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Abstract
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1 Introduction
The topological fixed point theory is a systematically developed discipline whose power-
ful methods can be effectively applied in many branches of mathematics, mathematical
physics and natural science. Its combination with multivalued analysis opens new hori-
zons in exploring more realistic models in mathematical economics, population dynamics
and optimal control theory (see e.g. [, ]).

It concerns not only the traditional study of optima and equilibria in terms of multival-
ued dynamical systems and differential inclusions, but also (less traditionally) the fractal
structure of invariant sets of discrete dynamical systems corresponding to practically im-
portant (possibly robust) stationary collective phenomena, or so.

Plenty of topological fixed point theorems can be found in monographs like [–]. Nev-
ertheless, many of them can be still improved or generalised and extended. Furthermore,
some results can be also elaborated and adopted for the needs of mentioned applications
like multivalued fractals.

In the present survey, we collected such joint results in the field of topological fixed
point theory of multivalued mappings obtained by ourselves in the last five years [–

© 2015 Andres and Górniewicz. This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://dx.doi.org/10.1186/s13663-015-0432-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-015-0432-0&domain=pdf
mailto:jan.andres@upol.cz


Andres and Górniewicz Fixed Point Theory and Applications  (2015) 2015:184 Page 2 of 34

]. The given fixed point problems concern both deterministic and random processes.
The multivalued maps under our consideration, so-called compact absorbing contractions
(CAC-maps), contain tendentiously only a small amount of compactness. Besides absolute
neighborhood retracts (ANR-spaces), we also consider a more general class of absolute
neighborhoods multiretracts (ANMR-spaces) as supporting spaces.

By advanced techniques, based on the Lefschetz-type fixed point theorems and sophis-
ticated degree arguments (fixed point index techniques), we are able to treat not only the
sole existence problems, but also to guarantee certain sorts of a weak stability called none-
jectivity and essentiality.

The applications deal with deterministic and random differential inclusions, nonejec-
tive and essential multivalued fractals. Let us also note that, for multivalued fractals, only
single-valued fixed point theorems applied in hyperspaces are needed.

Hence, after some auxiliary preliminaries, ten sections are devoted separately to these
problems. For more details and illustrative examples; see [–]. Some open problems
are formulated as a challenge for a future research.

2 Some auxiliary definitions
In the entire text, all topological spaces are metric and, until Section , all single-valued
mappings are continuous. Let X be a metric space and let x be a point of X. By U(x), we
shall denote the family of all open neighborhoods of x in X.

Let Top be the category of pairs of topological spaces and continuous mappings of such
pairs. By a pair (X, A) in Top, we understand a space X and its subset A; a pair (X,∅) will be
denoted for brevity by X. By a map f : (X, A) → (Y , B), we shall understand a continuous
map from X to Y such that f (A) ⊂ B.

We shall use the following notations: if f : (X, A) → (Y , B) is a map of pairs, then by
fX : X → Y and fA : A → B, we shall understand the respective induced mappings. Let
us also denote by VectG the category of graded vector spaces over the field of rational
numbers Q and linear maps of degree zero between such spaces. By H : Top → VectG,
we shall denote the Čech homology functor with compact carriers and coefficients in Q.

Thus, for any pair (X, A), we have H(X, A) = {Hq(X, A)}q≥, a graded vector space in VectG

and, for any map f : (X, A) → (Y , B), we have the induced linear map f∗ = {f∗q} : H(X, A) →
H(Y , B), where f∗q : Hq(X, A) → Hq(Y , B) is a linear map from the q-dimensional homology
Hq(X, A) of the pair (X, A) into the q-dimensional homology Hq(Y , B) of the pair (Y , B).

For the properties of H , we recommend [, ].
A nonempty space X is called acyclic provided:
(i) Hq(X) = , for every q ≥ , and

(ii) H(X) = Q.

Definition . A map p : � → X is called a Vietoris map if the following conditions are
satisfied:

(a) p is onto and proper, i.e., p–(K) is compact for every compact K ⊂ X ,
(b) for every x ∈ X , the set p–(x) is acyclic.

Theorem . (Vietoris) (see e.g. []) If p : � → X is a Vietoris map, then the induced
linear map p∗ : H(�) ∼→H(X) is an isomorphism, i.e. for every q ≥ , the linear map
p∗q : Hq(�) ∼→Hq(X) is a linear isomorphism.
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For further properties of Vietoris mappings, see e.g. [, ].
The following notions will play a crucial role. At first, by ϕ : X � Y , we shall denote a

multivalued map, i.e. a map which assigns to every point x ∈ X a nonempty set ϕ(x) ⊂ Y .
Until Section , all multivalued maps will be considered still compact-valued.

A multivalued map ϕ : X � Y is called admissible (see [, ]) provided there exists a
diagram

X
p←−�

q−→Y

in which p is a Vietoris map such that ϕ(x) = q(p–(x)). The pair (p, q) is called a selected
pair of ϕ (written: (p, q) ⊂ ϕ). In what follows, we shall use the following notation:

�
p
⇒X

for Vietoris mappings.
Note that the superposition ψ ◦ ϕ : X � Z of two admissible maps ϕ : X � Y and

ψ : Y � Z is again an admissible map.
For a map ϕ : X � X, we shall consider the set Fix(ϕ) of fixed points ϕ, i.e.,

Fix(ϕ) :=
{

x ∈ X | x ∈ ϕ(x)
}

.

Denoting, for ϕ : X � Y , by

ϕ–(B) :=
{

x ∈ X | ϕ(x) ⊂ B
}

and ϕ–
+ (B) :=

{
x ∈ X | ϕ(x) ∩ B �= ∅}

the small and large counter-images of B ⊂ Y , we can still define upper semicontinuous
and lower semicontinuous multivalued maps as follows.

Definition . A mapping ϕ : X � Y is said to be upper semicontinuous (u.s.c.) if, for
every open U ⊂ Y , the set ϕ–(U) is open in X or equivalently if, for every closed U ⊂ Y ,
the set ϕ–

+ (U) is closed in X.
A mapping ϕ : X � Y is said to be lower semicontinuous (l.s.c.) if, for every closed

U ⊂ Y , the set ϕ–(U) is closed in X or equivalently if, for every open U ⊂ Y , the set
ϕ–

+ (U) is open in X.
If ϕ is both u.s.c. and l.s.c., then it is called continuous.

Admissible maps are, in particular, u.s.c. More information as regards admissible map-
pings will be presented in the next section.

Let us also recall that the space X is an absolute neighborhood retract (X ∈ ANR), pro-
vided there exist an open set U in a normed space E and two maps:

r : U → X and s : X → U

such that r ◦ s = idX ; if U is an arbitrary convex set, then X is called an absolute retract
(X ∈ AR).

We shall also use the notion of a multiretraction.
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Definition . ([, ]) A map r : Y → X is said to be a multiretraction if there exists an
admissible map ϕ : X � Y such that r ◦ ϕ = idX .

Definition . ([, ]) A space X is called an absolute neighborhood multiretract (X ∈
ANMR) if there exist an open set U of a normed space E and a multiretraction r : U → X;
if U is an arbitrary convex set, then X is an absolute multiretract (X ∈ AMR).

Evidently, we have

ANR ⊂ ANMR,

i.e. the class of ANMR-spaces is obviously larger than the one of ANR-spaces (see [, ]).
For some nontrivial examples and more details concerning ANMR-spaces, we recom-

mend [].
Finally, let us recall that a compact space is called an Rδ-set provided it is an intersection

of a decreasing sequence of compact AR-spaces.

3 Compact absorbing contraction mappings
Let ϕ : X � Y be an admissible mapping and (p, q) ⊂ ϕ be a selected pair of ϕ.

Using the Vietoris theorem, Theorem ., we are able to define the linear map induced
by (p, q) by putting

q∗ ◦ p–
∗ : H∗(X) → H∗(Y ).

We let ϕ∗ = {q∗ ◦ p–∗ | (p, q) ⊂ ϕ}.
Now, let us consider two admissible mappings ϕ,ψ : X � Y . We shall say that ϕ is homo-

topic to ψ (written: ϕ ∼ ψ ), provided there exists an admissible mapping χ : X ×[, ] � Y
such that χ (x, ) = ϕ(x) and χ (x, ) = ψ(x), for every x ∈ X.

We have the following proposition (for its proof, see []).

Proposition . If ϕ ∼ ψ , then ϕ∗ ∩ ψ∗ �= ∅.

Let (p, q) ⊂ ϕ and (p, q) ⊂ ψ . We shall say that the above selected pairs are homotopic
(written: (p, q) ∼ (p, q)), provided there exists the following commutative diagram:

X

i

�
q

f

p
Y

X × [, ] �

q

p

X

i

�

g

q

p

where i(x) = (x, ), i(x) = (x, ), � is a given space and f , g are given maps.
Evidently, we have
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Proposition . If (p, q) ∼ (p, q), then q∗ ◦ p–
∗ = q∗ ◦ p–

∗.

We say that an admissible map ϕ : X � X is a Lefschetz map provided, for every selected
pair (p, q) ⊂ ϕ, the generalised Lefschetz number �(p, q) = �(q∗ ◦ p–∗ ) is well defined and
if �(p, q) �= , then there exists a point x ∈ X such that x ∈ q(p–(x)) (for the definition of
the generalised Lefschetz number and more details, see [, , ]).

For a Lefschetz map ϕ : X � X, we define the Lefschetz set �(ϕ) of ϕ by putting

�(ϕ) :=
{
�(p, q) | (p, q) ⊂ ϕ

}
.

We have (see []):

If ϕ ∼ ψ , then �(ϕ) ∩ �(ψ) �= ∅; (.)

If (p, q) ∼ (p, q), then �
(
(p, q)

)
= �

(
(p, q)

)
. (.)

Definition . ([, , , ]) An admissible map ϕ : X � X is called a compact absorbing
contraction (ϕ ∈ CAC(X)) if there exists an open set U ⊂ X such that:

(a) ϕ(U) ⊂ U ,
(b) the closure ϕ(U) of ϕ(U) is contained in a compact subset of U ,
(c) for every x ∈ X , there exists a natural number nx such that ϕnx (x) ⊂ U .

We say that ϕ : X � X is a locally compact map provided, for every x ∈ X, there exists
V ∈ U(x) such that ϕ|V : V � X is a compact map, i.e. ϕ|V (V ) is compact.

We let:
K(X) = {ϕ : X � X | ϕ is admissible and compact}.
EC(X) = {ϕ : X � X | ϕ is admissible locally compact and there exists a natural
number n such that the nth iteration ϕn : X � X of ϕ is a compact map}.
ASC(X) = {ϕ : X � X | ϕ is admissible locally compact, the orbit O(x) =

⋃∞
n= ϕn(x) is,

for every x ∈ X, relatively compact and the core C(ϕ) =
⋂∞

n= ϕn(x) is nonempty and
relatively compact}.
CA(X) = {ϕ : X � X | ϕ is admissible locally compact and has a compact attractor, i.e.,
then there exists a compact set A ⊂ X such that, for every open set W ⊂ X containing
A and for every point x ∈ X, there is nx such that ϕnx (x) ⊂ W }.

The following hierarchy holds [, ]:

K(X) ⊂ EC(X) ⊂ ASC(X) ⊂ CA(X) ⊂ CAC(X). (.)

Moreover, each of the above inclusions is proper.
Let ϕ ∈ CAC(X) and let U be chosen according to Definition .. Then

ϕU : U � U , defined by the formula ϕU (x) = ϕ(x), for every x ∈ U , (.)

is a compact admissible map. Recall that if ψ : Y � Y is a compact admissible map and
Y ∈ ANMR, then ψ is a Lefschetz map and �(ψ) �= {} implies that ψ has a fixed point
(see [, ]).

We prove the following theorem.
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Theorem . Let ϕ ∈ CAC(X), where X ∈ ANMR. Assume further that U is chosen ac-
cording to Definition . and ϕU : U � U be a map defined in (.). Then ϕ is a Lefschetz
map and �(ϕ) ⊂ �(ϕU ).

Proof Let (p, q) be a selected pair of ϕ, i.e., we have a diagram:

X
p⇐
�

q−→X

such that ϕ(x) = q(p–(x)), for every x ∈ X. Consider still the following diagram:

U
p⇐
p–(U)

q−→U

in which p and q are respective restrictions of p and q.
We have also the following diagram:

(X, U)
p⇐
 (

�, p–(U)
) q−→ (X, U)

in which p(y) = p(y) and q(y) = q(y), for every y ∈ �.
Now, we shall use the following formula proved in []. If two Lefschetz numbers from

the three numbers �(p, q), �(p, q) and �(p, q) are well defined, then the third one is well
defined too, and we have

�(p, q) = �(p, q) + �(p, q).

Since an open subset of an ANMR-space is an ANMR-space, too, we infer from above that
�(p, q) is well defined.

Now, since we consider the homology with compact carriers, it follows from Defini-
tion .(c) (cf. [], Proposition (.)) that �(p, q) = . Consequently, we see that �(p, q) is
well defined, and �(p, q) = �(p, q). Hence, our theorem follows from the compact case
(see [], Theorem .) by which the proof is completed. �

Corollary . If ϕ ∈ CAC(X) and X ∈ ANMR, then ϕ is a Lefschetz map and �(ϕ) �= {}
implies that ϕ has a fixed point.

There are several formulations of the Lefschetz fixed point theorem for multivalued
mappings (see e.g. [, , –]). Theorem . seems to be the most general one along
the indicated lines. The case of random operators will be considered in Section .

4 Fixed point index
Firstly, let us assume that ϕ : X � X is a compact admissible map, where X ∈ ANR.

Let (p, q) ⊂ ϕ and V ⊂ X be an open set such that {x ∈ V | x ∈ ϕ(x)} is compact. Then
the fixed point index ind((p, q), V ) of the pair (p, q) with respect to V is well defined (see
e.g. [, , , ]). Note that ind((p, q), V ) is a rational number in general which is sufficient
for our needs. Nevertheless, it can be integer-valued provided still, for instance, X to be
an open subset of a normed space, up to a fixed homeomorphism and a fixed retraction,
or under suitable additional restrictions imposed on the fibers of p. For more details, see
e.g. [, ]).
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We define the fixed point index of ϕ as the following set:

Ind(ϕ, V ) :=
{
ind

(
(p, q), V

) | (p, q) ⊂ ϕ
}

.

Below, we shall list the important properties of the fixed index which we shall need in
the next section.

() (Existence) If ind((p, q), V ) �=  (Ind(ϕ, V ) �= {}), then Fix(p, q) ∩ V �= ∅, where
Fix(p, q) := {x ∈ X | x ∈ q(p–(x))}.

() (Excision) If Fix(ϕ) ∩ W ⊂ V ⊂ W is compact, then

ind
(
(p, q), V

)
= ind

(
(p, q), W

) (
Ind(ϕ, V ) = Ind(ϕ, W )

)
.

() (Additivity) If V, V are open subsets of X such that V ∩ V = ∅ and Fix(ϕ) ∩ V,
Fix(ϕ) ∩ V are compact sets, then

ind
(
(p, q), V ∪ V

)
= ind

(
(p, q), V

)
+ ind

(
(p, q), V

)
.

() (Homotopy) If (p, q) ∼ (p, q) (ϕ ∼ ψ ), then

ind
(
(p, q), V

)
= ind

(
(p, q), V

) (
Ind(ϕ, V ) ∩ Ind(ψ , V ) �= ∅),

where (p, q) ⊂ ϕ and (p, q) ⊂ ψ .
() (Normalization) If V = X , then

ind
(
(p, q), V

)
= �

(
(p, q)

)
and Ind(ϕ, V ) = �(ϕ).

Now, we shall consider the noncompact case. Assume that ϕ : X � X is an admissible
compact absorbing contraction and X ∈ ANR. Assume, furthermore, that V is an open set
such that {x ∈ V | x ∈ ϕ(x)} is compact. According to Definition .(a), we select an open
set U satisfying all assumptions of Definition .. Evidently, Fix(ϕ) ⊂ U . Moreover, we see
that ϕU : U � U is a compact admissible map, where ϕU (x) = ϕ(x), for every x ∈ U . Let
(p, q) ⊂ ϕ. Then (pU , qU ) ⊂ ϕU , where pU : p–(U) ⇒ U and qU : p–(U) → U are defined
as follows: pU (y) = p(y) and qU (y) = q(y), for every y ∈ p–(U).

We let:

ind
(
(p, q), V

)
:= ind

(
(pU , qU ), V ∩ U

)
(.)

and

Ind(ϕ, V ) :=
{
ind

(
(p, q), V

) | (p, q) ⊂ ϕ
}

. (.)

By means of (), we deduce that the definitions (.) and (.) do not depend on the
choice of U . Thus, all properties ()-() are satisfied.

For more details, we recommend [, , , , ].

Open Problem  Is it possible to define a fixed point index for CAC-mappings on ANMR-
retracts?



Andres and Górniewicz Fixed Point Theory and Applications  (2015) 2015:184 Page 8 of 34

5 Ejective fixed points
In this section, we shall assume that all multivalued maps are compact absorbing contrac-
tions (CAC-maps).

Definition . ([, , , ]) Let ϕ : X � X be a given map and let x ∈ Fix(ϕ).
(a) We say that x is ejective relative to V ∈ U(x) if, for any x ∈ V \ {x}, there exists an

integer n ≥  such that ϕn(x) ⊂ X \ V . If there exists V ∈ U(x) such that x is
ejective relative to V , then x is called ejective. The set of all ejective fixed points is
denoted by Fixe(ϕ).

(b) A fixed point x ∈ Fix(ϕ) is called repulsive relative to V ∈ U(x) if, for any
W ∈ U(x), there exists an integer n(W ) ≥  such that ϕn(X \ W ) ⊂ X \ V , for all
n ≥ n(W ). If there exists V ∈ U(x) such that x is repulsive relative to V , then x is
called repulsive. The set of all repulsive fixed points is denoted by Fixr(ϕ).

As an immediate consequence of the above definitions, we have:

Fixr(ϕ) ⊂ Fixe(ϕ).

The following example shows that the converse is not true even for single-valued map-
pings.

Example . Let f : [, ] → [, ] be defined by the formula

f (x) = 
(
–x + x

)
.

Then x =  is ejective relative to V = [, /). However,  is not a repulsive point because
f () = .

Remark . Observe that every ejective fixed point is isolated in the set Fix(ϕ). Therefore,
if # Fixe(ϕ) < ∞, then Fixe(ϕ) is open and compact in Fix(ϕ).

Let ϕ : X � X be a CAC-map and let U ⊂ X be chosen according to Definition .. Then
we have a compact admissible map ϕU : U → U defined by ϕU (x) = ϕ(x), for every x ∈ U .
Observe that, in view of (.), we have

Fix(ϕ) = Fix(ϕU ), (.)

Fixe(ϕ) = Fixe(ϕU ), (.)

Fixr(ϕ) = Fixr(ϕU ). (.)

Therefore, all results obtained in [, ] can be reformulated for CAC-mappings. Note
that the class of compact attraction mappings considered in [, ] is involved in the class
of CAC-mappings (see (.)). Consequently, from (.)-(.), we can deduce the analogous
results for compact admissible mappings on ANR-s, for all classes in (.).

For example, we can formulate the following two most important theorems.

Theorem . Let X ∈ ANR and ϕ : X � X be a CAC-map. Assume furthermore that x is
a repulsive fixed point of ϕ with respect to V ∈ U(x). If there exists W ∈ U(x) such that:



Andres and Górniewicz Fixed Point Theory and Applications  (2015) 2015:184 Page 9 of 34

(a) V ⊂ U ,
(b) the inclusion map i : X \ W → X induces the isomorphism

i∗ : H∗(X \ W )
∼−→H∗(X),

then Ind(ϕ, V ) = {}.

Corollary . If we assume additionally that Fixr(ϕ) is a finite set and that �(ϕ) �= {},
then there exists a nonrepulsive fixed point of ϕ.

Concerning ejective fixed points, we will formulate the following theorem.

Theorem . Let X ∈ ANR and ϕ : X � X be a CAC-mapping. Assume that

ϕ
(
X \ Fixe(ϕ)

) ⊂ X \ Fixe(ϕ) and # Fixe(ϕ) < ∞. (.)

Denote by ϕ′ : (X \ Fixe(ϕ)) � (X \ Fixe(ϕ)) and ϕ : (X, X \ Fixe(ϕ)) � (X, X \ Fixe(ϕ)) the
respective maps induced by ϕ. Then we have:

(a) ϕ is a Lefschetz map,
(b) �(ϕ) = {} and if �(ϕ) �= {}, then ϕ′ has a nonejective fixed point.

Denoting still by Fixet(ϕ) ⊂ Fixe(ϕ) the subset of trivial (obvious) ejective fixed points
of ϕ, we can immediately reformulate Theorem . in the following form which is suitable
for applications, for instance, to functional differential equations.

Theorem . Let X ∈ ANR and ϕ : X � X be a CAC-mapping. Assume that

ϕ
(
X \ Fixet(ϕ)

) ⊂ X \ Fixet(ϕ) and # Fixet(ϕ) < ∞. (.)

Denote by ϕ̃ : (X \Fixet(ϕ)) � (X \Fixet(ϕ)) and ϕ̂ : (X, X \Fixet(ϕ)) � (X, X \Fixet(ϕ)) the
respective maps induced by ϕ. Then we have:

(a) ϕ̂ is a Lefschetz map,
(b) �(ϕ̂) = {} and if �(ϕ) �= {}, then ϕ̃ has either a nontrivial ejective fixed point or a

nonejective fixed point.

Let us note that some further results concerning repulsive and ejective fixed points for
CA-mappings were presented in [, , ].

As already pointed out, all the results in [, ] as well as those for single-valued maps
(see e.g. []) can be reformulated for CAC-mappings. The proofs are quite analogous to
those presented in the quoted papers.

Open Problem  Is it possible to prove some existence results about ejective or repulsive
fixed points for compact admissible mappings on ANMR-spaces?

6 Possible application to autonomous functional differential inclusions
Now, we will indicate a possible application of ejective fixed points to differential inclu-
sions (see []). Consider the following functional inclusion:

x′(t) ∈ Fk,l
(
x(t – )

)
, (.)
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where Fk,l(x) ≡ Fk,l(x + ω), ω > , and

Fk,l(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

[– k
 , k

 ], for x ∈ {, ω
 },

k
 + l sin( π

ω
x), for x ∈ (, ω

 ),

– k
 + l sin( π

ω
x), for x ∈ ( ω

 ,ω).

Observe that, for k = , we have

F,l(x) := l sin

(
π

ω
x(t – )

)
,

by which (.) reduces to the delayed differential equation

x′(t) = l sin

(
π

ω
x(t – )

)
, (.)

studied in a more general form, e.g. in [].
It was shown that, besides other things, for suitable values of l > , (.) possesses hy-

perbolic nontrivial periodic solutions oscillating around the unstable equilibria given by
. . . , –ω, ,ω, . . . , and with transversal heteroclinic connections between them.

For (.) with k > , the situation becomes more delicate. On one side, one can readily
check that again

Fk,l(x) > , for x ∈
(

,
ω



)
, and Fk,l(x) < , for x ∈

(
ω


,ω

)
.

Therefore, for the stationary solution x(t) ≡ ω/, there is a negative feedback on the circle
S with a reaction lag, i.e.

x(t – ) ∈
(

,
ω



)
implies x′(t) > ,

and

x(t – ) ∈
(

ω


,ω

)
implies x′(t) < ,

while for x(t) ≡ , the feedback is positive.
On the other hand, the associated Poincaré return operator ϕ is naturally multivalued.
Since |Fk,l(x)| ≤ l + k/ holds, for all x ∈R, k > , l > , the locally absolutely continuous

solutions x(·) of (.) are equi-continuous, because they have uniformly bounded deriva-
tives x′(·) such that |x′(·)| ≤ l + k/, for almost all t ∈ R. Therefore, the bounded domain
of the Poincaré return operator ϕ, associated with (.), can be a compact subset X of the
Banach space of continuous real functions, on the initial interval [–, ], endowed with
the sup-norm. If X is still a retract of this Banach space, or of its convex subset, then the
Poincaré return operator ϕ is defined on a compact AR-space.

Following and matching the ideas in [], Chapter III., and [], one might expect that
the Poincaré return operator ϕ, associated with (.), can be an admissible mapping which,
in view of the above arguments, is compact. Moreover, since ϕ can be defined on a compact
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AR-space X, we have immediately that # Fixe(ϕ) < ∞, and especially that �(ϕ) �= {} (see
Corollary .).

Hence, in order to apply Theorem ., we could only check in this way condition (.),
provided all the above arguments are satisfied. Of course, in the case of Fixet(ϕ) = Fixe(ϕ),
Theorem . coincides with Theorem .. Anyway, for suitable values of k ≥  and l > ,
inclusion (.) would then possess a nontrivial periodic solution.

7 Multivalued random operators
In order to deal with random operators, random fixed points and random orbits, we need
to recall the appropriate definitions and basic results. Unlike in the foregoing sections,
multivalued maps are not necessarily compact-valued, but only with nonempty values.

By a measurable space, we shall mean as usual the pair (
,�), where a set 
 is equipped
with a σ -algebra � of subsets. We shall use B(X) to denote the Borel σ -algebra on X. The
symbol � ⊗ B(X) denotes the smallest σ -algebra on 
 × X which contains all the sets
A × B, where A ∈ � and B ∈ B(X).

For ϕ : X � Y , we can define by means of the small and large counter-images of B ⊂ Y ,
i.e.

ϕ–(B) :=
{

x ∈ X | ϕ(x) ⊂ B
}

and ϕ–
+ (B) :=

{
x ∈ X | ϕ(x) ∩ B �= ∅},

(weakly) measurable multivalued maps as follows.

Definition . Let (
,�) be a measurable space and Y be a separable metric space. A map
ϕ : 
 � Y with closed values is called measurable if ϕ–(B) ∈ �, for each open B ⊂ Y ,
or equivalently, if ϕ–

+ (B) ∈ �, for each closed B ⊂ Y . It is called weakly measurable if
ϕ–

+ (B) ∈ �, for each open B ⊂ Y , or equivalently, if ϕ–(B) ∈ �, for each closed B ⊂ Y .

It is well known that, for compact-valued maps ϕ : 
 � Y , the notions of measurability
and weak measurability coincide. Moreover, if ϕ and ψ are measurable, then so is their
Cartesian product ϕ × ψ . For more properties and details, see [–].

As an important tool in our investigations, we shall employ a version of the Aumann
selection theorem which we state here in the form of lemma (see e.g. [], Theorem ..).

Lemma . If ϕ : 
 � Y , where 
 is a complete measure space and Y is a complete sep-
arable metric space, is a multivalued map whose graph

�ϕ :=
{

(ω, y) ∈ 
 × Y | y ∈ ϕ(ω)
}

is measurable, i.e. �ϕ ∈ � ⊗B(Y ), then ϕ possesses a measurable (single-valued) selection
f ⊂ ϕ.

Remark . If ϕ : 
 � Y is measurable with closed values like in the Kuratowski-Ryll-
Nardzewski theorem (see e.g. [–]), then its graph �ϕ is measurable (cf. e.g. []), and
subsequently ϕ possesses a measurable selection f ⊂ ϕ.

In the sequel, 
 will be always a complete measure space and X be always a complete
separable metric space.
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Definition . ([, , ]) Let A ⊂ X be a closed subset and ϕ : 
 × A � X be a mul-
tivalued map with closed values. We say that ϕ is a random operator if it is product-
measurable (measurable in the whole), i.e. measurable w.r.t. minimal σ -algebra � ⊗B(X),
generated by � × B(X), where B(X) denotes the Borel sets of X. If ϕ(ω, ·) : A � X is still
u.s.c. (or l.s.c.), then ϕ is called a random u-operator (or a random l-operator).

Remark . For the definition of a random operator, it is usually still required ϕ to be
compact-valued (cf. [, ]), and ϕ(ω, ·) : A � X to be u.s.c. or Hausdorff continuous (cf.
[]), for almost all ω ∈ 
. Since these restrictions are not necessary for us, we omitted
them in Definition ..

Definition . Let A ⊂ X be a closed subset and ϕ : 
 × A � X be a random operator.
We say that ϕ has a random fixed point ξ if there exists a measurable mapping ξ : 
 → A
such that

ξ (ω) ∈ ϕ
(
ω, ξ (ω)

)
, for every ω ∈ 
.

We let Fixra(ϕ) := {ξ : 
 → A | ξ is a random fixed point for ϕ}.

A sequence of measurable maps {ξi}k–
i= , where ξi : 
 → A, i = , . . . , k – , is called a

random k-orbit, associated to ϕ, if
(i) ξi+(ω) ∈ ϕ(ω, ξi(ω)), i = , . . . , k –  and ξ(ω) ∈ ϕ(ω, ξk–(ω)), for almost all ω ∈ 
,

(ii) the sequence {ξi}k–
i= is not formed by going p-times around a shorter subsequence

of m consecutive elements, where mp = k.
If still

(iii) ξi(ω) �= ξj(ω); i �= j; i, j = , . . . , k – , for almost all ω ∈ 
,
then we speak about a random primary k-orbit

One can readily check that the notion of a random -orbit coincides with the one of a
random fixed point.

The following lemma is crucial in our considerations.

Lemma . Let X be a separable space, A a closed subset of X and ϕ : 
 × X � X a mea-
surable map with nonempty closed values. We let ϕω : A � X, ϕω(x) := ϕ(ω, x). Assume
further that, for every ω ∈ 
, the set Fixϕω := {x ∈ X | x ∈ ϕω(x)} of fixed points of ϕω is
nonempty and closed. Then the map F : 
 � X, given by F(ω) = Fixϕω , has a measurable
selection.

Proof Firstly, we define the function f : 
 × A → [,∞) by putting

f (ω, x) := dist
(
x,ϕ(ω, x)

)
= inf

{
d(x, y) | y ∈ ϕ(ω, x)

}
.

Since ϕ is measurable, so is f (cf. [, ]).
Now, it is obvious that the graph �F = {(ω, x) ∈ 
× X | x ∈ F(ω)} of F is equal to f –() =

{(ω, x) ∈ 
 × A | f (ω, x) = }.
Since f is measurable, so is the set �F = f –(), and consequently F : 
 � X is measur-

able on the graph. By virtue of the Aumann-type selection theorem (see Lemma .), there
exists a measurable selection v : 
 → X of F which completes the proof. �
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Note that if ϕ is a random l-operator, then it is sufficient to assume in Lemma . only
that ϕ(·, x) is measurable, for every x ∈ X.

In order to formulate the generalisation of Lemma . for random orbits, it will be useful
to split 
 in the following way (μ denotes a measure):

⎧
⎪⎪⎨

⎪⎪⎩


 = 
 ∪⋃
m|k 
m, where μ(
) = , all 
m’s are measurable,

there are i, . . . , il such that μ(
ij ) > , for all ij’s,

and the least common multiple of ij’s is k.

(.)

Defining the multivalued maps

Ok : 
 � Ak , k ∈N and Ok/m
m �
m : 
m � Ak

by

Ok(ω) :=
{{xi}k–

i= ∈ Ak | {xi}k–
i= is a k-orbit of ϕ(ω, ·)}

and

Ok/m
m �
m (ω) :=

{
{xi}k–

i= ∈ Ak
∣∣∣ {xi}m–

i= is an m-orbit of ϕ(ω, ·)

and xi+tm = xi, for t = , . . . ,
k
m

}
,

i.e. Ok/m
m (ω) �
m , ω ∈ 
m, is a set of m-orbits repeated (k/m)-times, we are ready to give

the following crucial statement, whose ‘if-part’ was proved in [] (the ‘only if-part’ follows
directly from the definition of a random k-orbit).

Lemma . Assume that ϕ : 
 × A � X is a random operator. Then ϕ admits a random
k-orbit, k ∈ N, if and only if Om(ω) is, under (.), nonempty, for all ω ∈ 
m, where m|k.

In particular, we can still give the following corollary.

Corollary . If the set Ok(ω) of orbits of ϕ(ω, ·) is nonempty, for almost every ω ∈ 
, then
ϕ admits a random k-orbit.

Remark . Observe that, for k = , Corollary . implies that the set Fixϕω need not
be closed like in Lemma ..

8 Lefschetz fixed point theorem for random multivalued mappings
In this section, we will present a version of the Lefschetz fixed point theorem for random
operators. Our result can be regarded as a completion of the deterministic Theorem ..
For more details, see [, ].

Theorem . Let ϕ : 
 × X � X be a random u-operator. Assume further that:
(a) X is a separable ANMR-space,
(b) ϕω : X � X , ϕω(x) = ϕ(ω, x) is a CAC-map, for every ω ∈ 
.
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Then:
(i) ϕω : X � X is a Lefschetz map, and

(ii) if �(ϕω) �= {}, for almost all ω ∈ 
, then Fixra(ϕ) �= ∅.

Proof Using the deterministic version of the Lefschetz fixed point Theorem ., we infer
that, for almost all ω ∈ 
, the set Fix(ϕω) is nonempty. Thus, we can apply Lemma ., and
get Fixra(ϕ) = {ξ : 
 → X | ξ (ω) ∈ ϕ(ω, ξ (ω)), for every ω ∈ 
} �= ∅. �

As a particular case of Theorem ., we obtain the following random version of the
Schauder fixed point theorem.

Corollary . If X is a separable AMR-space and ϕ : 
 × X � X is a random map such
that, for every ω ∈ 
, the map ϕω : X � X is a CAC-map, then Fixra(ϕ) �= ∅.

Open Problem  Is Theorem . valid without the assumption that X is a separable space?

Remark . Random fixed point theorems for condensing maps were investigated e.g.
in [].

9 Topological degree of random operators
In this section, a random topological degree will be defined for a suitable class of random
operators.

Let Rn, n ≥ , be as usually an n-dimensional real Euclidean space, with the inner prod-
uct 〈·, ·〉 and the induced norm ‖ · ‖. A closed (resp. open) ball in Rn with center x and
radius r >  is denoted by Bn(x, r) (resp. Bn

(x, r)). Furthermore, put

Bn(r) = Bn(, r), Bn
(r) = Bn

(, r),

Sn–(r) = Bn(r) \ Bn
(r), Pn = Rn \ {};

Z stands for the set of all integers.
For any X ∈ ANR, we let

J ra(
 × Bn(r), X
)

:=
{

F : 
 × Bn(r) � X | F is a random u-operator with Rδ-values
}

.

For any X ∈ ANR and any continuous function f : X → Rn, we put

J ra
f
(

 × Bn(r),Rn) :=

{
ϕ : 
 × Bn(r) �Rn | ϕ = f ◦ F ,

for some F ∈ J ra(
 × Bn(r), X
)
, and ϕ

(

 × Sn–(r)

) ⊂ Pn}.

Finally, we define

CJ ra(
 × Bn(r),Rn) :=
⋃{

J ra
f (
 × Bn(r),Rn |

f : X → Rn is continuous and X ∈ ANR
}

.

The aim of this section is to introduce the notion of a random topological degree for the
class CJ ra(
 × Bn(r),Rn). Before doing it, we need an appropriate notion of a homotopy
in CJ ra(
 × Bn(r),Rn).



Andres and Górniewicz Fixed Point Theory and Applications  (2015) 2015:184 Page 15 of 34

Definition . Let ϕ,ϕ ∈ CJ ra(
 × Bn(r),Rn) be two maps of the form:

ϕ = f ◦ F, 
 × Bn(r)
F� X

f−→Rn,

ϕ = f ◦ F, 
 × Bn(r)
F� X

f−→Rn.

We say that ϕ and ϕ are homotopic in CJ ra(
 × Bn(r),Rn) if there exists a random u-
operator with Rδ-values χ : 
 × Bn(r) × [, ] � X and a continuous homotopy h : X ×
[, ] →Rn such that:

(a) χ (ω, x, ) = F(ω, x), for every ω ∈ 
 and x ∈ Bn(r),
(b) χ (ω, x, ) = F(ω, x), for every ω ∈ 
 and x ∈ Bn(r),
(c) h(x, ) = f(x), h(x, ) = f(x), for every x ∈ Bn(r),
(d) for every (ω, u, t) ∈ 
 × Sn–(r) × [, ] and x ∈ χ (ω, u, t), we have h(x, t) �= .

The mapping H : 
 × Bn(r) × [, ] � Rn given by H(ω, x, t) = h(χ (ω, x, t), t) is called a
homotopy in CJra(
 × Bn(r),Rn) between ϕ and ϕ.

Now, observe that if ϕ ∈ CJ ra(
 × Bn(r),Rn), then ϕω = ϕ(ω, ·) ∈ CJ ra({ω} × Bn(r),Rn),
for every ω ∈ 
, and so the topological degree Deg(ϕω) of ϕω is well defined (see e.g. [,
]). Therefore, we are allowed to define the following.

Definition . We define a multivalued map D : CJ ra(
 × Bn(r),Rn) � Z by putting
D(ϕ) := {Deg(ϕω) | ω ∈ 
}. The map D is called the random topological degree of ϕ on
CJ ra(
 × Bn(r),Rn).

In what follows, we say that the random topological degree D(ϕ) of ϕ is different from
zero (written: D(ϕ) �= ) if Deg(ϕω) �= , for every ω ∈ 
.

Below, we collect the most important properties of the random topological degree.

Theorem . The multivalued map D : CJ ra(
× Bn(r),Rn) � Z defined in Definition .
has the following properties:

(a) (Existence) If D(ϕ) �= , then there exists a measurable function ξ : 
 → Bn(r) such
that  ∈ ϕ(ω, ξ (ω)), for every ω ∈ 
.

(b) (Excision) If ϕ ∈ CJ ra(
 × Bn(r),Rn) and
{(ω, x) ∈ 
 × Bn(r) |  ∈ ϕ(ω, x)} ⊂ 
 × Bn

(̃r), for some  < r̃ < r, then the restriction
ϕ̃ of ϕ to 
 × Bn (̃r) is in CJ ra(
 × Bn (̃r),Rn) and D(ϕ) = D(ϕ̃).

(c) (Factorization) Let ϕ,ϕ ∈ CJ ra(
 × Bn(r),Rn) be two maps of the form:

ϕ = f ◦ F, 
 × Bn(r)
F� X

f−→Rn,

ϕ = f ◦ F, 
 × Bn(r)
F� Y

f−→Rn,
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where X, Y ∈ ANR. If there exists a continuous map h : X → Y such that the diagram

X

h

f


 × Bn(r)

F ◦

F
◦

Rn

Y
f

is commutative, i.e. F = h ◦ F and f = f ◦ h, then D(ϕ) = D(ϕ).
(d) (Homotopy) If ϕ and ϕ are homotopic in CJ ra(
 × Bn(r),Rn), then D(ϕ) = D(ϕ).

Proof Note that the properties (b)-(d) immediately follow from the respective properties
of the function Deg on CJ ra({ω} × Bn(r),Rn), i.e. for ϕω ∈ CJ ra({ω} × Bn(r),Rn) and each
ω ∈ 
.

For the proof of (a), observe that for every ϕ ∈ CJ ra(
 × Bn(r),Rn), we can associate the
random vector field ϕ̂ : 
 × Bn(r) →Rn defined as follows:

ϕ̂(ω, x) := x – ϕ(ω, x), for every (ω, x) ∈ 
 × Bn(r).

If we assume that D(ϕ) �=  then, for every ω ∈ 
, in view of the existence property for
the deterministic topological degree (see e.g. [], Proposition (..), p.), we see that
Fix(ϕ̂ω) is a nonempty and compact subset of Bn(r).

By applying Lemma ., we see that ξ ∈ Fixra(ϕ̂) which satisfies the following condition:
 ∈ ϕ(ω, ξ (ω)), for every ω ∈ 
, and the proof is completed. �

It is well known that, from the topological degree theory, one can deduce many topo-
logical results like fixed point theorems, theorems on antipodes, theorems on invariant
domains, etc.

The same is possible to deduce, under natural suitable assumptions, from the random
topological degree. Nevertheless, we restrict our considerations to a random version of
the theorem on antipodes.

Theorem . (Random theorem on antipodes) Let ϕ ∈ CJra(
 × Bn(r),Rn) be a random
u-operator such that for every x ∈ Sn–(r) and for every ω ∈ 
, we have

Lx ∩ ϕ(ω, x) = ∅ or Lx ∩ ϕ(ω, –x) = ∅, where Lx := {tx | t ≥ }.

Then D(ϕ) �= .

Proof For every ω ∈ 
, the map ϕω : Bn(r) → Rn satisfies the assumptions of the deter-
ministic Borsuk antipodal theorem (see e.g. [, ]). Thus, for every ω ∈ 
, Deg(ϕω) �= ,
and our theorem follows from Theorem .(a). �
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Finally, we shall sketch the random topological degree theory in Banach spaces. Let E
be a separable Banach space. We let:

B(r) =
{

x ∈ E | ‖x‖ ≤ r
}

,

B(r) =
{

x ∈ E | ‖x‖ < r
}

,

S(r) =
{

x ∈ E | ‖x‖ = r
}

.

We define CJ ra(
 × B(r), E) in the same way as CJ ra(
 × B(r),Rn) but we have assumed
that, for every ω ∈ 
, the map ϕω = f ◦ Fω : B(r) → E is compact, i.e. ϕω(B(r)) is a compact
subset of E and Fixϕω ⊂ B(r), for every ω ∈ 
.

As before, with every ϕ ∈ CJ ra(
× B(r), E), we associate the random vector field ϕ̂ : 
×
B(r) � E by putting: ϕ̂(ω, x) = x – ϕ(ω, x). We let

V ra(
 × B(r), E
)

:=
{
ψ : 
 × B(r) � E | ψ = ϕ̂ and ϕ ∈ CJ ra(
 × B(r), E

)}
.

Then we define the map D : V ra(
 × B(r), E) � Z by putting:

D(ψ) =
{
Deg(ψω) | ω ∈ 


}
, (.)

where Deg(ψω) is the deterministic topological degree of ψω (see e.g. [], p.).
The random topological degree defined in (.) has all the properties formulated in The-

orem .. As a standard consequence of the above random degree theory, we can formu-
late:

Theorem . (Random Schauder fixed point theorem) Let X ∈ AR be a closed subset of a
separable Banach space E and let ϕ : 
 × X � X be a random u-operator with Rδ-values
such that ϕω : X � X is compact, for every ω ∈ 
. Then Fixra(ϕ) �= ∅.

Note that Theorem . immediately follows from Corollary ..

Remark . Let us observe that if ϕ(
 × Sn–(r)) ⊂ Sn–(r), for some r > , then condi-
tion (a) in Theorem . can be replaced by the following one:

ϕ(ω, x) ∩ ϕ(ω, –x) = ∅, for every (ω, x) ∈ 
 × Sn–(r).

We recommend [, ] for further formulations of the Borsuk antipodal theorem for mul-
tivalued maps in the deterministic case. All the mentioned results have adequate random
formulations.

10 Application to random differential inclusions
The second application of our fixed point theorems concerns random differential inclu-
sions. Let ϕ : 
 × [, a] ×Rn �Rn be a random u-operator, defined in an analogous way
as above on 
 × [, a] ×Rn.

Definition . A random u-operator ϕ : 
 × [, a] × Rn � Rn with convex, compact
values is called a random u-Carathéodory map if there exists a map μ : 
× [, a] → [,∞)
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such that μ(ω, ·) is Lebesque integrable, μ(·, t) is measurable and ‖ϕ(ω, t, x)‖ ≤ μ(ω, t)( +
‖x‖), for every ω ∈ 
, t ∈ [, a] and x ∈ Rn.

Now, for a given random u-Carathéodory map ϕ : 
 × [, a] ×Rn �Rn and a measur-
able map ξ : 
 →Rn, we shall consider the following Cauchy problem:

(Cϕ,ξ )

⎧
⎨

⎩
x′(ω, t) ∈ ϕ(ω, t, x(ω, t)),

x(ω, ) = ξ(ω),

where the solution x : 
 × [, a] → Rn is a map such that x(·, t) is measurable, x(ω, ·) is
absolutely continuous and the derivative x′(ω, t) is considered w.r.t. t. In what follows, we
shall denote by S(ϕ, ξ) the set of all solutions of (Cϕ,ξ ).

Theorem . If ϕ : 
 × [, a] × Rn � Rn is a random u-Carathéodory map, then
S(ϕ, ξ) �= ∅, for any measurable ξ : 
 →Rn.

For the proof of Theorem ., see [], Theorem (.).
Having a random u-Carathéodory map ϕ : 
 × [, a] × Rn � Rn, for every ω ∈ 
 and

y ∈ Rn, we can consider the following deterministic Cauchy problem:

(Cϕω ,y)

⎧
⎨

⎩
x′(t) ∈ ϕω(t, x(t)) := ϕ(ω, t, x(t)),

x() = y.

It is well known (see [, ]) that the set S(ϕω, y) of all solutions of (Cϕω ,y) is an Rδ-set.
We define the map P : 
 ×Rn � C([, a],Rn), by putting:

P(ω, y) := S(ϕω, y) =
{

x ∈ C
(
[, a],Rn) | x′(t) ∈ ϕω

(
t, x(t)

)
and x() = y

}
. (.)

We can state the following important proposition.

Proposition . Under the above assumptions, the mapping

P : 
 ×Rn � C
(
[, a],Rn)

defined in (.) is a random u-operator.

Proof It is well known (see e.g. [, ]) that P(ω, ·) is u.s.c. with Rδ-values. So, it is sufficient
to show that P is measurable. We shall proceed similarly as in the proof of Theorem .
in [], Theorem (.).

Consider the diagram:

L([, a],Rn)
L


 ×Rn

T ◦

P
◦ C([, a],Rn)
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in which

T(ω, y) :=
{

u ∈ L
(
[, a],Rn)

∣∣∣ u(t) ∈ ϕ

(
ω, t, y +

∫ t


u(τ ) dτ

)}

but, this time, L(u)(t) = y +
∫ t

 u(τ ) dτ . Then P = L ◦ T and again it is sufficient to show that
T is measurable.

For this, we can proceed quite analogously as in the proof of [], Theorem (.). �

Observe that the measurability of the operator P : 
× � C([, a],Rn) says that for
any measurable ξ : 
 → Rn, in view of the Kuratowski-Ryll-Nardzewski selection theo-
rem, there exists a measurable selection η : 
 × Rn → C([, a],Rn) such that η(ω, x) ⊂
P(ω, ξ (ω)). Thus, the map x : 
 × [, a] →Rn defined as follows:

x(ω, t) := η(ω, x)(t) (.)

is a solution of (Cϕ,ξ ).
Note that (.) can be reinterpreted in the sense that deterministic solutions define

random solutions.

Remark . Above, we used two times the following fact from measure theory. If
ξ : 
 → X and ϕ : 
 × X � Y are two measurable maps, then the map ϕ̂ : 
 × X � Y ,
ϕ̂(ω, x) = ϕ(ω, ξ (ω)) is measurable, too.

In fact, we have the diagram:



ξ̂−→
 × X

ϕ

� Y ,

where ξ̂ (ω) = (ω, ξ (ω)). Then ϕ̂ = ϕ ◦ ξ̂ . Observe that, for any measurable D ⊂ 
 × X,
the set ξ̂–(D) is measurable. Indeed, we can assume without any loss of generality that
D = C × B, where C ⊂ 
 and B ⊂ X are measurable. Thus, ξ̂–(D) = C ∩ ξ–(B) and ξ̂ has
the needed property, because ξ is measurable.

Now, for every measurable U ⊂ Y , we have ϕ̂–(U) = ξ̂–(ϕ–(U)). Since ϕ–(U) is mea-
surable, our claim holds true.

Now we shall consider the periodic problem for random differential inclusions. To do
it, we shall use the random topological degree.

For a random u-Carathéodory map ϕ : 
 × [, a] × Rn � Rn, we shall consider the
following periodic problem:

(Qϕ)

⎧
⎨

⎩
x′(ω, t) ∈ ϕ(ω, t, x(ω, t)),

x(ω, ) = x(ω, a).

To study the periodic problem (Qϕ) for such a map ϕ, we shall follow an approach
based on random topological degree theory (for the deterministic case, see e.g. [, ]).
To do it, consider the random operator P : 
 × Rn � C([, a],Rn) defined in (.) (cf.
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Proposition .). Moreover, let us consider the evaluation map ea : C([, a],Rn) → Rn,
ea(x) = x(a). Then the composition

Pa := ea ◦ P : 
 ×Rn �Rn (.)

is called the random Poincaré operator along the trajectories of (Qϕ).
Assume that Fixra(Pa) �= ∅. This implies that the map: P̂ : 
×Rn � C([, a],Rn) given by

P̂(ω, y) := {x ∈ P(ω, y) | x() = x(a) = y} is well defined, i.e. P̂(ω, y) is compact and nonempty.
We claim that P̂ : 
 ×Rn � C([, a],Rn) is measurable. Hence, let A be a closed subset

of C([, a],Rn). Then we get

P̂–(A) = P–(A ∩ ẽ–()
)
,

where ẽ : C([, a],Rn) � Rn, defined by ẽ(x) = x() – x(a), is a continuous map. So P̂ is
measurable and, in view of the Kuratowski-Ryll-Nardzewski selection theorem, there ex-
ists a measurable selection η : 
×Rn → C([, a],Rn) of P̂ which defines a solution of (Qϕ)
by putting:

x : 
 × [, a] →Rn, x(ω, t) := η
(
ω, ξ (ω)

)
(t),

where ξ ∈ Fixra(Pa) (cf. Remark .).
Conversely, if we have a solution x of (Qϕ), then the mapping ξ : 
 →Rn, where ξ (ω) =

x(ω, ), is a fixed point of Pa. Hence, we have proved:

Proposition . Problem (Qϕ) has a solution if and only the random Poincaré operator
Pa : 
 ×Rn �Rn has a random fixed point.

To find a fixed point of Pa, we associate with Pa the random vector field P̃a : 
×Rn �Rn

defined as follows:

P̃a(ω, x) = x – Pa(ω, x).

Now, we can assume without any loss of generality that P̃a ∈ CJ ra(
×Bn,Rn); if not, then
O ∈ P̃a(ω, x), for some ‖x‖ = r and every ω ∈ 
, and so Pa has a fixed point or, equivalently,
our problem (Qϕ) has a solution.

Proposition . can be still improved in the following way.

Proposition . Assume that P̃a ∈ CJ ra(
 × Bn(r),Rn), for some r > . If D(̃Pa) �= , then
problem (Qϕ) has a solution.

In order to show that D(̃Pa) �= , we shall adopt to the random case the guiding potential
method introduced by Liapunov and subsequently developed by Krasnosel’skĭı and others
(see e.g. [, , ], and the references therein).

Definition . A map V : 
 ×Rn →R is called a random potential if the following two
conditions are satisfied:

(a) V (·, x) is measurable, for every x ∈R,
(b) V (ω, ·) is a C-map, for every ω ∈ 
.
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If V : 
 ×Rn →R is a random potential, then we define a random vector field ∂V : 
 ×
Rn →Rn as follows:

∂V (ω, x) :=
(

∂V
∂x

(ω, x), . . . ,
∂V
∂xn

(ω, x)
)

,

for every (ω, x) ∈ 
 ×Rn.

Definition . Let V : 
×Rn →R be a random potential. If, for some r > r, V satisfies
the following condition:

 /∈ ∂V
(

 × Sn–(r)

)
, for every r ≥ r,

then V is called a random direct potential.

Let V : 
 × Rn → R be a random direct potential. Observe that ∂V ∈ CJ ra(
 ×
Bn(r),Rn), for every r ≥ r.

So, by Theorem ., D(∂V ) is well defined and, in view of the homotopy property The-
orem .(d), it is independent of r. Hence, it makes sense to define the index I(V ) of the
random direct potential V , by putting I(V ) = D(∂V ), where Deg(∂V ) in Definition . is
considered for ∂V ∈ CJ ra({ω} × Bn(r),Rn) with r ≥ r and fixed ω ∈ 
.

Some cases of random direct potentials with nonzero index can be found similarly as
for deterministic potentials. We restrict our considerations to the following proposition
(cf. [, ]).

Proposition . If V : 
 ×Rn →R is a random direct potential satisfying

lim‖x‖→∞ V (ω, x) = ∞, for every ω ∈ 
,

then I(V ) = {}.

Proposition . follows immediately from the deterministic case.

Definition . Let ϕ : 
 × [, a] × Rn � Rn be a random u-Carathéodory operator
and let V : 
 × Rn × R be a random direct potential. We say that V is a random guiding
function for ϕ if the following condition is satisfied:

∃r > ∀(ω, t, x) ∈ 
 × [, a] ×Rn with ‖x‖ ≥ r∃y ∈ ϕ(ω, t, x) :
〈
y, ∂V (ω, x)

〉 ≤  or
〈
y, ∂V (ω, x)

〉 ≥ . (.)

Now, we are ready to state the main result of this section.

Theorem . If ϕ : 
 × [, a] ×Rn �Rn is a random u-Carathéodory operator which
possesses a random guiding function V : 
 × Rn → R such that I(V ) �=  (cf. e.g. Proposi-
tion .), then problem (Qϕ) has a solution.
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Sketch of the proof To prove Theorem ., we need a random version of Lemma .
in []. This can be done by making only technical changes in the mentioned lemma.
Then the proof of Theorem . is quite analogous to the proof of Theorem . in [].
Instead of the deterministic topological degree, we use here the random topological degree
presented in Section . �

Remark . For a nonsmooth (e.g. locally Lipschitz) guiding function V , the analogies
of Theorem . can be given by means of the deterministic theorems. For details see [],
Chapter III., [], Section .

Example . For V (ω, x) ≡ V (x) := ‖x‖

 , we have V : Rn → R, ∂V (x) = x,
‖∂V (Sn–(r))‖ = r ≥ r >  and lim‖x‖→∞ = ∞ ⇒ I(V ) = {}. Thus, problem (Qϕ) pos-
sesses, according to Theorem ., a random solution, provided 〈ϕ(ω, t, x), x〉 ≤  or
〈ϕ(ω, t, x), x〉 ≥ , for all ω ∈ 
, t ∈ [, a] and ‖x‖ ≥ r > , where r is a suitable constant.

Finally, we recommend [] for further information concerning random differential in-
clusions. Note that the deterministic case is presented in [], Chapter VI (see also [],
Chapter III.).

Remark . For scalar (n = ) random inclusions, it was shown in [] that the existence
of a pure subharmonic solution xm, where m > , implies the coexistence of subharmonic
solutions of all orders k ∈N, i.e. xk(ω, ) ≡ xk(ω, ka), for every k ∈N.

11 Nonejectivity and its application to multivalued fractals
In the last two sections, fixed point theorems for single-valued maps will be applied for
obtaining multivalued fractals, i.e. fixed points of special operators induced in hyperspaces
or, equivalently, compact subsets of the original spaces which are invariant w.r.t. these
multivalued operators. We will deal separately with (strictly) nonejective fixed points (cf.
[]) and essential fixed points (cf. []).

Firstly, we recall some related notions. As in the first five sections, all topological spaces
are metric, all single-valued mappings are continuous and all multivalued mappings are
compact-valued.

By the Hilbert cube, we understand the subset of the Hilbert space � consisting of all
sequences {xk} with  ≤ xk ≤ /k, k = , , . . . . It is well known that the Hilbert cube is a
compact and convex subset of the �-space.

Observe that the Hilbert cube is homeomorphic to the product space of any countable
infinity of closed bounded positive length intervals. In particular, it is homeomorphic to
the countable product

∏∞
n=[, ]n = [, ]ℵ . Obviously, it has the countably infinite di-

mension.
It will be also convenient to recall some facts about hyperspaces. If (X, d) is a metric

space, then by the associated hyperspace (K(X), dH), we mean here the family K(X) := {A ⊂
X | A is nonempty and compact} of compact subsets of X, endowed with the Hausdorff
metric dH , i.e.

dH (A, B) := max
{

sup
a∈A

(
inf
b∈B

d(a, b)
)

, sup
b∈B

(
inf
a∈A

d(a, b)
)}

.
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It is well known that if X is compact, resp. complete, then so is K(X) (see e.g. []). For
another important implication, let us recall that X is locally continuum-connected if, for
every neighborhood U of each point x ∈ X, there is a neighborhood V ⊂ U of x such that
each point of V can be connected with x by a subcontinuum of U . The following lemma
will play an important role in applications (see [, ]).

Lemma . If X is locally continuum-connected, then K (X) ∈ ANR and if X is locally
continuum-connected and connected, then K (X) ∈ AR.

If X is locally compact, locally connected and connected, then K (X) is a locally compact
AR-space. If X is a nondegenerate Peano’s continuum (i.e. compact, locally connected and
connected), then K (X) is up to a homeomorphism, the Hilbert cube, i.e. a special case of
a compact AR-space. In particular, if X is a compact AR-space, then the same is true for
K(X).

Thus, in view of Lemma ., the Hilbert cube as well as its homeomorphic or retract
images are typical examples of compact AR-spaces.

Since by a multivalued map ϕ : X � Y , we mean here again the one with nonempty,
compact values, it will be convenient to use the notation ϕ : X → K(Y ).

We say that the mapping ϕ : X → K(Y ) is Hausdorff continuous if it is continuous w.r.t.
the metric d in X and the Hausdorff metric dH in K(X).

It is well known (see [–]) that if ϕ : X → K(Y ) is Hausdorff continuous if and only if
it is continuous in the sense of Definition .. Furthermore, if A ⊂ X is a compact subset,
then ϕ(A) :=

⋃
x∈A ϕ(x) ⊂ Y is a compact subset of Y , i.e. ϕ(A) ∈ K(Y ). If ϕ : X → K(Y )

and ψ : X → K(Y ) are continuous, then the same is true for their union ϕ ∪ψ : X → K(Y ),
where (ϕ ∪ ψ)(x) := ϕ(x) ∪ ψ(x), for every x ∈ X.

The following implication, which we state here in the form of a lemma, was proved in
[] (cf. [], Appendix A).

Lemma . If ϕ : X → K(X) is continuous and compact in (X, d), then the induced (single-
valued) hypermap ϕ∗ : K(X) → K(X), where ϕ∗(A) :=

⋃
x∈A ϕ(x), for every x ∈ A, is contin-

uous (in the single-valued setting w.r.t. the Hausdorff metric) and compact in (K(X), dH ).

Definition . ([, ]) We say that a fixed point x ∈ Fix(f ) of f : X → X is ejective
in the sense of Browder w.r.t. V ∈ U(x), where U(x) stands for the family of all open
neighborhoods of x, if for every x ∈ V \ {x}, there exists an integer n = n(x) ≥  such
that

f n(x) = f ◦ · · · ◦︸ ︷︷ ︸
(n–)-times

f (x) ∈ X \ V .

If there exists V ∈ U(x) such that x is ejective in the sense of Browder w.r.t. V , then
x is called ejective in the sense of Browder (briefly, b-ejective). The set of all b-ejective
fixed points of f will be denoted by Fixbe(f ). If x ∈ Fix(f ) \ Fixbe(f ), then x is called b-
nonejective.

Remark . Observe that Definition .(a) differs from the above original definition due
to Browder [, ] in V replaced everywhere by V which we distinguished in Defini-
tion . by the prefix ‘b’.
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Definition . We say that a space X has the nonejective fixed point property (X ∈
NEFPP) if, for every continuous mapping f : X → X, there exists x ∈ Fix(f ) such that
x is b-nonejective, i.e. x ∈ Fix(f ) \ Fixbe(f ).

Browder proved the following nonejective fixed point theorem (see [, ]).

Theorem . An infinite-dimensional convex, compact subset of a Banach space has the
NEFP-property.

Corollary . The Hilbert cube has the NEFP-property.

Remark . Because of finite-dimensional counter-examples (see e.g. []), we know that
an arbitrary compact AR-space has not the NEFP-property. On the other hand, the set X
in Theorem . can be either noncompact, provided e.g. f is a compact mapping, or finite-
dimensional (see again e.g. []).

Theorem . can be generalised in two directions. The first generalisation concerns the
preservation of some fixed point properties under a radial retraction.

Definition . We say that the retraction r : X → A is radial in the point x ∈ A if there
exist an open neighborhood W of x in X such that for every x ∈ W \ A, we have r(x) �= x,
i.e. x /∈ r(W \ A).

Remark . Observe that if intX(A) �= ∅, then any retraction r : X → A is radial in each
point x ∈ intX A.

Hence, let g : A → A be a continuous mapping. Let us associate with g the mapping
f : X → X defined by the formula f := i◦g ◦ r, where r : X → A is a retraction and i : A → X
is the inclusion map. In other words, we have the commutative diagram:

X
f

r

X

A
g

A

i

One can easily check that the following relationships between f and g hold:
(i) f n = f ◦ · · · ◦︸ ︷︷ ︸

(n–)-times

f = i ◦ gn ◦ r, for every integer n ≥ ,

(ii) Fix(f ) = Fix(g),
(iii) Fixbe(f ) ⊂ Fixbe(g).
Because of (iii), we will prove at first the following proposition.

Proposition . If x ∈ Fixbe(g) and the retraction r : X → A is radial in x, then x ∈
Fixbe(f ).

Proof Since r is radial in x ∈ Fixbe(g), there is an open neighborhood W of x in X such
that x /∈ r(W \ A).
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From the ejectivity of x for g , we get an open neighborhood U of x in A such that, for
every x ∈ U \ {x}, there is n = n(x) such that g(x) ∈ A \ U .

Letting V := W ∩ r–(U), we have x ∈ V , where V is an open neighborhood of x in X.
Consequently, for any x ∈ V \ {x}, we see that f (x) = g(r(x)) �= x.

Taking n = n(r(x)), we obtain (cf. (i))

f n(x) =
(
i ◦ gn ◦ r

)
(x) = i

(
gn(r(x)

))
= gn(r(x)

) ∈ A \ U ⊂ X \ r–(U) ⊂ X \ V ,

i.e. x ∈ Fixbe(f ), as claimed. �

As a direct consequence of Proposition . and the inclusion (iii), we can give the fol-
lowing corollary.

Corollary . If the retraction r : X → A is radial in every ejective fixed point x ∈
Fixbe(g), then Fixbe(f ) = Fixbe(g).

In view of Remark ., we have still the following immediate consequence of Proposi-
tion ..

Corollary . If Fixbe(g) ⊂ intX A �= ∅, then Fixbe(f ) = Fixbe(g).

In the following proposition, we formulate sufficient conditions in order the nonejective
fixed points in Theorem ., resp. Corollary ., to be preserved under a radial retraction.

Proposition . If A is a retract of an infinite-dimensional, convex, compact subset X
of a Banach space and g : A → A is a continuous mapping such that Fixbe(g) ⊂ intX A �= ∅,
then g has a nonejective fixed point. The same is true if, in particular, A is an infinite-
dimensional retract of the Hilbert cube [, ]ℵ and Fixbe(g) ⊂ int[,]ℵ A.

Proof According to Theorem ., f := i◦g ◦r : X → X defined as above, admits a nonejec-
tive fixed point x ∈ Fix(f ) \ Fixbe(f ). Furthermore, in view of (ii), we have Fix(f ) = Fix(g)
and, in view of Corollary ., Fixbe(f ) = Fixbe(g). Thus, we can conclude that x must be
a nonejective fixed point of g , i.e. x ∈ Fix(g) \ Fixbe(g).

If A is, in particular, an infinite-dimensional retract of [, ]ℵ then, in view of (ii), we
have Fix(f ) = Fix(g) and, in view of Corollary ., Fixbe(f ) = Fixbe(g). Therefore, since
[, ]ℵ ∈ NEFPP (cf. Corollary .), the same conclusion holds. �

Remark . Observe that the image r(X) of an open retraction r : X → r(X) of
the infinite-dimensional space X need not be infinite-dimensional (e.g. the projec-
tion � : [, ]ℵ → [, ]) and that the infinite-dimensional retraction r : X → r(X), i.e.
dim r(X) = ∞, need not be open (e.g. the deformation d : [, ]ℵ → [, /]ℵ , where
d|[,/]ℵ = id|[,/]ℵ , d|[,]ℵ \[,/]ℵ : [, ]ℵ \ [, /]ℵ → ∂[, /]ℵ , where ∂ denotes
the boundary of [, /]ℵ ). Moreover, since a linear retraction is a continuous surjection,
according to the well known Banach-Schauder theorem, it is an open mapping which can
drop the infinite dimension to a finite dimension. Therefore, even a general linear retrac-
tion is, without an additional restriction, insufficient for preserving the NEFP-property.

In order to avoid this handicap, we should assume that a linear r is still one-to-one. This
namely means that such an r is exactly an isomorphism which preserves a finite dimension.



Andres and Górniewicz Fixed Point Theory and Applications  (2015) 2015:184 Page 26 of 34

Then r is, however, much more than a linear homeomorphism, and there is no need to
have another proposition but Proposition . below.

The second proposition verifies, in particular, the nonejectivity as a topological property,
i.e. its invariance under a homeomorphism. For its proof see [], Proposition .

Proposition . If x ∈ Fix(f ) \ Fixbe(f ) is a nonejective fixed point of a continuous map
f : X → X, then h(x) ∈ Fix(g) \ Fixbe(g) is also a nonejective fixed point of a map g ◦ h =
h ◦ f : h(X) → h(X), where h : X → h(X) is a homeomorphism and h(X) is a homeomorphic
image of X.

Hence, combining Propositions . and ., we can immediately formulate a gener-
alisation of Theorem . as follows.

Theorem . Let A be, up to a homeomorphism, a retract image of an infinite-
dimensional, convex, compact subset X of a Banach space and g : A → A be a continuous
mapping such that

Fixbe(h ◦ g) ⊂ int
h(X)

h(A) �= ∅,

where h, h are respective homeomorphisms. Then g admits a nonejective fixed point, i.e.
[Fix(g) \ Fixbe(g)] �= ∅. The same is true if, in particular, h(A) is an infinite-dimensional
retract of the Hilbert cube h([, ]ℵ ) and

Fixbe(h ◦ g) ⊂ int
h([,]ℵ )

h(A). (.)

In view of Lemma ., the following corollary (for h = h = h– : h(A) → A) of Theo-
rem ., which is at the same time also a corollary of Proposition ., will be sufficient
for applications to the theory of fractals.

Corollary . A homeomorphic image of an infinite-dimensional convex, compact sub-
set of a Banach space has the NEFP-property. In particular (cf. Corollary .), a homeo-
morphic image of the Hilbert cube has the NEFP-property.

Corollary ., jointly with Lemma ., will be now applied to multivalued frac-
tals, considered as nonejective fixed points of the induced special operators (called the
Hutchinson-Barnsley operators) in the hyperspace (K(X), dH ), where X is a Peano’s con-
tinuum.

Hence, let X = (X, d) be a Peano’s continuum, i.e. compact, locally connected and con-
nected metric space and {ϕi : X → K(X); i = , . . . , m} be a system of multivalued continu-
ous maps with compact values.

According to Lemma ., the hyperspace (K(X), dH) is, up to a homeomorphism, the
Hilbert cube. Furthermore, the induced (single-valued) hypermaps ϕ∗

i : K(X) → K(X), i =
, . . . , n, are according to Lemma . continuous as well as their induced union

F∗ :=

( m⋃

i=

ϕ∗
i

)

: K(X) → K(X),

called the Hutchinson-Barnsley operator (see [], [], Appendix A.).
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Hence, applying Corollary ., there exists a nonejective fixed point A ∈ K(X) of F∗,
i.e. F∗(A) = A, which can be immediately reformulated in the form of a theorem as fol-
lows.

Theorem . Let (X, d) be a compact, locally connected and connected metric space
and {ϕi : X → K(X); i = , . . . , m} be a system of continuous multivalued maps with com-
pact values. Then there exists a compact subset A ⊂ X which is positively invariant and
nonejective w.r.t. the Hutchinson-Barnsley mapping

F :=
m⋃

i=

ϕi : X → K(X), i.e. F(A) :=
⋃

x∈A

m⋃

i=

ϕi(x) = A,

and such that (nonejectivity):

∀ε > ∃A ∈ K(X), A �= A, and dH (A, A) < ε :

Fn(A) = F ◦ · · · ◦︸ ︷︷ ︸
(n–)-times

F(A) =

[
⋃

x∈A

m⋃

i=

ϕi(x)

]n

⊂ {
A ∈ K(X) | dH (A, A) < ε

}
, for all n ≥ .

We recommend [] for some examples and further remarks.

12 Essentiality and its application to multivalued fractals
As in the foregoing section, all topological spaces are metric, all single-valued mappings
are continuous and all multivalued mappings are compact-valued.

Let us choose the following notations:

C(X, X) := {f : X → X | f is continuous and compact}

and

C(X, X) :=
{

f ∈ C(X, X) | dim Fix(f ) = 
}

,

where dim(·) stands for the topological (Lebesgue covering) dimension.
We endow these classes with the metric ρ given by

ρ(f , g) := sup
x∈X

d
(
f (x), g(x)

)
.

Obviously, for a compact X, we can take

ρ(f , g) := max
x∈X

d
(
f (x), g(x)

)
.

We say that two mappings f , g : X → X are δ-near if ρ(f , g) < δ. Furthermore, the ho-
motopy h : X × [, ] → X is said to be an ε-homotopy (ε > ) if, for every x ∈ X, the set
{h(x, t) | t ∈ [, ]} has a diameter smaller than ε; if h is an ε-homotopy linking f and g ,
then we say that f and g are ε-homotopic.

The following statement was proved in [].
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Lemma . Let X ∈ ANR be compact and let ε >  be a given number. Then there exists
δ >  such that any two δ-near maps f , g : X → X are ε-homotopic.

Following the standard definition of an essential fixed point in [], we will give a slight
modification of it for an isolated fixed point.

Definition . Let x be an isolated fixed point of f : X → X. We say that x ∈ X is an
essential fixed point of f if, for every open ε-neighborhood U of x, there exists δ = δ(ε) > 
such that any map g : X → X which is δ-near to f has a fixed point in U .

Let us still denote

Ess(f ) :=
{

x ∈ Fix(f ) | x is essential
}

the set of essential fixed points of f .
By an open (ε-)neighborhood U of a point x ∈ X, we understand as usually the set U :=

{x ∈ X | d(x, x) < δ}, for some ε > . Analogously, by an open (δ-)neighborhood U of a
function f ∈ C(X, X), we will understand the set U := {g ∈ C(X, X) | ρ(f , g) < δ}, for some
δ > .

Let us denote by U (x) the set of all open neighborhoods of x ∈ X and by U (f ) the set
of all open neighborhoods of f ∈ C(X, X).

In view of the above notation, Definition . can be easily reformulated as follows: for
every U ∈ U (x), there exists V ∈ U (f ) such that any g ∈ V has a fixed point in U .

We could see in Section  and Section  (cf. also []) that, as very particular cases,
with every compact self-map f : X → X of an arbitrary ANR-space X, we can associate
the local and global topological invariants, namely the fixed point index ind(f ;U ) ∈ Z and
the generalised Lefschetz number �(f ) ∈ Z. Both of them have all the standard properties
like existence, homotopy invariance, normalization, additivity, multiplicity, localization,
excision, etc.

Using Lemma . and the homotopy property of the fixed point index, we can imme-
diately characterize the notion of an isolated essential fixed point on a compact ANR as
follows (in the particular case of a finite polyhedron, it was done in []):

Proposition . If x is an isolated fixed point of the map f : X → X, where X ∈ ANR

is compact, such that the fixed point index ind(f ; V ) �= , for some V ∈ U (x), then x is an
essential fixed point.

Let us also recall the main theorem in [] in the form of proposition.

Proposition . Let Ci, i = , , . . . , be convex closed subsets of a Banach space and let
f : C → C, where C =

⋃n
i= Ci, be a (continuous) compact map. Then, for any sufficiently

small δ > , there exists a continuous map g : C → C which is δ-near to f with a finite
number of fixed points.

Remark . It follows from the proof of [], Theorem ., that the map g is also com-
pact, because its image g(C) is involved in a finite polyhedron which is compact. Moreover,
the homotopy linking f and g can be compact as well.
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Remark . Proposition . holds, in particular, for any homeomorphic image of the
Hilbert cube, i.e. for C ≈ [, ]ℵ , which is a special compact AR-space.

Now, let f : X → X be a continuous map, where X is an arbitrary ANR-space, i.e. X ∈
ANR. The following proposition is crucial for obtaining theoretical results about essential
fixed points on noncompact ANR-spaces.

Proposition . Let X be an arbitrary ANR and f : X → X be a compact map. Assume
further that x ∈ Fix(f ) is an isolated point such that ind(f , V ) �= , for an open neighbor-
hood V ∈ U (x) of x in X. Then x ∈ Ess(f ).

In order to prove Proposition ., we need the following two lemmas. The first is self-
evident, while the second one was proved in [].

Lemma . Let U be an open subset of a normed space E and let K ⊂ U be a compact
subset of U . Then there exists an ε >  such that, for every x ∈ K , we see that B(x, ε) ⊂ U ,
where

B(x, ε) =
{

y ∈ U | ‖x – y‖ < ε
}

.

Let X ∈ ANR and U be an open subset of a normed space such that X ⊂ U . Further-
more, let there exist a retraction map r : U → X. With every compact map f : X → X, we
associate the map f̃ : U → U by putting

f̃ = i ◦ f ◦ r,

where i : X → U is the inclusion map. It is evident that Fix(f ) = Fix(f̃ ).

Lemma . If x ∈ Ess(f̃ ), then x ∈ Ess(f ).

Proof of Proposition . The first step. We assume that the whole set X = U is an open
subset of a normed space. By the hypothesis, we have assumed that ind(f , V ) �= . Let K =
f (U ) ⊂ U and choose ε > , according to Lemma .. If g : X → X is ε-near to f then, for
every x ∈ X, we see that g(x) ∈ B(f (x), ε). Thus, we can define a homotopy h : U × [, ] →
U by putting

h(x, t) = ( – t)f (x) + tg(x).

Obviously, h is a compact homotopy linking f and g and Fix(h) ∩ V is a compact set.
Consequently, we obtain ind(g, V ) = ind(f , V ) �=  by which g has a fixed point in V .

The second step. We can assume without any loss of generality that X is a retract of
an open subset U in a normed space. Let r : U → X be a retraction map. If f : X → X is a
compact map, then we will consider f̃ : U → U as defined above. Assume that x ∈ Fix(f ) =
Fix(f̃ ) and that ind(f , W ) �= , where W ∈ U (x) is an open neighborhood of a fixed point
x ∈ Fix(f ). From the commutativity property of the fixed point index, it follows that

ind(f , W ) = ind
(
f̃ , r–(W )

) �= .

Our proposition then follows from the first step when applying Lemma .. �
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On the basis of Proposition ., we were able to give in [] the following two theorems.

Theorem . Let X ∈ AR and f : X → X be a compact map. Assume that the set Fix(f )
of fixed points of f is such that dim Fix(f ) = . Then f admits an essential fixed point, i.e.
Ess(f ) �= ∅.

Theorem . Let X ∈ ANR and let f ∈ C(X, X) be a compact map such that �(f ) �= .
Then f admits an essential fixed point, i.e. Ess(f ) �= ∅.

As a consequence of Proposition . (cf. Remark .), and Theorem ., we can still
give the following theorem.

Theorem . Let C be a homeomorphic image of the Hilbert cube, i.e. for C ≈ [, ]ℵ ,
and f : C → C be a continuous map. Then, for any sufficiently small δ > , there exists a
continuous map, say g : C → C, which is δ-near to f and admits an essential fixed point,
i.e. Ess(g) �= ∅.

Because of Theorem ., we can speak about an essential fixed point of a δ-near map g
as an essential pseudo-fixed point of the original map f , while the fixed point of the original
map f which belongs to an ε-neighborhood of an essential pseudo-fixed point can then
be called a pseudo-essential fixed point.

Along these lines, Theorem . can be simply reformulated as follows.

Theorem . Under the assumptions of Theorem ., the given continuous self-map
f : C → C admits an essential pseudo-fixed point.

Now, Theorem . and Theorem . can be applied to multivalued fractals.
Hence, let (X, d) be a locally continuum-connected metric space and

{
ϕi : X → K(X) | i = , , . . . , n

}

be a system of multivalued, continuous, compact maps. According to Lemma . and
Lemma ., the hyperspace (K(X), dH ) ∈ ANR and the induced (single-valued) hyper-
maps ϕ∗

i : K(X) → K(X), i = , , . . . , n, where ϕ∗
i (A) :=

⋃
x∈A ϕi(x), for every A ∈ K(X),

are continuous and compact. Obviously, the same is true for their induced (again single-
valued) union

F∗ :=

( n⋃

i=

ϕ∗
i

)

: K(X) → K(X),

where

F∗(A) :=
⋃

x∈A

n⋃

i=

ϕi(x),

for every A ∈ K(X), called the Hutchinson-Barnsley hyperoperator (cf. [], [], Ap-
pendix A.).
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Unlike in the original space (X, d), in the hyperspace (K(X), dH) the generalised Lefschetz
number �(F∗) of F∗ is rather surprisingly (observe that K(X) ∈ ANR, but not necessarily
K(X) /∈ AR) nontrivial, i.e. �(F∗) �=  (see []). Therefore, if dim Fix(F∗) =  then, in view
of Theorem ., there exists at least one essential fixed point, say A ∈ K(X), of F∗, i.e.
Ess(F∗) �= ∅. Let us note that, according to a very special case of Corollary ., we have
guaranteed that Fix(F∗) �= ∅, even without an additional assumption that dim Fix(F∗) = ,
but not necessarily that Ess(F∗) �= ∅.

Observe that every essential fixed point A ∈ K(X) of F∗ can be at the same time in-
terpreted as a multivalued fractal, i.e. a compact subset A ⊂ X of X which is positively
invariant w.r.t. the multivalued Hutchinson-Barnsley mapping

F :=
n⋃

i=

ϕi : X → K(X),

i.e. A = F(A), and (essentiality), for every open ε-neighborhood

U ∈ {
A ∈ K(X) | dH (A, A) < ε

}

of A ∈ K(X), there exists δ = δ(ε) >  such that any Hutchinson-Barnsley mapping

G :=
n⋃

i=

ψi : X → K(X)

which is δ-near to F , i.e.

sup
A∈K (X)

dH
(
F(A), G(A)

)
< δ,

admits a positively invariant compact subset, say A ⊂ X, of X w.r.t. G, i.e. A = G(A), such
that A ∈ U . Obviously, if all generating multivalued maps ψi : X → K(X) are δ-near in the
metric

ρ(ϕ,ψ) := sup
A∈K (X)

dH
(
ϕ(A),ψ(A)

)

to ϕi : K → K(X), respectively, then G is δ-near to F as above.
Hence, following the terminology introduced in [] (cf. also [], Appendix A.), we can

give the following definition.

Definition . An essential fixed point A ∈ K(X) of the Hutchinson-Barnsley hyper-
operator F∗ : K(X) → K(X), i.e.

A ∈ Ess
(
F∗) =

{
A ∈ K(X) | A ∈ Fix

(
F∗) is essential

}

is called an essential multivalued fractal of the system

{
(X, d) | ϕi : X → K(X), i = , , . . . , n

}
.
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Roughly speaking, if the given system

{
(X, d) | ϕi : X → K(X), i = , , . . . , n

}

possesses an essential multivalued fractal A ∈ K(X), then each infinitesimal continuous
deformation

{
(X, d) | ψi : X → K(X), i = , , . . . , n

}

admits a multivalued fractal which is sufficiently ‘close’ to A.
We are ready to formulate the application of Theorem . to multivalued fractals in

terms of Definition ..

Theorem . Let (X, d) be a locally continuum-connected metric space and ϕi : X →
K(X), i = , , . . . , n, be multivalued, compact, continuous maps. Assume, furthermore, that
dim Fix(F∗) = , where dim stands for the topological dimension and F∗ : K(X) → K(X) is
the Hutchinson-Barnsley hyperoperator, where

F∗(A) :=
⋃

x∈A

n⋃

i=

ϕi(x), for every A ∈ K(X).

Then the system {(X, d);ϕi : X → K(X), i = , , . . . , n} possesses an essential multivalued
fractal in the sense of Definition ..

Unfortunately, the zero dimensionality requirement dim Fix(F∗) =  in Theorem . is
rather difficult to verify in general. On the other hand, we have to our disposal many metric
fixed point theorems guaranteeing the uniqueness; for instance, various generalizations
of the Banach contraction principle for weak contractions, etc. One of them was applied
in [] for obtaining a unique metric multivalued fractal, provided (X, d) is a complete
metric space and the multivalued maps ϕi : X → K(X) of a given system satisfy the weak
contractivity condition:

dH
(
ϕi(x),ϕi(y)

) ≤ hi
(
d(x, y)

)
, for all x, y ∈ X, i = , , . . . , n, (.)

where h : [,∞) → [,∞) is a continuous nondecreasing function such that
(i) h() =  and  < h(t) < t, for t > ,

(ii) limt→∞ t – h(t) = .
Hence, under these assumptions, the zero dimensionality requirement dim Fix(F∗) can be
trivially satisfied and, as a direct consequence of Theorem ., we can give its following
corollary.

Corollary . Let (X, d) be a locally continuum-connected and complete metric space.
Let ϕi : X → K(X), i = , , . . . , n, be multivalued, compact weak contractions satisfying
(.). Then the system {(X, d);ϕi : X → K(X), i = , , . . . , n} possesses a unique essential
multivalued fractal in the sense of Definition ..
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Remark . The (finite) system of multivalued, compact weak contractions in Corol-
lary . can be replaced, for the existence of unique essential multivalued fractals, by
those of multivalued, compact, eventual contractions or multivalued, compact, shrinking
maps, respectively. Let us recall that ϕ : X → K(X) is a multivalued eventual contraction
if, for some k ∈N, its kth iterate ϕk : X → K(X) is a contraction, i.e.

dH
(
ϕk(x),ϕk(y)

) ≤ Ld(x, y), L ∈ [, ), (.)

for all x, y ∈ X. A multivalued map ϕ : X → K(X) is shrinking if it satisfies the inequality

dH
(
ϕ(x),ϕ(y)

)
< d(x, y), (.)

for all x, y ∈ X, where x �= y. Multivalued contractions obviously satisfy all the inequalities
(.), (.), (.).

In view of the above arguments, as an immediate consequence of Lemma . and
Lemma ., we can also give the following application of Theorem ..

Theorem . Let (X, d) be a Peano’s continuum and ϕi : X → K(X), i = , , . . . , n, be
multivalued, continuous maps. Then, for any sufficiently small δ > , there exist multival-
ued, continuous maps ψi : X → K(X), i = , , . . . , n, which are δ-near in the metric

ρ(ϕ,ψ) := sup
A∈K (X)

dH
(
ϕ(A),ψ(A)

)

to ϕi, i = , , . . . , n, respectively, such that the system {(X, d) | ψi : X → K(X), i = , , . . . , n}
possesses an essential multivalued fractal in the sense of Definition ..

Roughly speaking, in view of Theorem ., under the assumptions of Theorem .,
the system {(X, d) | ϕi : X → K(X), i = , , . . . , n} admits an essential multivalued pseudo-
fractal, and subsequently in its ε-neighborhood also a pseudo-essential multivalued frac-
tal.

We recommend [] for some examples and further remarks.
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