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Abstract

We prove a convergence theorem of the Mann iteration scheme for a uniformly
L-Lipschitzian asymptotically demicontractive mapping in a CAT(k) space with k > 0.
We also obtain a convergence theorem of the Ishikawa iteration scheme for a
uniformly L-Lipschitzian asymptotically hemicontractive mapping. Our results provide
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2013:381715,2013).
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1 Introduction

Roughly speaking, CAT(x) spaces are geodesic spaces of bounded curvature and gen-
eralizations of Riemannian manifolds of sectional curvature bounded above. The pre-
cise definition is given below. The letters C, A, and T stand for Cartan, Alexandrov, and
Toponogov, who have made important contributions to the understanding of curvature
via inequalities for the distance function, and « is a real number that we impose it as the
curvature bound of the space.

Fixed point theory in CAT (k) spaces was first studied by Kirk [1, 2]. His work was fol-
lowed by a series of new works by many authors, mainly focusing on CAT(0) spaces (see
e.g., [3-25]). Since any CAT(x) space is a CAT(x’) space for k' > «, all results for CAT(0)
spaces immediately apply to any CAT(«) space with k < 0. However, there are only a few
articles that contain fixed point results in the setting of CAT(«) spaces with « > 0, because
in this case the proof seems to be more complicated.

The notion of uniformly L-Lipschitzian mappings, which is more general than the no-
tion of asymptotically nonexpansive mappings, was introduced by Goebel and Kirk [26]. In
1991, Schu [27] proved the strong convergence of Mann iteration for asymptotically non-
expansive mappings in Hilbert spaces. Qihou [28] extended Schu’s result to the general
setting of asymptotically demicontractive mappings and also obtained the strong conver-
gence of Ishikawa iteration for asymptotically hemicontractive mappings. Recently, Kim
[29] proved the analogous results of Qihou in the framework of the so-called CAT(0)
spaces. Precisely, Kim obtained the following theorems.

Theorem A Let (X, p) be a complete CAT(0) space, C be a nonempty bounded closed con-
vex subset of X, and T : C — C be a completely continuous and uniformly L-Lipschitzian
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asymptotically demicontractive mapping with constant k € [0,1) and sequence {a,} in
[1,00) such that Y - (a% - 1) < 0. Let {a,} be a sequence in [¢,1 — k — €] for some € > 0.
Given x; € C, define the iteration scheme {x,} by

X1 = 1 =), ® o, T"x,, n>1.
Then {x,} converges strongly to a fixed point of T

Theorem B Let (X, p) be a complete CAT(0) space, let C be a nonempty bounded closed
convex subset of X, and let T : C — C be a completely continuous and uniformly L-Lip-
schitzian asymptotically hemicontractive mapping with sequence {a,} in [1,00) such that

Y o (ay —1) < 0o. Let {ay}, {Ba} C [0,1] be such that ¢ < o, < B, < b for some ¢ >0 and

be (0, 1L

). Given x, € C, define the iteration scheme {x,} by

K1 = (L — ), @ 0y Tnym

Yn = 1- ﬂn)xn @ B T"%,, n=>1
Then {x,} converges strongly to a fixed point of T.
In [29], the author raised the following problem.

Problem Can we extend Theorems A and B to the general setting of CAT (k) spaces with

Kk >07?

The purpose of the paper is to solve this problem. Our main discoveries are Theo-
rems 3.2 and 3.6.

2 Preliminaries

Let (X, p) be a metric space. A geodesic path joining x € X to y € X (or, more briefly, a
geodesic from x to y) is a map ¢ from a closed interval [0,/] C R to X such that ¢(0) = x,
c(l) =y, and p(c(2),c(t)) = |t = ¢| for all ¢,¢' € [0,{]. In particular, ¢ is an isometry and
p(x,y) = 1. The image ¢([0,/]) of ¢ is called a geodesic segment joining x and y. When it is
unique this geodesic segment is denoted by [, y]. This means that z € [x,] if and only if
there exists o € [0,1] such that

plxz) = (1-a)pxy) and p(y2)=apl,y).

In this case, we write z = ax @ (1 — a)y. The space (X, p) is said to be a geodesic space
(D-geodesic space) if every two points of X (every two points of distance smaller than D)
are joined by a geodesic, and X is said to be uniquely geodesic (D-uniquely geodesic) if
there is exactly one geodesic joining x and y for each x,y € X (for x,y € X with p(x,y) < D).
A subset C of X is said to be convex if C includes every geodesic segment joining any two
of its points. The set C is said to be bounded if

diam(C) := sup{,o(x,y) (X, € C} < 00.

Now we introduce the model spaces M, for more details on these spaces the reader is
referred to [30, 31]. Let n € N. We denote by E” the metric space R” endowed with the
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usual Euclidean distance. We denote by (-|-) the Euclidean scalar product in R”, that is,
(xly) =x191 + -+ + XY, wherex=(x1,...,%,),5 = V1., ¥n)-

Let S” denote the n-dimensional sphere defined by
S = {x =(X1y.. . %ne1) € R (x]) = 1},

with metric dgsn (x,y) = arccos(x|y), x,y € S".

Let E™! denote the vector space R"*! endowed with the symmetric bilinear form which
associates to vectors u = (u1,...,u,,1) and v = (vy,...,v,,1) the real number (u|v) defined
by

n
(u|v) = —Up1Vps1 + Z uivi.
i=1

Let H” denote the hyperbolic n-space defined by
H” = {u = (U1, Upe1) € E™ 2 (uu) = =1, 101 > 0},
with metric dy» such that
coshdyn(x,y) = —(x|y), x,yeH".

Definition 2.1 Given « € R, we denote by M the following metric spaces:
(i) if & =0 then M is the Euclidean space E”;
(ii) if ¥ > 0 then M is obtained from the spherical space S” by multiplying the distance
function by the constant 1/./k;
(iii) if & < O then M is obtained from the hyperbolic space H" by multiplying the
distance function by the constant 1/,/—«.

A geodesic triangle A\ (x,y,z) in a geodesic space (X, p) consists of three points %, y, z in
X (the vertices of A) and three geodesic segments between each pair of vertices (the edges
of A). A comparison triangle for a geodesic triangle A(x, y, z) in (X, p) is a triangle A (%, 7, Z)
in M? such that

Py =dyp2®3), P02 =dpp (G2 and p(ex) =dyp 5 3).

If k < 0 then such a comparison triangle always exists in M?2. If k > 0 then such a triangle
exists whenever p(x,y) + p(y,2) + p(z,%) < 2D,, where D, = w//k. A point p € [x,)] is
called a comparison point for p € [x,y] if p(x,p) = dM,% (x,p).

A geodesic triangle A(x,y,z) in X is said to satisfy the CAT(«) inequality if for any p,q €
A(x,,z) and for their comparison points p,7 € A(X,y,z), one has

,0(19; q) = dME (ﬁ’ 5)

Definition 2.2 If ¥ <0, then X is called a CAT (k) space if X is a geodesic space such that
all of its geodesic triangles satisfy the CAT(«x) inequality.
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If €« > 0, then X is called a CAT(k) space if X is D, -geodesic and any geodesic triangle
A(x,y,2z) in X with p(x, ) + p(y,2) + p(z,x) < 2D, satisfies the CAT (k) inequality.

Notice that in a CAT(0) space (X, p), if x, ¥,z € X then the CAT(0) inequality implies

1 1 1 1 1
N) pX(x-y@®-z) < =p2x, 2020, 2) — — p2(,2).
(CN) p(x 2y®ZZ>_2p(xy)+2p(xZ) na »,2)
This is the (CN) inequality of Bruhat and Tits [32]. This inequality is extended by Dhom-
pongsa and Panyanak [9] as

(CN*)  p? (x, l-a)ya® ozz) <1 -a)p(x,y) + ap®(x,2) —a(l - a)p*(y,2)

foralla € [0,1] and %, y,z € X. In fact, if X is a geodesic space then the following statements
are equivalent:
(i) X isa CAT(0) space;
(if) X satisfies (CN);
(iii) X satisfies (CN*).
Let R € (0, 2]. Recall that a geodesic space (X, p) is said to be R-convex for R [33] if for any
three points x,y,z € X, we have

0> (x, l-a)ya® az) <(1- oz)pz(x,y) +oap’(x,z) — ga(l - a)p20/, z). (1)

It follows from (CN*) that a geodesic space (X, p) is a CAT(0) space if and only if (X, p)
is R-convex for R = 2. The following lemma generalizes Proposition 3.1 of Ohta [33].

Lemma 2.3 Let k be an arbitrary positive real number and (X, p) be a CAT (k) space with

diam(X) < ”izf;” for some n € (0,7/2). Then (X, p) is R-convex for R = (7w — 2n) tan(n).

Proof Let x,7,z € X. Since diam(X) < #, px,9) + p(x, 2) + p(¥,2) < 2D, where D, = %
Let A(x,y,z) be the geodesic triangle constructed from x, y, z and Az, ¥,Z) its comparison
triangle. Then

p(x,y) = dyp (%), px,2)=d\p(x,2) and p(,2) =dype(,2). (2)
It is sufficient to prove (1) only the case of « = 1/2. Let a = ds2(%,%), b = ds2(%,2), ¢ =

ds2(y,2)/2, and d = ds2 (%, 35 %2) and define

_2(1, 1.5 5
f(u,b,c).:c—2<§a +§b —a’).

By using the same argument in the proof of Proposition 3.1 in [33], we obtain
N S 1 __ 1 - R 1 _ -
dz (x, 7 ® Ez) < Edéz (x,y) + Edéz(x,z) - (5) (Z)déZ ¥, 2),
where R = (7 — 2n) tan(n). This implies that

1. 1. 1 .1 _ R\ /1 _
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By (2) and (3), we get

1 1 1 1 R 1
Y P SO I L2 (BN L) 2
P (x,zyGBZZ)_zp (x,y)+2p (x,2) (2)(4)/) ,2).
This completes the proof. d

The following lemma is also needed.

Lemma 2.4 Let {s,} and {t,} be sequences of nonnegative real numbers satisfying
Sps1 <Sp+t, forallmeN.

Ifzzil t, < 00 and {s,} has a subsequence converging to 0, then lim,_, » s, = 0.

Definition 2.5 Let C be a nonempty subset of a CAT(x) space (X,p)and T: C — Cbea
mapping. We denote by F(T) the set of all fixed points of T, i.e., F(T) = {x € C : x = Tx}.
Then T is said to
(i) be completely continuous if T is continuous and for any bounded sequence {x,} in
C, {Tx,} has a convergent subsequence in C;
(i) be uniformly L-Lipschitzian if there exists a constant L > 0 such that

,o(T”x, T”y) <Lp(x,y) forallx,ye CandallneN;

(iii) be asymptotically demicontractive if F(T) # ¢ and there exist k € [0,1) and a
sequence {a,} with lim,_, o @, =1 such that

p*(T"x,p) < ayp*(x,p) + kp*(x, T"x) forallxe C,pe F(T)and n e N;

(iv) be asymptotically hemicontractive if F(T) # ¥ and there exists a sequence {a,} with
lim,,_, s @, = 1 such that

pz(T”x,p) <a.p*(x,p) + pz(x, T”x) forallx e C,pe F(T)and n e N.

It follows from the definition that every asymptotically demicontractive mapping is
asymptotically hemicontractive. For more details as regards these classes of mappings the
reader is referred to [27, 28].

Let C be a nonempty convex subset of a CAT(x) space (X, p) and T : C — C be a map-
ping. Given x; € C.

Algorithm 1 The sequence {x,} defined by

Xn+l = (1 - an)xn D oy Tnym

Yn=1=B)x, ® BT "%y, n=1,
is called an Ishikawa iterative sequence (see [34]).

If B, = 0 for all # € N, then Algorithm 1 reduces to the following.
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Algorithm 2 The sequence {x,} defined by
X1 = A=), ® o, T"x,, n>1,
is called a Mann iterative sequence (see [35]).

3 Main results

We first discuss the strong convergence of Mann iteration for uniformly L-Lipschitzian
asymptotically demicontractive mappings. The following lemma follows immediately
from Lemma 6 of [29] and [30], p.176.

Lemma 3.1 Let k > 0 and (X, p) be a CAT(«) space with diam(X) < ”3;’” for some 1 €

(0,7/2). Let C be a nonempty convex subset of X, T : C — C be a uniformly L-Lipschitzian
mapping, and {o,}, {B.} be sequences in [0,1]. Given x; € C, define the iteration scheme
{xn} by

Xn+l = (1 - an)xn D a, Tnym

Yn=1=Bn)xn ® BuT "%y, n=1
Then
o, Ix,) < p(xn, T"xn) + L(l +2L + Lz)p(xn_l, T"_lxn_l)
foralln>1.
The following theorem is one of our main results.

Theorem 3.2 Let k > 0 and (X, p) be a CAT (k) space with diam(X) < i\ﬂg"for some n €

(0,7/2). Let C be a nonempty closed convex subset of X, and T : C — C be a completely
continuous and uniformly L-Lipschitzian asymptotically demicontractive mapping with
constant k € [0,1) and sequence {a,} in [1,00) such thaty .. (a2 —1) < oc. Let {a,} be a
sequence in [e,R/2 — k — €] for some ¢ > 0 where R = (7 — 2n)tan(n). Given x; € C, define
the iteration scheme {x,} by

K1 = 1 — )y @ o, T"x,, n>1.
Then {x,} converges strongly to a fixed point of T
Proof Letp € F(T). By (1), we have

p* (X1, p) < (L= ) * (@, p) + 0 (T"%s, p) — 12_3%(1 — ) 0% (% T"%,).
It follows from the asymptotically demicontractiveness of T that

0> s, p) < (L= ) P> (X0 p) + [ @0 s ) + kp? (0, T" %) |

- gan(l - an)pz(xn: Tnxn)
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R R
= p* @ p) + (@ — 1) p* (0, p) — <5 %= k) 2 (%, T",)

< P p) + (@) — 1) p° (%, p) -t (g —a, - k) P2 (% T"%y). (4)
Since ¢ <, <R/2 -k — ¢, we have ¢ < R/2 —«a,, — k. Thus,
&2 <, (R/2 — ot — k). (5)
By (4) and (5), we have

P 1, 0) < 0 (K ) + (“i - 1)/02(95;4,}9) -&%p? (xm Tnxn)

(@’ -1)

P —&2p? (%ns T”xn). (6)

< p*(xnp) +

Therefore,

2@ -1)

%% (0, T"%4) < 0* @) — P> Kns1,0) + ”

Since Y o2,(a% — 1) < 00, Y o2, p*(xs, T"x,) < 00, which implies that lim,_ oo p(%y,
T"x,) = 0. By Lemma 3.1, we have

lim p(x,, Tx,) = 0. (7)

n—00

Since T is completely continuous, {7x,} has a convergent subsequence in C. By (7), {«,}
has a convergent subsequence, say x,, — g € C. Moreover,

0(q, Tq) < p(q, %) + P Ky T, ) + p(Txy, Tg) > 0 as k — oo,

That is g € F(T). It follows from (6) that

72(a? -1)
P> (Xns1,0) < P* (X p) + ——.
4k
Since Y .7, (a2 — 1) < 00, by Lemma 2.4 we have x, — g. This completes the proof. O

Corollary 3.3 (Theorem 7 of [29]) Let (X, p) be a CAT(0) space, C be a nonempty bounded
closed convex subset of X, and T : C — C be a completely continuous and uniformly
L-Lipschitzian asymptotically demicontractive mapping with constant k € [0,1) and se-
quence {a,} in [1,00) such that y_,,(a% —1) < co. Let {a,} be a sequence in [¢,1 -k — €] for
some ¢ > 0. Given x, € C, define the iteration scheme {x,} by

X1 = (L= o), @ @, T"x,, 1> 1
Then {x,} converges strongly to a fixed point of T

Proof It is well known that every convex subset of a CAT(0) space, equipped with the in-
duced metric, is a CAT(0) space. Then (C, p) is a CAT(0) space and hence it is a CAT(x)



Panyanak Fixed Point Theory and Applications (2015) 2015:186 Page 8 of 12

space for all ¥ > 0. Notice also that C is R-convex for R = 2. Since C is bounded, we can

choose n € (0,77/2) and « > 0 so that diam(C) < ”6;—". The conclusion follows from The-

orem 3.2. 0

Next, we prove the strong convergence of Ishikawa iteration for uniformly L-Lipschi-
tzian asymptotically hemicontractive mappings. The following lemmas are also needed.

Lemma 3.4 Let k > 0 and (X, p) be a CAT(x) space with diam(X) < &ﬁ:” for some n €
(0,7/2). Let R = (7 — 2n)tan(n), C be a nonempty convex subset of X, and T : C — C be a
uniformly L-Lipschitzian and asymptotically hemicontractive mapping with sequence {a,,}
in [1,00). Given x; € C, define the iteration scheme {x,} by

Xp+l = (1 - Oln)xn D oy, T"J’m

V= 1= Bu)xy ® BuT"xs, n=>1,
where {a,} and {B,} are sequences in [0,1]. Then the following inequality holds:
2 2
P> X1, p) < [1+ &tu(@n — D)1 + anfB) | 0* (%, p)

— P |:§(1 - Bu)A +ay) - (dn + Lzﬁﬁ):|/02 (xm Tnxn)

R
- an[gu —ay) - (1- ﬂn)}ﬁ(xm T"yy)

forallp e F(T).
Proof Letp € F(T). By (1), we have
2 2 2 n R 2 n
p” 1, p) < (1= 0n) o™ (%4, p) + €0 (T yn;p) - Ean(l — )P (xnr T yn) 8)
and
2 2 2 n R 2 n
00w p) < A= Bn)p" (%, p) + Bup (T xn’p) - E,Bn(l - Bulp (xm T xn)' )
Since T is asymptotically hemicontractive,
P2 (T"Y,p) < @ W) + P> (Vr T"Vn) (10)
and
P> (T" %0 P) < A Xy p) + > (X, T" ). (11)
It follows from (9) and (11) that
Pz(ymp) <(1- ,Bn)/)z(xml?) + Bu [ﬂnpz(xn’p) + :02 (xnr Tnxn)]
R 2 n
- Eﬂn(]‘ - Bup (xm T xn)

= (1 + Bulan - 1))/02(me) + B <1 - g(l - ﬂn))pz(xm Tnxn)' (12)
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Substituting (12) into (10) and using (1), we get

PZ(T"ymP) =ay (1 + Bula, — 1)),02(me)

+ auPy <1 - 123(1 - ﬁ,,)) 0% (%> T"%0) + 0> (Vs T" V)

< au(1+ Bulan — 1)) p* (s P) + AP (1 - g(l - ,Bn)> 07 (s T"%n)
+ (L= B0 (% T"90) + Bup® (T %, T"yn)
- gﬂn(l = Bu)p* (%, T"%1)
< ay(1+ Bulan - 1)) p* (% p)
+ [anﬂn @SB~ - ﬁn>]p2(xn, T"%,)
+ (1= B> (% T"Yn) + BuL? 0 (s V)
< ay(1+ Bulan - 1)) p* (%, p)
; [anﬁn @y (- B) = By )+ ﬂst}pz(xn, T"s,)
+ (L= B0 (% ") (13)

Substituting (13) into (8), we obtain

Pz(xml»P) <(1- an)pz(xmp) +apay (1 + Bu(an - 1)):02(9571!17)

R R
+ oy [anﬂn =@y (L= ) = By (L= B,) + ﬁsﬁ]pz(xn, T"x,)

R
+ (1= Ba) 0> (%, T"9n) — Ean(l = an) > (%, T"y)
= [1 +oy(a, - 1)1+ ﬂnﬁn)]pz(xmp)

- anﬁn |:§(1 - /3,,)(1 + an) - (dn + Lzﬂz)j|,02 (xn; T"xn)
R ) .
- an[E(I —ay) - (1= ﬁn)i|;0 (% T"n)-

This completes the proof. d

Lemma 3.5 Let « > 0 and (X, p) be a CAT(«) space with diam(X) < &ﬁ_” for some
n € (0,7/2). Let C be a nonempty convex subset of X, and T : C — C be a uniformly L-Lip-
schitzian and asymptotically hemicontractive mapping with sequence {a,} in [1,00) such
thaty_"2 (a,—1) < 00. Let {a,}, {Ba} C [0,1] be such that % < 1—22 where R = (1 —2n) tan(n)
and a,, By, € (&, b] for some ¢ >0 and b € (0, 7‘132”%%). Given x; € C, define the iter-
ation scheme {x,} by

e = (1 —ap)x, ® oy T"J’m

Yn = (1 - ,Bn)xn ® ,Bn Tnxm n>1
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Then
lim p(x,, Tx,) = 0. (14)
n— o0

1ﬂn<R

Proof First, we prove that lim,,_, » p(x,, T"x,) = 0. Since , by Lemma 3.4 we have

,02(xn+1119) - pz(xn)p) <aula,-1)1+ ﬂnﬂn)pz(xmp)

R
— By |:§(1 - B +ay) - (ﬂn + Lzﬂﬁ)]pz (xn; Tnxn)-
Since {, (1 + @, B,) p* (x4, p)}32, is a bounded sequence, there exists M > 0 such that
P> (i1, 0) = P° (% ) < (an — )M
R
- an,Bn |:§(1 - /3,,)(1 + 61,,) - (an + Lz/gy%):lpz (xm Tnxn)' (15)

Let D = R(1-b) - (1+L%*b?) > 0. Since lim,,_, o a,, = 1, there exists a natural number N such
that

S0 B0+ @) (4 2B 2 S0+ @) (ay +25) = 5

>0 (16)

for all # > N. Suppose that lim,_, », p(x,, T"x,) # 0. Then there exist &y > 0 and a subse-
quence {x,,} of {x,} such that

0> (xni, T""x,,i) > &o. 17)

Without loss of generality, we let n; > N. From (15), we have
R 202\ | 2 " 2 2
| 5 (1=B)(1+an) - (an+L?B) |0* (%0 T"%n) < (@n—1)M+ p* (%, p) — P> (K11, P).

Then

" R
Z anlﬂnl |:§(1 - Ignl)(l + ﬂnl) - (anl + LZ,BZI)];OZ (xnl; Tnlxnl)
I=1

= Zt amﬂm[g(l - ,Bm)(l + am) - (ﬂm + Lzﬂyzn)]pz (xm: mem)

m=n1

< Z DM + p2(%ny, ) — 0* (%11, P)-

m=n1

From this, together with (16), (17) and the fact that ¢ < «,, < B,,, we obtain

D ”"
ioe? k0 < ) (= DM+ p* (@) = P> @nyo1, ) (18)
m=ny
If we take i — 0o, the right side of (18) is bounded while the left side is unbounded. This
is a contradiction. Therefore lim,,_, - p(x,, T"x,) = 0, and hence lim,,_, » p(x,,, T%,) = 0 by

Lemma 3.1. O
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Theorem 3.6 Let k > 0 and (X, p) be a CAT(x) space with diam(X) < &ﬁ for some
n € (0,7/2). Let C be a nonempty closed convex subset of X,and T : C — C be a completely
continuous and uniformly L-Lipschitzian asymptotically hemicontractive mapping with se-
quence {a,} in [1,00) such that y .- (a, —1) < 0c. Let {a,}, {Bn} C [0,1] be such that % <
§ where R = ( — 2n)tan(n) and oy, B, € [, b] for some ¢ >0 and b € (0, —W).
Given x; € C, define the iteration scheme {x,} by

KXn+l = (1 - Oln)xn @D ay T"J’n,

Yn =1 = Bu)xn © Bu T"%,, n>1
Then {x,} converges strongly to a fixed point of T.

Proof Since T is completely continuous, {7%,} has a convergent subsequence in C. By
using Lemma 3.5, we can show that {x,} has a convergent subsequence, say x,, — g € C.
Hence g € F(T) by (14) and the continuity of T It follows from (15) and (16) that

P @ni1,0) < P (0, p) + (@ = M.
Since Y, (a, — 1) < 00, by Lemma 2.4 we have x, — g. This completes the proof. g
As consequences of Theorem 3.6, we obtain the following.

Corollary 3.7 Let k > 0 and (X, p) be a CAT(x) space with diam(X) < iﬁ’" for some
n € (0,7/2). Let C be a nonempty closed convex subset of X, and T : C — C be a completely
continuous and uniformly L-Lipschitzian asymptotically demicontractive mapping with se-
quence {a,} in [1,00) such that Z;oﬂ(“i —1) < oo. Let {a,.}, {B,} C [0,1] be such that % <
VRZ+4RI2—41%-R

g where R = (7 — 2n) tan(n) and oy, B, € [, b] for some ¢ >0 and b € (0, T)‘

Given x; € C, define the iteration scheme {x,} by

Xn+l = (1 - an)xn b ay, Tnym

Yn = (1 - ﬂn)xn (&) ﬁn Tnxn, n>1.
Then {x,} converges strongly to a fixed point of T

Corollary 3.8 (Theorem 11 of [29]) Let (X, p) be a CAT(0) space, let C be a nonempty

bounded closed convex subset of X, and let T : C — C be a completely continuous and

uniformly L-Lipschitzian asymptotically hemicontractive mapping with sequence {a,} in

(1,00) such that y_,: (a, — 1) < 0o. Let {ay,}, {Bs} C [0,1] be such that ¢ < &, < B, < b for
\/@_

somee >0 andb e (0, L—l). Given x; € C, define the iteration scheme {x,} by

K1 = (L — ), @ 0y T”J’n,

Yu= 1= Bu)xn ® BT %y, n>1

Then {x,} converges strongly to a fixed point of T
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