutions in branches of a tree with the full set
of candidate solutions at the root by checking against the upper and lower bounds. To test
whether a given feasible integer point is optimal or not, the neighborhood method was

© 2015 Dang and Ye. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13663-015-0429-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-015-0429-8&domain=pdf
http://orcid.org/0000-0003-4731-4616
mailto:mecdang@cityu.edu.hk

Dang and Ye Fixed Point Theory and Applications (2015) 2015:182 Page 2 of 15

proposed in [,]. The method simply checks a minimal set of points in the neighbor-
hood of a feasible point to determine whether one of them is in the polytope or yields a
better objective function value. The basis-reduction method originates in [,]. As that
in a branch-and-bound method, the method searches for an integer point in a polytope
along a set of vectors that forms a reduced basis. The simplicial method was developed
in [,]. The method starts from an arbitrary integer point in the space and follows a
simplicial path that either leads to an integer point in a polytope or proves no such point
exists when the polytope is in a specific form. Further developments of some of these
methods and new methods can be found in the recent literature such as [, –], and
the references therein. These methods play an extremely important role in the develop-
ment of integer programming, however, it remains a challenging problem and appeals for
more endeavors. Thus, developing alternative integer programming methods is always an
active research area.

Integer programming can be cast as a fixed point problem of an increasing mapping.
More precisely, let � be a binary relation on a nonempty set S. The pair (S,�) is a par-
tially ordered set if � is reflexive, transitive, and antisymmetric on S. A lattice is a partially
ordered set (S,�), in which any two elements x and y have a least upper bound (supre-
mum), supS(x, y) = inf{z ∈ S | x � z and y � z}, and a greatest lower bound (infimum),
infS(x, y) = sup{z ∈ S | z � x and z � y}, in the set. A lattice (S,�) is complete if every
nonempty subset of S has a supremum and an infimum in S. Let f be a mapping from
S into itself. f is an increasing mapping if f (x) � f (y) for any x and y of S with x � y. When
(S,�) is a complete lattice and f is an increasing mapping, Tarski’s fixed point theorem []
asserts that f has a fixed point in S. A significant feature of Tarski’s fixed point theorem
is that S can be a finite set and there is no restriction on its topological structures. This
feature has a profound implication for integer programming as evidenced in this paper.
The computational complexity of Tarski’s fixed point theorem on (S,≤) has been studied
in [], and it is polynomial-time computable if the dimension is fixed. As an application
of Tarski’s fixed point theorem to integer programming, an increasing-mapping approach
was briefly described in []. However, the approach is very primitive and can only update
one coordinate at each iteration.

Let N = {, , . . . , n} and N = {, , , . . . , n}. For x and y of Rn, x ≤l y if either x = y or
both xi = yi, i = , , . . . , k – , and xk < yk for some k ∈ N , and x ≤ y if xi ≤ yi for all i ∈ N ,
where ≤l is the lexicographic order on Rn and ≤ is the componentwise order on Rn. Let
S be any given finite set of Rn. Then (S,≤l) is a complete lattice. We now convert integer
programming into the computation of fixed points of an increasing mapping from a finite
lattice into itself, which leads to the fixed point iterative method proposed in this paper
and is the driving force behind our research endeavors.

Consider P = {x ∈ R | Ax ≤ b} with

A =

⎛
⎜⎝

–

– –

⎞
⎟⎠

and b = (–, ,)�. This polytope is illustrated in Figure .
Let D(P) denote the set of all the integer points with xl ≤ x ≤ xu in Figure . The idea

is to define an increasing mapping h from D(P) into itself such that at least h(x) ≤l x

Dang and Ye Fixed Point Theory and Applications (2015) 2015:182 Page 3 of 15

Figure 1 An illustration of the idea.

for any x ∈ D(P) with x /∈ P and x �= xl and that h(x∗) = x∗ if and only if either x∗ ∈ P
or x∗ = xl . Such a mapping is illustrated in Figure . This simple example stimulates the
idea in this paper though the situation is far more complicated when the dimension is
higher.

In this paper, with this constructing we develop a fixed point iterative method for in-
teger programming. A self-dual technique is applied for a solution to a bounding linear
program in the development. Given any polytope, within a finite number of iterations,
the method either yields an integer or mixed-integer point in the polytope or proves no
such point exists. Theoretically, one can make the method be a polynomial-time algo-
rithm when the dimension is fixed. But a more appealing feature of the method is that
it can easily be implemented in a distributed way. Furthermore, the construction implies
that determining the uniqueness of Tarski’s fixed point is an NP-hard problem, and the
method can be applied to compute all integer or mixed-integer points in a polytope and
directly extended to convex nonlinear integer programming. Preliminary numerical re-
sults show that the method is promising, and may offer a comparable solution to integer
programming though a comprehensive comparison with the existing methods is beyond
the scope of this paper.

The rest of the paper is organized as follows. A fixed point iterative method is first de-
veloped for integer programming in Section . Then a distributed implementation of the
method and the computation of all integer points in a polytope are discussed in Section .
Preliminary numerical results are presented in Section .

2 A fixed point iterative method
Let

P =
{

x ∈ Rn | Ax + Gw ≤ b for some w ∈ Rp},

where A ∈ Rm×n is an m × n integer matrix with n ≥ , G ∈ Rm×p an m × p matrix, and b
a vector of Rm. We assume throughout this paper that P is bounded and full dimensional.
For a real number α, let 	α
 denote the greatest integer less than or equal to α. For x =
(x, x, . . . , xn)� ∈ Rn, let 	x
 = (x
, 	x
, . . . , 	xn
)�.

Dang and Ye Fixed Point Theory and Applications (2015) 2015:182 Page 4 of 15

Let xmax = (xmax
 , xmax

 , . . . , xmax
n)� with xmax

j = maxx∈P xj, j = , , . . . , n, and xmin = (xmin
 ,

xmin
 , . . . , xmin

n)� with xmin
j = minx∈P xj, j = , , . . . , n. Then xmin ≤ x ≤ xmax for all x ∈ P. Let

D(P) =
{

x ∈ Zn | xl ≤ x ≤ xu},

where xu = 	xmax
 and xl = 	xmin
. Thus, D(P) contains all integer points in P. We assume
without loss of generality that xl < xmin (let xl

i = xmin
i – if xl

i = xmin
i for some i ∈ N) and

that

xu
 – xl

 ≤ xu
 – xl

 ≤ · · · ≤ xu
n – xl

n,

which can be obtained by interchanging the columns of A if necessary.
For z ∈ Rn and k ∈ N, let

P(z, k) = {x ∈ P | xi = zi, ≤ i ≤ k and xi ≤ zi, k + ≤ i ≤ n}.

Given an integer point y ∈ D(P) with y > xl
, we present in the following a fixed point

iterative method to determine whether there is an integer point x∗ ∈ P with x∗ ≤l y.

Initialization: Let y = y, k = n – , and q = .
Step : If yq ∈ P or yq = xl , Stop; else, go to Step .
Step : If yq

i ≤ xl
i for some i ∈ N or P(yq, k) = ∅, go to Step ; else, go to Step .

Step : Solve the linear program

max
n∑

j=k+

xj
j

subject to xj ∈ P
(
yq, k

)
, j = k + , k + , . . . , n,

to obtain the optimal value of xj
j, denoted by xj

j(yq), j = k + , k + , . . . , n, and go to
Step .

Step : If yq
j > xj

j(yq) for some j ≥ k + , let yq+ = (yq+
 , yq+

 , . . . , yq+
n)� with

yq+
i =

{
yq

i if ≤ i ≤ k,
	xi

i(yq)
 if k + ≤ i ≤ n,

i = , , . . . , n, and q = q + , and go to Step ; else, let k = k + and go to Step .
Step : If k = , let yq+ = xl and q = q + ; else, let yq+ = (yq+

 , yq+
 , . . . , yq+

n)� with

yq+
i =

⎧⎪⎨
⎪⎩

yq
i if ≤ i ≤ k – ,

yq
i – if i = k,

xu
i if k + ≤ i ≤ n,

i = , , . . . , n, q = q + , and k = k – . Go to Step .

At each iteration, the method needs to solve a bounding linear program, which may
have no feasible solution. To effectively address this issue, one can apply the self-dual em-
bedding technique in [,] or any best available software packages. The following two
examples illustrate how the method works.

Dang and Ye Fixed Point Theory and Applications (2015) 2015:182 Page 5 of 15

Figure 2 An illustration of the method.

Example Consider P = {x ∈ R | Ax ≤ b} with

A =

⎛
⎜⎜⎜⎝

–
 –

– –

⎞
⎟⎟⎟⎠

and b = (, , , ,)�. We have xu = (, ,)� and xl = (–, –, –)�.
Let y = xu, y = y, and k = – = .

Iteration : Since P(y,) = ∅, we obtain from Step

y =
(
y

 , y
 – , xu

)� = (, –,)�

and k = k – = – = .
Iteration : Solving

max x
 + x

subject to xj ∈ P
(
y,

)
, j = , ,

we obtain x
(y) = – and x

(y) = –. Since y
 = > – = x

(y), we obtain
from Step

y =
(
y

,
⌊

x

(
y)⌋,

⌊
x

(
y)⌋)� = (, –, –)�,

which is an integer point in P.

An illustration of y, y, and y can be found in Figure .

Example Consider P = {x ∈ R | Ax ≤ b} with

A =

⎛
⎜⎜⎜⎝

–
– –
– – –

⎞
⎟⎟⎟⎠

and b = (–, , ,)�. We have xu = (, ,)� and xl = (, –, –)�.

Dang and Ye Fixed Point Theory and Applications (2015) 2015:182 Page 6 of 15

Figure 3 An illustration of the method.

Let y = xu, y = y, and k = n – = .

Iteration : Since P(y,) = ∅, we obtain from Step

y =
(
y

 , y
 – , xu

)� = (, –,)�

and k = k – = – = .
Iteration : Since P(y,) = ∅, we obtain from Step

y =
(
y

 – , xu
, xu

)� = (, ,)�

and k = k – = – = .
Iteration : Since P(y,) = ∅, we obtain from Step

y = xl = (, –, –)�,

which shows that there is no integer point in P.

An illustration of y, y, y, and y can be found in Figure .

For q = , , . . . , let kq denote the value of k at which the method determines yq. Clearly,
xl – e ≤ yq ≤ xu with e = (, , . . . ,)� ∈ Rn.

Lemma For q = , , . . . ,

yq+ ≤ yq or yq+ ≤l yq

with yq �= yq+.

Proof This lemma is proved in two cases.
Case : Suppose that P(yq, kq) = ∅. Then the method will perform Step . If kq = , we

obtain from Step that yq+ = xl , and consequently, yq+ ≤ yq with yq �= yq+. Assume that
kq > . Then we obtain from Step that yq+ = (yq+

 , yq+
 , . . . , yq+

n)� with

yq+
i =

⎧⎪⎨
⎪⎩

yq
i if ≤ i ≤ kq – ,

yq
i – if i = kq,

xu
i if kq + ≤ i ≤ n,

Dang and Ye Fixed Point Theory and Applications (2015) 2015:182 Page 7 of 15

i = , , . . . , n. Thus, yq+
kq

< yq
kq

. Therefore, yq+ ≤l yq with yq �= yq+.
Case : Suppose that P(yq, kq) �= ∅. Then the method will repeatedly perform Steps and

 right before it goes to Step . Since yq /∈ P, as k increases one by one, it will reach a value
kq+ such that yq

j > xj
j(yq) for some j ≥ kq+ + . When this occurs, we obtain from Step

that yq+ = (yq+
 , yq+

 , . . . , yq+
n)� with

yq+
i =

{
yq

i if ≤ i ≤ kq+,
	xi

i(yq)
 if kq+ + ≤ i ≤ n,

i = , , . . . , n. Moreover, one can see from Step that

xj
j
(
yq) ≤ yq

j , j = kq+ + , kq+ + , . . . , n.

Therefore, yq+ ≤ yq with yq �= yq+. The proof is completed. �

Theorem Given an integer point y ∈ D(P) with y > xl
, the method, within a finite num-

ber of iterations, either yields an integer point x∗ ∈ P with x∗ ≤l y or proves no such point
exists.

Proof Let y be any given integer point in D(P) with y > xl
. Suppose that y /∈ P and there

is some integer point z ∈ P with z ≤l y. We assume without loss of generality that z is
the largest integer point of P satisfying that z ≤l y. Applying mathematical induction, we
show in the following that z ≤l yq, q = , ,

. Consider the case of q = . From the method, we know that k = n – .
(a) Suppose that P(y, k) = ∅. Then the method will perform Step , and we obtain from

Step that y = (y
, y

, . . . , y
n)� with

y
i =

⎧⎪⎨
⎪⎩

y
i if ≤ i ≤ n – ,

y
i – if i = n – ,

xu
i if i = n,

i = , , . . . , n, and k = n – . If y
i > z

i for some i ≤ n – , then z ≤l y with z
j < y

j for some
j ≤ k. Assume that y

i = z
i for all i ≤ n – . Then, from P(y, k) = ∅ and z ≤l y, we derive

that z
n– < y

n– since otherwise P(y, k) �= ∅. Therefore, z ≤ y.
(b) Suppose that P(y, k) �= ∅. Then the method will perform Steps and . Since y /∈ P,

y
n > xn

n(y). Thus, we obtain from Step y = (y
, y

, . . . , y
n)� with

y
i =

{
y

i if ≤ i ≤ n – ,
	xn

n(y)
 if i = n,

i = , , . . . , n, and k = n – . If y
i > z

i for some i ≤ n – , then z ≤l y with z
j < y

j for some
j ≤ k. Assume that y

i = z
i for all i ≤ n – . Then we derive from z ≤l y that z ∈ P(y, k).

Thus, z
n ≤ 	xn

n(y)
. Therefore, z ≤ y.
. Induction hypothesis: For any given ≤ h ≤ q, we assume that yh /∈ P and that z ≤ yh

or z ≤l yh with z
j < yh

j for some j ≤ kh.
. With this induction hypothesis, we prove in the following that z ≤ yq+ or z ≤l yq+

with z
j < yq+

j for some j ≤ kq+ under two cases.

Dang and Ye Fixed Point Theory and Applications (2015) 2015:182 Page 8 of 15

Case : Suppose that P(yq, kq) = ∅. Then the method will perform Step . Assume that
kq = . From the method, we know that Step must be performed at least once before yq

is generated. Let yq be the point obtained by the method in the last performance of Step
before yq is generated. Thus, kq = kq = , kq– = , and P(yq–, kq–) = ∅. From Step , we
know that yq = (yq

 , yq
 , . . . , yq

n)� with

yq
i =

{
yq–

i – if i = ,
xu

i if ≤ i ≤ n,

i = , , . . . , n. This together with P(yq–, kq–) = ∅ and the induction hypothesis for h =
q – leads to that z ≤ yq . If q = q, then z ≤ yq = yq . Suppose that q > q. Then q = q +
and the method will perform Steps and to generate yq right after yq is generated. Since
kq = kq , the method will perform once Steps and to generate yq. With kq = , we obtain
from Step that yq = (yq

 , yq
, . . . , yq

n)� with

yq
i =

⌊
xi

i
(
yq

)⌋
, i = , , . . . , n.

Thus, it follows from z ∈ P(yq , kq) that z ≤ yq. Therefore, z ∈ P(yq, kq). It contradicts
with P(yq, kq) = ∅. So, we must have kq > .

From Step , we obtain yq+ = (yq+
 , yq+

 , . . . , yq+
n)� with

yq+
i =

⎧⎪⎨
⎪⎩

yq
i if ≤ i ≤ kq – ,

yq
i – if i = kq,

xu
i if kq + ≤ i ≤ n,

i = , , . . . , n, and kq+ = kq – . If z
i < yq

i for some i ≤ kq – , then z ≤l yq+ with z
j < yq+

j for
some j ≤ kq+. Suppose that yq

i = z
i , i = , , . . . , kq – . Hence, z

kq
< yq

kq
from the induction

hypothesis since otherwise P(yq, kq) �= ∅. Therefore, z ≤ yq+.
Case : Suppose that P(yq, kq) �= ∅. Then the method will repeatedly perform Steps

and right before it goes to Step . Since yq /∈ P, as k increases one by one, it will reach
a value kq+ ≥ kq such that yq

j > xj
j(yq) for some j ≥ kq+ + . When this occurs, we obtain

from Step that yq+ = (yq+
 , yq+

 , . . . , yq+
n)� with

yq+
i =

{
yq

i if ≤ i ≤ kq+,
	xi

i(yq)
 if kq+ + ≤ i ≤ n,

i = , , . . . , n. If z
i < yq

i for some i ≤ kq, then z ≤l yq+ with z
j < yq+

j for some j ≤ kq+.
Suppose that yq

i = z
i for all i ≤ kq. Thus, z ≤ yq from the induction hypothesis for h = q.

• Consider kq+ = kq. Since z ∈ P(yq, kq), z
i ≤ 	xi

i(yq)
 for all kq+ + ≤ i ≤ n. Therefore,
z ≤ yq+.

• Consider kq+ > kq. If z
i < yq

i for some kq < i ≤ kq+, then it follows from Steps and
that z ≤l yq+ with z

j < yq+
j for some j ≤ kq+. Suppose that yq

i = z
i for all

kq < i ≤ kq+. Since z ≤ yq, z ∈ P(yq, kq+) and consequently, z
i ≤ 	xi

i(yq)
 for all
kq+ + ≤ i ≤ n. Therefore, z ≤ yq+.

The above results together with mathematical induction show that

z ≤l yq, q = , ,

Dang and Ye Fixed Point Theory and Applications (2015) 2015:182 Page 9 of 15

From Lemma , we know that yq+ ≤ yq or yq+ ≤l yq with yq+ �= yq. Therefore, within a
finite number of iterations, the method meets z since there are only a finite number of
integer points in the set

{
z ∈ Zn | z ≤l z ≤l y and xl – e ≤ z ≤ xu}.

This completes the proof. �

As a corollary of Theorem , we come to the following conclusion.

Corollary Starting from y = xu, the method, within a finite number of iterations, either
yields an integer point in P or proves no such point exists.

3 Distributed computation and computing all integer points in a polytope
For any given positive integer ν , let xi, i = , , . . . ,ν , be a sequence of different integer
points in D(P) with xl ≤ x ≤l x ≤l · · · ≤l xν = xu. Then the method can easily be imple-
mented in a distributed way by starting from xi, i = , , . . . ,ν , simultaneously.

The method can also be applied to compute all integer points in P, which is as follows.

Step : Use the method starting from xu to compute an integer point in P. If no integer
point has been found, Stop. Otherwise, let s be the solution found by the method
and g = , and go to Step .

Step : Let y = (y
 , y

, . . . , y
n)� with

y
i =

{
sg

i if i < n,
sg

i – if i = n,

i = , , . . . , n, and go to Step .
Step : If y ∈ P, let sg+ = y and g = g + , and go to Step . Otherwise, go to Step .
Step : Use the method starting from y to compute an integer point in P. If no integer

point has been found, Stop. Otherwise, let sg+ be the solution found by the method
and g = g + , and go to Step .

4 Numerical results
In this section, we apply the method to determine whether there is an integer point in
the polytope of the market split problem and the polytope of the - knapsack feasibility
problem though a comprehensive comparison with the existing methods is beyond the
scope of this paper. The method has been coded in C++ and run on a workstation of
Lenovo ThinkStation D -BM with processors. In our implementation of the
method, each linear program is solved by the linear program solver of ILOG CPLEX with
all the parameter values automatically set by ILOG CPLEX itself. We have also run ILOG
CPLEX on the same problem instance and found that the branch-and-cut strategy is the
best of ILOG CLEX. In the presentation of numerical results, NumLPs stands for the total
number of linear programs solved by the method and the branch-and-cut strategy of ILOG
CLEX for each instance. In the feasibility category, ‘Feasible’ appears if an instance has a
feasible integer point and ‘Infeasible’ otherwise. In our numerical experiments, to convert
a problem into an equivalent problem of determining whether there is an integer point in

Dang and Ye Fixed Point Theory and Applications (2015) 2015:182 Page 10 of 15

Table 1 The market split problem

Prob. p q The method The best CPLEX strategy

NumLPs Feasibility NumLPs Feasibility

1 5 40 9,640 Feasible 87,136 Feasible
2 5 40 32,015 Feasible 718,883 Feasible
3 5 40 22,221 Feasible 484,796 Feasible
4 5 40 12,670 Feasible 139,967 Feasible
5 5 40 49,709 Feasible 454,552 Feasible
6 5 40 54,525 Infeasible 677,463 Infeasible
7 5 40 105,670 Infeasible 1,644,945 Infeasible
8 5 40 90,204 Infeasible 1,593,382 Infeasible
9 5 40 93,751 Infeasible 1,061,334 Infeasible
10 5 40 67,565 Infeasible 1,039,454 Infeasible
11 5 40 90,218 Infeasible 1,134,168 Infeasible
12 5 40 36,204 Feasible 857,912 Feasible
13 5 40 106,082 Infeasible 2,189,829 Infeasible
14 5 40 33,699 Infeasible 649,045 Infeasible
15 5 40 64,368 Infeasible 808,468 Infeasible
16 5 40 38,577 Feasible 370,900 Feasible
17 5 40 26,167 Feasible 162,529 Feasible
18 5 40 75,633 Feasible 96,595 Feasible
19 5 40 86,061 Infeasible 964,038 Infeasible
20 5 40 36,737 Infeasible 801,745 Infeasible
21 5 40 67,556 Infeasible 881,563 Infeasible
22 5 40 16,170 Feasible 1,136,200 Feasible
23 5 40 33,848 Feasible 225,732 Feasible
24 5 40 78,172 Infeasible 784,658 Infeasible
25 5 40 75,375 Infeasible 1,412,998 Infeasible

a full-dimensional polytope given by P = {x ∈ Rn | Ax ≤ b}, we apply the basis-reduction
algorithm of [] in the same way as that in [] and in the appendix with N = , and
N = ,.

Example (The market split problem) The market split problem given in [] is to deter-
mine whether the system, Cx = d, has a - integer solution, where C = (cij) is a p × q (e.g.,
q = (p –)) nonnegative integer matrix and d = (d, d, . . . , dp)� is an integer vector given
by di = 	∑n

j= cij/
, i = , , . . . , p. In our numerical experiments, cij ∈ [,], i = , , . . . , p,
j = , , . . . , q, are generated randomly.

For the problem with p = and q = , we have solved instances using the method
and the best CPLEX strategy. Numerical results for instances of the problem are given
in Table .

To demonstrate the capability of distributed computation of the method, we have im-
plemented the method in a distributed way to solve the market split problem with p =
and q = . We divide the problem space into parts and run subproblems simultane-
ously on the workstation. In the presentation of numerical results, MAX NumLPs stands
for either the largest number of linear programs consumed by the method for any of the
 subproblems when an instance is infeasible or the smallest number of linear programs
consumed by the method for the subproblem in which a feasible solution is found. Nu-
merical results for five instances of the problem are given in Table .

Example (The - knapsack feasibility problem) Find a - solution of p�x = d, where
p = (p, p, . . . , pn+)� > and pi �= pj for all i �= j. In our numerical experiments, pj ∈
[,], j = , , . . . , n + , and d ∈ [,] are generated randomly. Numerical results of
the method for this problem are given in Table .

Dang and Ye Fixed Point Theory and Applications (2015) 2015:182 Page 11 of 15

Table 2 The market split problem

Prob. p q NumLPs Feasibility

1 6 50 1.25E+07 Feasible
2 6 50 4.13E+07 Infeasible
3 6 50 3.46E+07 Feasible
4 6 50 4.17E+07 Feasible
5 6 50 3.73E+07 Feasible

Table 3 The 0-1 knapsack feasibility problem

Prob. n The method The best CPLEX strategy

NumLPs Feasibility NumLPs Feasibility

1 1,000 1,002 Feasible 3,023 Feasible
2 1,000 1,010 Feasible 1,542 Feasible
3 1,000 1,027 Feasible 1,495 Feasible
4 1,000 1,011 Feasible 1,428 Feasible
5 1,000 1,118 Feasible 883 Feasible
6 1,000 1,035 Feasible 2,023 Feasible
7 1,000 1,000 Infeasible 1,280 Infeasible
8 1,000 1,002 Feasible 1,360 Feasible
9 1,000 1,002 Feasible 998 Feasible
10 1,000 1,013 Feasible 1,087 Feasible
11 1,000 1,321 Feasible 1,577 Feasible
12 1,000 1,003 Feasible 1,117 Feasible
13 1,000 1,024 Feasible 1,638 Feasible
14 1,000 1,005 Feasible 1,122 Feasible
15 1,000 1,019 Feasible 1,097 Feasible
16 1,000 1,007 Feasible 1,365 Feasible
17 1,000 999 Infeasible 1,315 Infeasible
18 1,000 1,572 Feasible 3,741 Feasible
19 1,000 1,031 Feasible 1,170 Feasible
20 1,000 1,015 Feasible 2,702 Feasible
21 1,000 1,002 Feasible 978 Feasible
22 1,000 1,007 Feasible 1,486 Feasible
23 1,000 1,005 Feasible 1,043 Feasible
24 1,000 1,001 Feasible 3,643 Feasible
25 1,000 1,065 Feasible 2,017 Feasible
26 1,000 1,016 Feasible 2,587 Feasible
27 1,000 1,014 Feasible 879 Feasible
28 1,000 1,012 Feasible 724 Feasible
29 1,000 1,303 Feasible 1,405 Feasible
30 1,000 1,025 Feasible 1,520 Feasible

This paper has no intention to make a comprehensive comparison of the proposed
method with the existing methods. Nevertheless, one can see from these preliminary nu-
merical results that the numbers of linear programs solved by the method for most in-
stances of two specific problems are less than those of the best CPLEX strategy: branch
and cut. An efficient implementation of the method requires a considerable amount of
additional research, which is beyond the scope of this paper and will be carried out in
another research project.

Appendix: Basis reduction and preconditioning
A subset L ⊂ Rn is called a lattice if there exist linearly independent vectors b, b, . . . , bn

such that L = {∑l
j= αjbj | αj is an integer for ≤ j ≤ l}. The well-known Gram-Schmidt or-

thogonalization is a transformation procedure that derives from the independent vectors

Dang and Ye Fixed Point Theory and Applications (2015) 2015:182 Page 12 of 15

bj, j = , , . . . , l, the orthogonal vectors b∗
j , j = , , . . . , l, by the following procedure:

b∗
 = b,

b∗
j = bj –

j–∑
k=

μjkb∗
k , ≤ j ≤ l,

μjk =
b�

j b∗
k

b∗�
k b∗

k
, ≤ k < j ≤ l.

For y ∈ Rn, let ‖y‖ denote the Euclidean norm of y. The following definition comes
from [].

Definition A basis b, b, . . . , bl is called reduced if the following two conditions are sat-
isfied:

Condition : |μjk| ≤
 for ≤ k < j ≤ l, and

Condition : ‖b∗
j + μj,j–b∗

j–‖ ≥
‖b∗

j–‖ for < j ≤ l.

Given this definition, Lováz’s basis reduction algorithm in [] can be stated as follows:

Step (Size reduction): If, for any pair of j and k with ≤ k < j ≤ l, Condition is violated,
then replace bj by bj – �μjk
bk , where �μjk
 = �μjk –

�.
Step (Interchange): If Condition is violated for some j with < j ≤ l, then interchange

bj– and bj.
Step (Repeat): Repeat the above two steps till there is no violation of either of Conditions

and .

Let H = {y ∈ Rm
+ | Cy = d}, where C = (cij) is an n × m integer matrix and d is an inte-

ger point of Rn. Without loss of generality we assume that gcd(ci, ci, . . . , cim) = for all
 ≤ i ≤ m. This assumption can be met by directly dividing the GCD (greatest common
divisor) to each row of C, where the GCD can be found by an extended GCD algorithm.
To convert this problem into an equivalent problem of determining whether there is an
integer point in a polytope given by P = {x ∈ Rn | Ax ≤ b}, we use the same procedure as
in []. Let

B =

⎛
⎜⎝

Im
 N

NC –Nd

⎞
⎟⎠ ,

where Im is an m × m identity matrix and N and N are two sufficiently large positive
integers (e.g., N = , and N = ,). Applying Lováz’s basis reduction algorithm to
B, we obtain

B̂ =

⎛
⎜⎝

A b G
 N
 NIn

⎞
⎟⎠ ,

where In is an n × n identity matrix. Let P = {x ∈ Rn | Ax ≤ b}, where A and b are the
same as in B̂. Then, determining whether there is an integer point in H is equivalent to
determining whether there is an integer point in P.

Dang and Ye Fixed Point Theory and Applications (2015) 2015:182 Page 13 of 15

Given any polytope P = {x ∈ Rn | Ax ≤ b}, one can precondition A by applying Lováz’s
basis reduction algorithm. If there are continuous variables, one can apply Gram-Schmidt
orthogonalization to the corresponding matrix.

Given positive integers pi, i = , , . . . , m, the extended GCD with the basis reduction []
can be employed to find their common greatest divisor, which is as follows.

Initialization: Let m = , n = , U = (uij)m×m = Im, di = , i = , , . . . , m + , T = (tij)m×m =
m, and k = .

Step : Let i = k – and perform Reduce(k, i). Let

r = n
(
dk–dk+ + t

k,k–
)

– md
k .

If pk– �= or pk– = , pk = , and r < , then perform Swap(k) and let k = k – if
k > . Otherwise, for i = k – , k – , . . . , , perform Reduce(k, i). Let k = k + and go
to Step .

Step : If k > m, Stop. Otherwise, go to Step .
Finalization: If pm < , let pm = –pm and ujm = –ujm, j = , , . . . , m. Let GCD = pm and, for

j = , , . . . , m, let

h = uj,

uj = ujm,

ujm = h.

Reduce(k, i)
If pi �= , let

r =
⌈

pk/pi –

⌉
.

Otherwise, let

r =

{
�tki/di+ –

� if |tki| > di+,
 otherwise.

If r �= , let

pk = pk – rpi,

ujk = ujk – ruji, j = , , . . . , m,

tki = tki – rdi+,

tkj = tkj – rtij, j = , , . . . , i – .

Swap(k)

h = pk ,

pk = pk–,

pk– = h.

Dang and Ye Fixed Point Theory and Applications (2015) 2015:182 Page 14 of 15

For j = , , . . . , m,

h = ujk ,

ujk = uj,k–,

uj,k– = h.

For j = , , . . . , k – ,

h = tkj,

tkj = tk–,j,

tk–,j = h.

For j = k + , k + , . . . , m,

h = tj,k–tk,k– + tjkdk–,

h = tj,k–dk+ – tjktk,k–,

tj,k– = h/dk ,

tjk = h/dk ,

dk =
(
dk–dk+ + t

k,k–
)
/dk .

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors contributed equally to the writing of this paper. Both authors read and approved the final manuscript.

Author details
1Department of Systems Engineering and Engineering Management, City University of Hong Kong, Kowloon, Hong
Kong, China. 2Department of Management Science and Engineering, Stanford University, Stanford, CA 94305-4026, USA.

Acknowledgements
The authors are very grateful to the editor and reviewers for their valuable comments and suggestions and would like to
thank Dr. Zhengtian Wu for numerical implementation of the method. This work was partially supported by GRF: CityU
101113 of Hong Kong SAR Government.

Received: 24 June 2015 Accepted: 24 September 2015

References
1. Scarf, HE: Production sets with indivisibilities - Part I: generalities. Econometrica 49, 1-32 (1981)
2. Scarf, HE: Neighborhood systems for production sets with indivisibilities. Econometrica 54, 507-532 (1986)
3. Jünger, M, Liebling, TM, Naddef, D, Nemhauser, GL, Pulleyblank, WR, Reinelt, G, Rinaldi, G, Wolsey, LA: 50 Years of

Integer Programming. Springer, Berlin (2010)
4. Garey, MR, Johnson, DS: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San

Francisco (1979)
5. Gomory, RE: Outline of an algorithm for integer solution to linear programs. Bull. Am. Math. Soc. 64, 275-278 (1958)
6. Land, AH, Doig, AG: An automatic method for solving discrete programming problems. Econometrica 28, 497-520

(1960)
7. Lenstra, HW Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538-548 (1983)
8. Lovász, L, Scarf, HE: The generalized basis reduction algorithm. Math. Oper. Res. 17, 751-764 (1992)
9. Dang, C: An arbitrary starting homotopy-like simplicial algorithm for computing an integer point in a class of

polytopes. SIAM J. Discrete Math. 23, 609-633 (2009)

Dang and Ye Fixed Point Theory and Applications (2015) 2015:182 Page 15 of 15

10. Dang, C, van Maaren, H: A simplicial approach to the determination of an integer point in a simplex. Math. Oper. Res.
23, 403-415 (1998)

11. Aardal, K, Hurkens, C, Lenstra, AK: Solving a system of linear Diophantine equations with lower and upper bounds on
the variables. Math. Oper. Res. 25, 427-442 (2000)

12. Barvinok, AI: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed.
Math. Oper. Res. 19, 769-779 (1994)

13. Bertsimas, D, Weismantel, R: Optimization over Integers. Dynamic Ideas, Belmont (2005)
14. Burer, S, Vandenbussche, D: A finite branch-and-bound algorithm for nonconvex quadratic programming via

semidefinite relaxations. Math. Program., Ser. A 113, 259-282 (2008)
15. Cornuéjols, G, Dawande, M: A class of hard small 0-1 programs. In: Integer Programming and Combinatorial

Optimization. Lecture Notes in Computer Science, vol. 1412, pp. 284-293. Springer, Berlin (1998)
16. De Loera, JA, Hemmecke, R, Köppe, M, Weismantel, R: Integer polynomial optimization in fixed dimension. Math.

Oper. Res. 31, 147-153 (2006)
17. Nemhauser, GL, Wolsey, LA: Integer and Combinatorial Optimization. Wiley, New York (1998)
18. Schrijver, A: Theory of Linear and Integer Programming. Wiley, New York (1998)
19. Tarski, A: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5, 285-308 (1955)
20. Dang, C, Qi, Q, Ye, Y: Computational models and complexities of Tarski’s fixed points. Technical report (2011).

http://www.stanford.edu/~yyye/unitarski1.pdf
21. Dang, C: An increasing-mapping approach to integer programming based on lexicographic ordering and linear

programming. In: Du, DZ, Zhang, XS (eds.) The Ninth International Symposium on Operations Research and Its
Applications. Lecture Notes in Operations Research, vol. 12, pp. 55-60. World Publishing Corporation, Beijing (2010)

22. Ye, Y: Interior Point Algorithms: Theory and Analysis. Wiley, New York (1997)
23. Ye, Y, Todd, MJ, Mizuno, S: An O(

√
nL)-iteration homogeneous and self-dual linear programming algorithm. Math.

Oper. Res. 19, 53-67 (1994)
24. Lenstra, AK, Lenstra, HW Jr., Lovász, L: Factoring polynomials with rational coefficients. Math. Ann. 261, 515-534 (1982)
25. Havas, G, Majewski, BS, Matthews, KR: Extended GCD and Hermite normal form algorithms via lattice basis reduction.

Exp. Math. 7, 125-136 (1998)

http://www.stanford.edu/~yyye/unitarski1.pdf

	A ﬁxed point iterative approach to integer programming and its distributed computation
	Abstract
	MSC
	Keywords

	Introduction
	A ﬁxed point iterative method
	Distributed computation and computing all integer points in a polytope
	Numerical results
	Appendix: Basis reduction and preconditioning
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References

