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Abstract
The generalized viscosity implicit rules of nonexpansive mappings in Hilbert spaces
are established. The strong convergence theorems of the rules are proved under
certain assumptions imposed on the sequences of parameters. The results presented
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applications to a more general system of variational inequalities, the constrained
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1 Introduction
In this paper, we assume that H is a real Hilbert space with the inner product 〈·, ·〉 and the
induced norm ‖ · ‖, and C is a nonempty closed convex subset of H . Let T : H → H be a
mapping and F(T) be the set of fixed points of the mapping T , i.e., F(T) = {x ∈ H : Tx = x}.
A mapping T : H → H is called nonexpansive, if

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ H . A mapping f : H → H is called a contraction, if

∥
∥f (x) – f (y)

∥
∥ ≤ θ‖x – y‖

for all x, y ∈ H and some θ ∈ [, ).
In , Moudafi [] proved the following strong convergence theorem for nonexpan-

sive mappings in real Hilbert spaces.

Theorem . [] Let C be a nonempty closed convex subset of the real Hilbert space H .
Let T be a nonexpansive mapping of C into itself such that F(T) is nonempty. Let f be a
contraction of C into itself with coefficient θ ∈ [, ). Pick any x ∈ C, let {xn} be a sequence
generated by

xn+ =
εn

 + εn
f (xn) +


 + εn

T(xn), n ≥ ,
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where {εn} ∈ (, ) satisfies
() limn→∞ εn = ;
()

∑∞
n= εn = ∞;

() limn→∞ | 
εn+

– 
εn

| = .
Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T , which is
also the unique solution of the variational inequality (VI)

〈

(I – f )x, y – x
〉 ≥ , ∀y ∈ F(T). (.)

In other words, x∗ is the unique fixed point of the contraction PF(T)f , that is, PF(T)f (x∗) = x∗.

Such a method for approximation of fixed points is called the viscosity approximation
method. In , Xu et al. [] applied the viscosity technique to the implicit midpoint rule
for nonexpansive mappings and proposed the following viscosity implicit midpoint rule
(VIMR):

xn+ = αnf (xn) + ( – αn)T
(

xn + xn+



)

, ∀n ≥ .

The idea was to use contractions to regularize the implicit midpoint rule for nonexpansive
mappings. They also proved that VIMR converges strongly to a fixed point of T , which also
solved VI (.).

In this paper, motivated and inspired by Xu et al. [], we give the following generalized
viscosity implicit rules:

xn+ = αnf (xn) + ( – αn)T
(

snxn + ( – sn)xn+
)

(.)

and

xn+ = αnxn + βnf (xn) + γnT
(

snxn + ( – sn)xn+
)

(.)

for n ≥ . We will prove that the generalized viscosity implicit rules (.) and (.) converge
strongly to a fixed point of T under certain assumptions imposed on the sequences of
parameters, which also solve VI (.).

The organization of this paper is as follows. In Section , we recall the notion of the
metric projection, the demiclosedness principle of nonexpansive mappings and a conver-
gence lemma. In Section , the strong convergence theorems of the generalized viscosity
implicit rules (.) and (.) are proved under some conditions, respectively. Applications
to a more general system of variational inequalities, the constrained convex minimization
problem, and the K-mapping are presented in Section .

2 Preliminaries
Firstly, we recall the notion and some properties of the metric projection.

Definition . PC : H → C is called a metric projection if for every point x ∈ H , there
exists a unique nearest point in C, denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.
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Lemma . Let C be a nonempty closed convex subset of the real Hilbert space H and
PC : H → C be a metric projection. Then

() ‖PCx – PCy‖ ≤ 〈x – y, PCx – PCy〉, ∀x, y ∈ H ;
() PC is a nonexpansive mapping, i.e., ‖PCx – PCy‖ ≤ ‖x – y‖, ∀x, y ∈ H ;
() 〈x – PCx, y – PCx〉 ≤ , ∀x ∈ H , y ∈ C.

In order to prove our results, we need the demiclosedness principle of nonexpansive
mappings, which is quite helpful in verifying the weak convergence of an algorithm to a
fixed point of a nonexpansive mapping.

Lemma . (The demiclosedness principle) Let C be a nonempty closed convex subset of
the real Hilbert space H and T : C → C be a nonexpansive mapping with F(T) �= ∅. If {xn}
is a sequence in C such that

xn ⇀ x∗ ∈ C and (I – T)xn →  imply x∗ = Tx∗,

where → (resp. ⇀) denotes strong (resp. weak) convergence.

In addition, we also need the following convergence lemma.

Lemma . [] Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn, ∀n ≥ ,

where {γn} is a sequence in (, ) and {δn} is a sequence such that:
()

∑∞
n= γn = ∞;

() lim supn→∞
δn
γn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

3 Main results
Theorem . Let C be a nonempty closed convex subset of the real Hilbert space H . Let
T : C → C be a nonexpansive mapping with F(T) �= ∅ and f : C → C be a contraction with
coefficient θ ∈ [, ). Pick any x ∈ C, let {xn} be a sequence generated by

xn+ = αnf (xn) + ( – αn)T
(

snxn + ( – sn)xn+
)

, (.)

where {αn}, {sn} ⊂ (, ), satisfying the following conditions:
() limn→∞ αn = ;
()

∑∞
n= αn = ∞;

()
∑∞

n= |αn+ – αn| < ∞;
()  < ε ≤ sn ≤ sn+ <  for all n ≥ .

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T , which is
also the unique solution of the variational inequality

〈

(I – f )x, y – x
〉 ≥ , ∀y ∈ F(T).

In other words, x∗ is the unique fixed point of the contraction PF(T)f , that is, PF(T)f (x∗) = x∗.
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Proof We divide the proof into five steps.
Step . Firstly, we show that {xn} is bounded.
Indeed, take p ∈ F(T) arbitrarily, we have

‖xn+ – p‖ =
∥
∥αnf (xn) + ( – αn)T

(

snxn + ( – sn)xn+
)

– p
∥
∥

≤ αn
∥
∥f (xn) – p

∥
∥ + ( – αn)

∥
∥T

(

snxn + ( – sn)xn+
)

– p
∥
∥

≤ αn
∥
∥f (xn) – f (p)

∥
∥ + αn

∥
∥f (p) – p

∥
∥ + ( – αn)

∥
∥snxn + ( – sn)xn+ – p

∥
∥

≤ θαn‖xn – p‖ + αn
∥
∥f (p) – p

∥
∥ + ( – αn)

[

sn‖xn – p‖ + ( – sn)‖xn+ – p‖]

=
[

θαn + ( – αn)sn
]‖xn – p‖ + ( – αn)( – sn)‖xn+ – p‖ + αn

∥
∥f (p) – p

∥
∥.

It follows that

[

 – ( – αn)( – sn)
]‖xn+ – p‖ ≤ [

θαn + ( – αn)sn
]‖xn – p‖ + αn

∥
∥f (p) – p

∥
∥. (.)

Since αn, sn ∈ (, ),  – ( – αn)( – sn) > . Moreover, by (.), we get

‖xn+ – p‖ ≤ θαn + ( – αn)sn

 – ( – αn)( – sn)
‖xn – p‖ +

αn

 – ( – αn)( – sn)
∥
∥f (p) – p

∥
∥

=
[

 –
αn( – θ )

 – ( – αn)( – sn)

]

‖xn – p‖ +
αn

 – ( – αn)( – sn)
∥
∥f (p) – p

∥
∥

=
[

 –
αn( – θ )

 – ( – αn)( – sn)

]

‖xn – p‖

+
αn( – θ )

 – ( – αn)( – sn)

(


 – θ

∥
∥f (p) – p

∥
∥

)

.

Thus, we have

‖xn+ – p‖ ≤ max

{

‖xn – p‖,


 – θ

∥
∥f (p) – p

∥
∥

}

.

By induction, we obtain

‖xn – p‖ ≤ max

{

‖x – p‖,


 – θ

∥
∥f (p) – p

∥
∥

}

, ∀n ≥ .

Hence, it turns out that {xn} is bounded. Consequently, we deduce immediately that
{f (xn)}, {T(snxx + ( – sn)xn+)} are bounded.

Step . Next, we prove that limn→∞ ‖xn+ – xn‖ = .
To see this, we apply (.) to get

‖xn+ – xn‖ =
∥
∥αnf (xn) + ( – αn)T

(

snxn + ( – sn)xn+
)

–
[

αn–f (xn–) + ( – αn–)T
(

sn–xn– + ( – sn–)xn
)]∥

∥

=
∥
∥αn

[

f (xn) – f (xn–)
]

+ (αn – αn–)f (xn–)

+ ( – αn)
[

T
(

snxn + ( – sn)xn+
)

– T
(

sn–xn– + ( – sn–)xn
)]
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– (αn – αn–)T
(

sn–xn– + ( – sn–)xn
)∥
∥

≤ αn
∥
∥f (xn) – f (xn–)

∥
∥ + |αn – αn–| ·

∥
∥f (xn–) – T

(

sn–xn– + ( – sn–)xn
)∥
∥

+ ( – αn)
∥
∥T

(

snxn + ( – sn)xn+
)

– T
(

sn–xn– + ( – sn–)xn
)∥
∥

≤ θαn‖xn – xn–‖ + |αn – αn–|M

+ ( – αn)
∥
∥
[

snxn + ( – sn)xn+
]

–
[

sn–xn– + ( – sn–)xn
]∥
∥

= θαn‖xn – xn–‖ + |αn – αn–|M

+ ( – αn)
∥
∥( – sn)(xn+ – xn) + sn–(xn – xn–)

∥
∥

≤ θαn‖xn – xn–‖ + |αn – αn–|M + ( – αn)( – sn)‖xn+ – xn‖
+ ( – αn)sn–‖xn – xn–‖

= ( – αn)( – sn)‖xn+ – xn‖
+

[

θαn + ( – αn)sn–
]‖xn – xn–‖ + |αn – αn–|M,

where M >  is a constant such that

M ≥ sup
n≥

∥
∥f (xn) – T

(

snxn + ( – sn)xn+
)∥
∥.

It turns out that

[

 – ( – αn)( – sn)
]‖xn+ – xn‖ ≤ [

θαn + ( – αn)sn–
]‖xn – xn–‖ + |αn – αn–|M,

that is,

‖xn+ – xn‖ ≤ θαn + ( – αn)sn–

 – ( – αn)( – sn)
‖xn – xn–‖ +

M

 – ( – αn)( – sn)
|αn – αn–|

=
[

 –
αn( – θ ) + ( – αn)(sn – sn–)

 – ( – αn)( – sn)

]

‖xn – xn–‖

+
M

 – ( – αn)( – sn)
|αn – αn–|.

Note that  < ε ≤ sn– ≤ sn < , we have

 < ε ≤ sn <  – ( – αn)( – sn) < 

and

αn( – θ ) + ( – αn)(sn – sn–)
 – ( – αn)( – sn)

≥ αn( – θ ).

Thus,

‖xn+ – xn‖ ≤ [

 – αn( – θ )
]‖xn – xn–‖ +

M

ε
|αn – αn–|.

Since
∑∞

n= αn = ∞ and
∑∞

n= |αn+ – αn| < ∞, by Lemma ., we can get ‖xn+ – xn‖ → 
as n → ∞.
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Step . Now, we prove that limn→∞ ‖xn – Txn‖ = .
In fact, we can see that

‖xn – Txn‖ ≤ ‖xn – xn+‖ +
∥
∥xn+ – T

(

snxn + ( – sn)xn+
)∥
∥

+
∥
∥T

(

snxn + ( – sn)xn+
)

– Txn
∥
∥

≤ ‖xn – xn+‖ +
∥
∥αn

[

f (xn) – T
(

snxn + ( – sn)xn+
)]∥

∥

+
∥
∥
(

snxn + ( – sn)xn+
)

– xn
∥
∥

≤ ‖xn – xn+‖ + αnM + ( – sn)‖xn+ – xn‖
≤ ( – sn)‖xn – xn+‖ + αnM

≤ ‖xn – xn+‖ + αnM.

Then, by limn→∞ ‖xn+ – xn‖ =  and limn→∞ αn = , we get ‖xn – Txn‖ →  as n → ∞.
Moreover, we have

∥
∥T

(

snxn + ( – sn)xn+
)

– xn
∥
∥

≤ ∥
∥T

(

snxn + ( – sn)xn+
)

– Txn
∥
∥ + ‖Txn – xn‖

≤ ∥
∥
(

snxn + ( – sn)xn+
)

– xn
∥
∥ + ‖Txn – xn‖

= ( – sn)‖xn+ – xn‖ + ‖Txn – xn‖
≤ ‖xn+ – xn‖ + ‖Txn – xn‖ →  (as n → ∞). (.)

Step . In this step, we claim that lim supn→∞〈x∗ – f (x∗), x∗ – xn〉 ≤ , where x∗ =
PF(T)f (x∗).

Indeed, take a subsequence {xni} of {xn} such that

lim sup
n→∞

〈

x∗ – f
(

x∗), x∗ – xn
〉

= lim
n→∞

〈

x∗ – f
(

x∗), x∗ – xni

〉

.

Since {xn} is bounded, there exists a subsequence of {xn} which converges weakly to p.
Without loss of generality, we may assume that xni ⇀ p. From limn→∞ ‖xn – Txn‖ =  and
Lemma . we have p = Tp, that is, p ∈ F(T). This together with the property of the metric
projection implies that

lim sup
n→∞

〈

x∗ – f
(

x∗), x∗ – xn
〉

= lim
n→∞

〈

x∗ – f
(

x∗), x∗ – xni

〉

=
〈

x∗ – f
(

x∗), x∗ – p
〉 ≤ .

Step . Finally, we show that xn → x∗ as n → ∞. Here again x∗ ∈ F(T) is the unique fixed
point of the contraction PF(T)f or in other words, x∗ = PF(T)f (x∗).

In fact, we have

∥
∥xn+ – x∗∥∥ =

∥
∥αnf (xn) + ( – αn)T

(

snxn + ( – sn)xn+
)

– x∗∥∥

=
∥
∥αn

[

f (xn) – x∗] + ( – αn)
[

T
(

snxn + ( – sn)xn+
)

– x∗]∥∥

= α
n
∥
∥f (xn) – x∗∥∥ + ( – αn)∥∥T

(

snxn + ( – sn)xn+
)

– x∗∥∥

+ αn( – αn)
〈

f (xn) – x∗, T
(

snxn + ( – sn)xn+
)

– x∗〉
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≤ α
n
∥
∥f (xn) – x∗∥∥ + ( – αn)∥∥snxn + ( – sn)xn+ – x∗∥∥

+ αn( – αn)
〈

f (xn) – f
(

x∗), T
(

snxn + ( – sn)xn+
)

– x∗〉

+ αn( – αn)
〈

f
(

x∗) – x∗, T
(

snxn + ( – sn)xn+
)

– x∗〉

≤ ( – αn)∥∥snxn + ( – sn)xn+ – x∗∥∥

+ αn( – αn)
∥
∥f (xn) – f

(

x∗)∥∥ · ∥∥T
(

snxn + ( – sn)xn+
)

– x∗∥∥ + Ln

≤ ( – αn)∥∥snxn + ( – sn)xn+ – x∗∥∥

+ θαn( – αn)
∥
∥xn – x∗∥∥ · ∥∥snxn + ( – sn)xn+ – x∗∥∥ + Ln,

where

Ln := α
n
∥
∥f (xn) – x∗∥∥ + αn( – αn)

〈

f
(

x∗) – x∗, T
(

snxn + ( – sn)xn+
)

– x∗〉.

It turns out that

( – αn)∥∥snxn + ( – sn)xn+ – x∗∥∥

+ θαn( – αn)
∥
∥xn – x∗∥∥ · ∥∥snxn + ( – sn)xn+ – x∗∥∥ + Ln –

∥
∥xn+ – x∗∥∥ ≥ .

Solving this quadratic inequality for ‖snxn + ( – sn)xn+ – x∗‖ yields

∥
∥snxn + ( – sn)xn+ – x∗∥∥

≥ 
( – αn)

{

–θαn( – αn)
∥
∥xn – x∗∥∥

+
√

θα
n( – αn)

∥
∥xn – x∗∥∥ – ( – αn)

(

Ln –
∥
∥xn+ – x∗∥∥)

}

=
–θαn‖xn – x∗‖ +

√

θα
n‖xn – x∗‖ – Ln + ‖xn+ – x∗‖

 – αn
.

This implies that

sn
∥
∥xn – x∗∥∥ + ( – sn)

∥
∥xn+ – x∗∥∥

≥ –θαn‖xn – x∗‖ +
√

θα
n‖xn – x∗‖ – Ln + ‖xn+ – x∗‖

 – αn
,

namely,

(sn – snαn + θαn)
∥
∥xn – x∗∥∥ + ( – sn)( – αn)

∥
∥xn+ – x∗∥∥

≥
√

θα
n
∥
∥xn – x∗∥∥ – Ln +

∥
∥xn+ – x∗∥∥.

Then

θα
n
∥
∥xn – x∗∥∥ – Ln +

∥
∥xn+ – x∗∥∥

≤ (sn – snαn + θαn)∥∥xn – x∗∥∥ + ( – sn)( – αn)∥∥xn+ – x∗∥∥
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+ (sn – snαn + θαn)( – sn)( – αn)
∥
∥xn – x∗∥∥ · ∥∥xn+ – x∗∥∥

≤ (sn – snαn + θαn)∥∥xn – x∗∥∥ + ( – sn)( – αn)∥∥xn+ – x∗∥∥

+ (sn – snαn + θαn)( – sn)( – αn)
[∥
∥xn – x∗∥∥ +

∥
∥xn+ – x∗∥∥],

which is reduced to the inequality

[

 – ( – sn)( – αn) – (sn – snαn + θαn)( – sn)( – αn)
]∥
∥xn+ – x∗∥∥

≤ [

(sn – snαn + θαn) + (sn – snαn + θαn)( – sn)( – αn) – θα
n
]∥
∥xn – x∗∥∥ + Ln,

that is,

[

 – ( – sn)( – αn)
(

 + (θ – )αn
)]∥

∥xn+ – x∗∥∥

≤ [

(sn – snαn + θαn)
(

 + (θ – )αn
)

– θα
n
]∥
∥xn – x∗∥∥ + Ln.

It follows that

∥
∥xn+ – x∗∥∥ ≤ (sn – snαn + θαn)( + (θ – )αn) – θα

n
 – ( – sn)( – αn)( + (θ – )αn)

∥
∥xn – x∗∥∥

+
Ln

 – ( – sn)( – αn)( + (θ – )αn)
. (.)

Let

wn :=

αn

{

 –
(sn – snαn + θαn)( + (θ – )αn) – θα

n
 – ( – sn)( – αn)( + (θ – )αn)

}

=
( – θ ) + (θ – )αn

 – ( – sn)( – αn)( + (θ – )αn)
.

Since the sequence {sn} satisfies  < ε ≤ sn ≤ sn+ <  for all n ≥ , limn→∞ sn exists; assume
that

lim
n→∞ sn = s∗ > .

Then

lim
n→∞ wn =

( – θ )
s∗ > .

Let ρ satisfy

 < ρ <
( – θ )

s∗ ,

then there exists an integer N big enough such that wn > ρ for all n ≥ N. Hence, we have

(sn – snαn + θαn)( + (θ – )αn) – θα
n

 – ( – sn)( – αn)( + (θ – )αn)
≤  – ραn
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for all n ≥ N. It turns out from (.) that, for all n ≥ N,

∥
∥xn+ – x∗∥∥ ≤ ( – ραn)

∥
∥xn – x∗∥∥ +

Ln

 – ( – sn)( – αn)( + (θ – )αn)
. (.)

By limn→∞ αn = , (.), and Step , we have

lim sup
n→∞

Ln

ραn[ – ( – sn)( – αn)( + (θ – )αn)]

= lim sup
n→∞

αn‖f (xn) – x∗‖ + ( – αn)〈f (x∗) – x∗, T(snxn + ( – sn)xn+) – x∗〉
ρ[ – ( – sn)( – αn)( + (θ – )αn)]

≤ . (.)

From (.), (.), and Lemma ., we can obtain

lim
n→∞

∥
∥xn+ – x∗∥∥ = ,

namely, xn → x∗ as n → ∞. This completes the proof. �

Theorem . Let C be a nonempty closed convex subset of the real Hilbert space H . Let
T : C → C be a nonexpansive mapping with F(T) �= ∅ and f : C → C be a contraction with
coefficient θ ∈ [, ). Pick any x ∈ C, let {xn} be a sequence generated by

xn+ = αnxn + βnf (xn) + γnT
(

snxn + ( – sn)xn+
)

, (.)

where {αn}, {βn}, {γn}, {sn} ⊂ (, ), satisfying the following conditions:
() αn + βn + γn =  and limn→∞ γn = ;
()

∑∞
n= βn = ∞;

()
∑∞

n= |αn+ – αn| < ∞ and
∑∞

n= |βn+ – βn| < ∞;
()  < ε ≤ sn ≤ sn+ <  for all n ≥ .

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T , which is
also the unique solution of the variational inequality

〈

(I – f )x, y – x
〉 ≥ , ∀y ∈ F(T).

In other words, x∗ is the unique fixed point of the contraction PF(T)f , that is, PF(T)f (x∗) = x∗.

Proof We divide the proof into five steps.
Step . Firstly, we show that {xn} is bounded.
Indeed, take p ∈ F(T) arbitrarily, we have

‖xn+ – p‖ =
∥
∥αnxn + βnf (xn) + γnT

(

snxn + ( – sn)xn+
)

– p
∥
∥

≤ αn‖xn – p‖ + βn
∥
∥f (xn) – p

∥
∥ + γn

∥
∥T

(

snxn + ( – sn)xn+
)

– p
∥
∥

≤ αn‖xn – p‖ + βn
∥
∥f (xn) – f (p)

∥
∥ + βn

∥
∥f (p) – p

∥
∥

+ γn
∥
∥snxn + ( – sn)xn+ – p

∥
∥
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≤ (αn + θβn)‖xn – p‖ + βn
∥
∥f (p) – p

∥
∥ + γn

[

sn‖xn – p‖ + ( – sn)‖xn+ – p‖]

= (αn + θβn + γnsn)‖xn – p‖ + γn( – sn)‖xn+ – p‖ + βn
∥
∥f (p) – p

∥
∥.

It follows that

[

 – γn( – sn)
]‖xn+ – p‖ ≤ (αn + θβn + γnsn)‖xn – p‖ + βn

∥
∥f (p) – p

∥
∥. (.)

Since γn, sn ∈ (, ),  – γn( – sn) > . Moreover, by (.) and αn + βn + γn = , we get

‖xn+ – p‖ ≤ αn + θβn + γnsn

 – γn( – sn)
‖xn – p‖ +

βn

 – γn( – sn)
∥
∥f (p) – p

∥
∥

=
[

 –
 – αn – γn – θβn

 – γn( – sn)

]

‖xn – p‖ +
βn

 – γn( – sn)
∥
∥f (p) – p

∥
∥

=
[

 –
βn – θβn

 – γn( – sn)

]

‖xn – p‖ +
βn

 – γn( – sn)
∥
∥f (p) – p

∥
∥

=
[

 –
βn( – θ )

 – γn( – sn)

]

‖xn – p‖ +
βn( – θ )

 – γn( – sn)

(


 – θ

∥
∥f (p) – p

∥
∥

)

.

Thus, we have

‖xn+ – p‖ ≤ max

{

‖xn – p‖,


 – θ

∥
∥f (p) – p

∥
∥

}

.

By induction, we obtain

‖xn – p‖ ≤ max

{

‖x – p‖,


 – θ

∥
∥f (p) – p

∥
∥

}

, ∀n ≥ .

Hence, it turns out that {xn} is bounded. Consequently, we deduce immediately that
{f (xn)}, {T(snxx + ( – sn)xn+)} are bounded.

Step . Next, we prove that limn→∞ ‖xn+ – xn‖ = .
To see this, we apply (.) to get

‖xn+ – xn‖ =
∥
∥αnxn + βnf (xn) + γnT

(

snxn + ( – sn)xn+
)

–
[

αn–xn– + βn–f (xn–) + γn–T
(

sn–xn– + ( – sn–)xn
)]∥

∥

=
∥
∥αn(xn – xn–) + (αn – αn–)xn– + βn

[

f (xn) – f (xn–)
]

+ (βn – βn–)f (xn–)

+ γn
[

T
(

snxn + ( – sn)xn+
)

– T
(

sn–xn– + ( – sn–)xn
)]

+ (γn – γn–)T
(

sn–xn– + ( – sn–)xn
)∥
∥

=
∥
∥αn(xn – xn–) + (αn – αn–)xn– + βn

[

f (xn) – f (xn–)
]

+ (βn – βn–)f (xn–)

+ γn
[

T
(

snxn + ( – sn)xn+
)

– T
(

sn–xn– + ( – sn–)xn
)]

–
[

(αn – αn–) + (βn – βn–)
]

T
(

sn–xn– + ( – sn–)xn
)∥
∥
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= αn‖xn – xn–‖ + |αn – αn–| ·
∥
∥xn– – T

(

sn–xn– + ( – sn–)xn
)∥
∥

+ βn
∥
∥f (xn) – f (xn–)

∥
∥ + |βn – βn–|

· ∥∥f (xn–) – T
(

sn–xn– + ( – sn–)xn
)∥
∥

+ γn
∥
∥T

(

snxn + ( – sn)xn+
)

– T
(

sn–xn– + ( – sn–)xn
)∥
∥

≤ αn‖xn – xn–‖ + |αn – αn–|M + θβn‖xn – xn–‖ + |βn – βn–|M

+ γn
∥
∥
[

snxn + ( – sn)xn+
]

–
[

sn–xn– + ( – sn–)xn
]∥
∥

= αn‖xn – xn–‖ + |αn – αn–|M + θβn‖xn – xn–‖ + |βn – βn–|M

+ γn
∥
∥( – sn)(xn+ – xn) + sn–(xn – xn–)

∥
∥

≤ αn‖xn – xn–‖ + |αn – αn–|M + θβn‖xn – xn–‖ + |βn – βn–|M

+ γn( – sn)‖xn+ – xn‖ + γnsn–‖xn – xn–‖
= γn( – sn)‖xn+ – xn‖ + (αn + θβn + γnsn–)‖xn – xn–‖

+
(|αn – αn–| + |βn – βn–|

)

M,

where M >  is a constant such that

M ≥ max
{

sup
n≥

∥
∥xn – T

(

snxn + ( – sn)xn+
)∥
∥, sup

n≥

∥
∥f (xn) – T

(

snxn + ( – sn)xn+
)∥
∥

}

.

It turns out that

[

 – γn( – sn)
]‖xn+ – xn‖

≤ (αn + θβn + γnsn–)‖xn – xn–‖ +
(|αn – αn–| + |βn – βn–|

)

M,

that is,

‖xn+ – xn‖ ≤ αn + θβn + γnsn–

 – γn( – sn)
‖xn – xn–‖

+
M

 – γn( – sn)
(|αn – αn–| + |βn – βn–|

)

=
[

 –
βn( – θ ) + γn(sn – sn–)

 – γn( – sn)

]

‖xn – xn–‖

+
M

 – γn( – sn)
(|αn – αn–| + |βn – βn–|

)

.

Note that  < ε ≤ sn– ≤ sn < , we have

 < ε ≤ sn <  – γn( – sn) < 

and

βn( – θ ) + γn(sn – sn–)
 – γn( – sn)

≥ βn( – θ ).
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Thus,

‖xn+ – xn‖ ≤ [

 – βn( – θ )
]‖xn – xn–‖ +

M

ε

(|αn – αn–| + |βn – βn–|
)

.

Since
∑∞

n= βn = ∞,
∑∞

n= |αn+ – αn| < ∞, and
∑∞

n= |βn+ – βn| < ∞, by Lemma ., we
can get ‖xn+ – xn‖ →  as n → ∞.

Step . Now, we prove that limn→∞ ‖xn – Txn‖ = .
In fact, it can see that

‖xn – Txn‖ ≤ ‖xn – xn+‖ +
∥
∥xn+ – T

(

snxn + ( – sn)xn+
)∥
∥

+
∥
∥T

(

snxn + ( – sn)xn+
)

– Txn
∥
∥

≤ ‖xn – xn+‖ +
∥
∥αn

[

xn – T
(

snxn + ( – sn)xn+
)]

+ βn
[

f (xn) – T
(

snxn + ( – sn)xn+
)]∥

∥ +
∥
∥
(

snxn + ( – sn)xn+
)

– xn
∥
∥

≤ ‖xn – xn+‖ + αn
∥
∥xn – T

(

snxn + ( – sn)xn+
)∥
∥

+ βn
∥
∥f (xn) – T

(

snxn + ( – sn)xn+
)∥
∥ + ( – sn)‖xn+ – xn‖

≤ ( – sn)‖xn – xn+‖ + (αn + βn)M

≤ ‖xn – xn+‖ + ( – γn)M.

Then, by limn→∞ ‖xn+ – xn‖ =  and limn→∞ γn = , we get ‖xn – Txn‖ →  as n → ∞.
Similarly to (.), we also have

∥
∥T

(

snxn + ( – sn)xn+
)

– xn
∥
∥ →  (as n → ∞). (.)

Step . In this step, we claim that lim supn→∞〈x∗ – f (x∗), x∗ – xn〉 ≤ , where x∗ =
PF(T)f (x∗).

The proof is the same as Step  in Theorem ., here we omit it.
Step . Finally, we show that xn → x∗ as n → ∞. Here again x∗ ∈ F(T) is the unique fixed

point of the contraction PF(T)f or in other words, x∗ = PF(T)f (x∗).
In fact, we have

∥
∥xn+ – x∗∥∥ =

∥
∥αnxn + βnf (xn) + γnT

(

snxn + ( – sn)xn+
)

– x∗∥∥

=
∥
∥αn

[

xn – x∗] + βn
[

f (xn) – x∗] + γn
[

T
(

snxn + ( – sn)xn+
)

– x∗]∥∥

= α
n
∥
∥xn – x∗∥∥ + β

n
∥
∥f (xn) – x∗∥∥ + γ 

n
∥
∥T

(

snxn + ( – sn)xn+
)

– x∗∥∥

+ αnβn
〈

xn – x∗, f (xn) – x∗〉

+ αnγn
〈

xn – x∗, T
(

snxn + ( – sn)xn+
)

– x∗〉

+ βnγn
〈

f (xn) – x∗, T
(

snxn + ( – sn)xn+
)

– x∗〉

≤ α
n
∥
∥xn – x∗∥∥ + β

n
∥
∥f (xn) – x∗∥∥ + γ 

n
∥
∥snxn + ( – sn)xn+ – x∗∥∥

+ αnβn
〈

xn – x∗, f (xn) – x∗〉

+ αnγn
∥
∥xn – x∗∥∥ · ∥∥T

(

snxn + ( – sn)xn+
)

– x∗∥∥
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+ βnγn
〈

f (xn) – f
(

x∗), T
(

snxn + ( – sn)xn+
)

– x∗〉

+ βnγn
〈

f
(

x∗) – x∗, T
(

snxn + ( – sn)xn+
)

– x∗〉

≤ α
n
∥
∥xn – x∗∥∥ + γ 

n
∥
∥snxn + ( – sn)xn+ – x∗∥∥

+ αnγn
∥
∥xn – x∗∥∥ · ∥∥snxn + ( – sn)xn+ – x∗∥∥

+ βnγn
∥
∥f (xn) – f

(

x∗)∥∥ · ∥∥T
(

snxn + ( – sn)xn+
)

– x∗∥∥ + Kn

≤ α
n
∥
∥xn – x∗∥∥ + γ 

n
∥
∥snxn + ( – sn)xn+ – x∗∥∥

+ αnγn
∥
∥xn – x∗∥∥ · ∥∥snxn + ( – sn)xn+ – x∗∥∥

+ θβnγn
∥
∥xn – x∗∥∥ · ∥∥snxn + ( – sn)xn+ – x∗∥∥ + Kn

= α
n
∥
∥xn – x∗∥∥ + γ 

n
∥
∥snxn + ( – sn)xn+ – x∗∥∥

+ γn(αn + θβn)
∥
∥xn – x∗∥∥ · ∥∥snxn + ( – sn)xn+ – x∗∥∥ + Kn,

where

Kn := β
n
∥
∥f (xn) – x∗∥∥ + αnβn

〈

xn – x∗, f (xn) – x∗〉

+ βnγn
〈

f
(

x∗) – x∗, T
(

snxn + ( – sn)xn+
)

– x∗〉.

It turns out that

γ 
n
∥
∥snxn + ( – sn)xn+ – x∗∥∥

+ γn(αn + θβn)
∥
∥xn – x∗∥∥ · ∥∥snxn + ( – sn)xn+ – x∗∥∥

+ Kn + α
n
∥
∥xn – x∗∥∥ –

∥
∥xn+ – x∗∥∥ ≥ .

Solving this quadratic inequality for ‖snxn + ( – sn)xn+ – x∗‖ yields

∥
∥snxn + ( – sn)xn+ – x∗∥∥

≥ 
γ 

n

{

–γn(αn + θβn)
∥
∥xn – x∗∥∥

+
√

γ 
n (αn + θβn)

∥
∥xn – x∗∥∥ – γ 

n
(

Kn + α
n
∥
∥xn – x∗∥∥ –

∥
∥xn+ – x∗∥∥)

}

=

γn

[

–(αn + θβn)
∥
∥xn – x∗∥∥

+
√

(αn + θβn)
∥
∥xn – x∗∥∥ – Kn – α

n
∥
∥xn – x∗∥∥ +

∥
∥xn+ – x∗∥∥

]

.

This implies that

sn
∥
∥xn – x∗∥∥ + ( – sn)

∥
∥xn+ – x∗∥∥

≥ 
γn

[

–(αn + θβn)
∥
∥xn – x∗∥∥

+
√

(αn + θβn)
∥
∥xn – x∗∥∥ – Kn – α

n
∥
∥xn – x∗∥∥ +

∥
∥xn+ – x∗∥∥

]

,



Ke and Ma Fixed Point Theory and Applications  (2015) 2015:190 Page 14 of 21

namely,

(snγn + αn + θβn)
∥
∥xn – x∗∥∥ + ( – sn)γn

∥
∥xn+ – x∗∥∥

≥
√

(αn + θβn)
∥
∥xn – x∗∥∥ – Kn – α

n
∥
∥xn – x∗∥∥ +

∥
∥xn+ – x∗∥∥.

Then

(αn + θβn)∥∥xn – x∗∥∥ – Kn – α
n
∥
∥xn – x∗∥∥ +

∥
∥xn+ – x∗∥∥

≤ (snγn + αn + θβn)∥∥xn – x∗∥∥ + ( – sn)γ 
n
∥
∥xn+ – x∗∥∥

+ (snγn + αn + θβn)( – sn)γn
∥
∥xn – x∗∥∥ · ∥∥xn+ – x∗∥∥

≤ (snγn + αn + θβn)∥∥xn – x∗∥∥ + ( – sn)γ 
n
∥
∥xn+ – x∗∥∥

+ (snγn + αn + θβn)( – sn)γn
[∥
∥xn – x∗∥∥ +

∥
∥xn+ – x∗∥∥],

which is reduced to the inequality

[

 – ( – sn)γ 
n – (snγn + αn + θβn)( – sn)γn

]∥
∥xn+ – x∗∥∥

≤ [

(snγn + αn + θβn) + (snγn + αn + θβn)( – sn)γn + α
n – (αn + θβn)]

× ∥
∥xn – x∗∥∥ + Kn,

that is,

[

 – ( – sn)γn
(

 + (θ – )βn
)]∥

∥xn+ – x∗∥∥

≤ [

(snγn + αn + θβn)
(

 + (θ – )βn
)

– θαnβn – θβ
n
]∥
∥xn – x∗∥∥ + Kn.

It follows that

∥
∥xn+ – x∗∥∥ ≤ (snγn + αn + θβn)( + (θ – )βn) – θαnβn – θβ

n
 – ( – sn)γn( + (θ – )βn)

∥
∥xn – x∗∥∥

+
Kn

 – ( – sn)γn( + (θ – )βn)
. (.)

Let

yn :=

βn

{

 –
(snγn + αn + θβn)( + (θ – )βn) – θαnβn – θβ

n
 – ( – sn)γn( + (θ – )βn)

}

=
 + θαn – βn

 – ( – sn)γn( + (θ – )βn)
.

Since the sequence {sn} satisfies  < ε ≤ sn ≤ sn+ <  for all n ≥ , limn→∞ sn exists; assume
that

lim
n→∞ sn = s∗ > .
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Then

lim
n→∞ yn =


s∗ > .

Let ρ satisfy

 < ρ <

s∗ ,

then there exists an integer N big enough such that yn > ρ for all n ≥ N. Hence, we have

(snγn + αn + θβn)( + (θ – )βn) – θαnβn – θβ
n

 – ( – sn)γn( + (θ – )βn)
≤  – ρβn

for all n ≥ N. It turns out from (.) that, for all n ≥ N,

∥
∥xn+ – x∗∥∥ ≤ ( – ρβn)

∥
∥xn – x∗∥∥ +

Kn

 – ( – sn)γn( + (θ – )βn)
. (.)

By limn→∞ αn = limn→∞ βn = , limn→∞ γn = , (.), and Step , we have

lim sup
n→∞

Kn

ρβn[ – ( – sn)γn( + (θ – )βn)]

= lim sup
n→∞

(
βn‖f (xn) – x∗‖ + αn〈xn – x∗, f (xn) – x∗〉

ρ[ – ( – sn)γn( + (θ – )βn)]

+
γn〈f (x∗) – x∗, T(snxn + ( – sn)xn+) – x∗〉

ρ[ – ( – sn)γn( + (θ – )βn)]

)

≤ . (.)

From (.), (.), and Lemma ., we can obtain that

lim
n→∞

∥
∥xn+ – x∗∥∥ = ,

namely, xn → x∗ as n → ∞. This completes the proof. �

4 Application
4.1 A more general system of variational inequalities
Let C be a nonempty closed convex subset of the real Hilbert space H and {Ai}N

i= :
C → H be a family of mappings. In [], Cai and Bu considered the problem of finding
(x∗

 , x∗
, . . . , x∗

N ) ∈ C × C × · · · × C such that

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈λN AN x∗
N + x∗

 – x∗
N , x – x∗

 〉 ≥ , ∀x ∈ C,
〈λN–AN–x∗

N– + x∗
N – x∗

N–, x – x∗
N 〉 ≥ , ∀x ∈ C,

. . . ,
〈λAx∗

 + x∗
 – x∗

, x – x∗
〉 ≥ , ∀x ∈ C,

〈λAx∗
 + x∗

 – x∗
 , x – x∗

〉 ≥ , ∀x ∈ C.

(.)
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Equation (.) can be rewritten

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈x∗
 – (I – λN AN )x∗

N , x – x∗
 〉 ≥ , ∀x ∈ C,

〈x∗
N – (I – λN–AN–)x∗

N–, x – x∗
N 〉 ≥ , ∀x ∈ C,

. . . ,
〈x∗

 – (I – λA)x∗
, x – x∗

〉 ≥ , ∀x ∈ C,
〈x∗

 – (I – λA)x∗
 , x – x∗

〉 ≥ , ∀x ∈ C,

which is called a more general system of variational inequalities in Hilbert spaces, where
λi >  for all i ∈ {, , . . . , N}. We also have the following lemmas.

Lemma . [] Let C be a nonempty closed convex subset of the real Hilbert space H . For
i = , , . . . , N , let Ai : C → H be δi-inverse-strongly monotone for some positive real number
δi, namely,

〈Aix – Aiy, x – y〉 ≥ δi‖Aix – Aiy‖, ∀x, y ∈ C.

Let G : C → C be a mapping defined by

G(x) = PC(I – λN AN )PC(I – λN–AN–) · · ·PC(I – λA)PC(I – λA)x, ∀x ∈ C. (.)

If  < λi ≤ δi for all i ∈ {, , . . . , N}, then G is nonexpansive.

Lemma . [] Let C be a nonempty closed convex subset of the real Hilbert space H . Let
Ai : C → H be a nonlinear mapping, where i = , , . . . , N . For given x∗

i ∈ C, i = , , . . . , N ,
(x∗

 , x∗
, . . . , x∗

N ) is a solution of the problem (.) if and only if

x∗
 = PC(I – λN AN )x∗

N , x∗
i = PC(I – λi–Ai–)x∗

i–, i = , , . . . , N , (.)

that is,

x∗
 = PC(I – λN AN )PC(I – λN–AN–) · · ·PC(I – λA)PC(I – λA)x∗

 .

From Lemma ., we know that x∗
 = G(x∗

 ), that is, x∗
 is a fixed point of the mapping

G, where G is defined by (.). Moreover, if we find the fixed point x∗
 , it is easy to get the

other points by (.), in other words, we solve the problem (.). Applying Theorems .
and ., we get the results below.

Theorem . Let C be a nonempty closed convex subset of the real Hilbert space H . For
i = , , . . . , N , let Ai : C → H be δi-inverse-strongly monotone for some positive real number
δi with F(G) �= ∅, where G : C → C is defined by

G(x) = PC(I – λN AN )PC(I – λN–AN–) · · ·PC(I – λA)PC(I – λA)x, ∀x ∈ C.

Let f : C → C be a contraction with coefficient θ ∈ [, ). Pick any x ∈ C, let {xn} be a
sequence generated by

xn+ = αnf (xn) + ( – αn)G
(

snxn + ( – sn)xn+
)

,
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where λi ∈ (, δi), i = , , . . . , N , {αn}, {sn} ⊂ (, ), satisfying the following conditions:
() limn→∞ αn = ;
()

∑∞
n= αn = ∞;

()
∑∞

n= |αn+ – αn| < ∞;
()  < ε ≤ sn ≤ sn+ <  for all n ≥ .

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping G, which is
also the unique solution of the variational inequality

〈

(I – f )x, y – x
〉 ≥ , ∀y ∈ F(G).

In other words, x∗ is the unique fixed point of the contraction PF(G)f , that is, PF(G)f (x∗) = x∗.

Theorem . Let C be a nonempty closed convex subset of the real Hilbert space H . For
i = , , . . . , N , let Ai : C → H be δi-inverse-strongly monotone for some positive real number
δi with F(G) �= ∅, where G : C → C is defined by

G(x) = PC(I – λN AN )PC(I – λN–AN–) · · ·PC(I – λA)PC(I – λA)x, ∀x ∈ C.

Let f : C → C be a contraction with coefficient θ ∈ [, ). Pick any x ∈ C, let {xn} be a
sequence generated by

xn+ = αnxn + βnf (xn) + γnG
(

snxn + ( – sn)xn+
)

,

where λi ∈ (, δi), i = , , . . . , N , {αn}, {βn}, {γn}, {sn} ⊂ (, ), satisfying the following con-
ditions:

() αn + βn + γn =  and limn→∞ γn = ;
()

∑∞
n= βn = ∞;

()
∑∞

n= |αn+ – αn| < ∞ and
∑∞

n= |βn+ – βn| < ∞;
()  < ε ≤ sn ≤ sn+ <  for all n ≥ .

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping G, which is
also the unique solution of the variational inequality

〈

(I – f )x, y – x
〉 ≥ , ∀y ∈ F(G).

In other words, x∗ is the unique fixed point of the contraction PF(G)f , that is, PF(G)f (x∗) = x∗.

4.2 The constrained convex minimization problem
Next, we consider the following constrained convex minimization problem:

min
x∈C

ϕ(x), (.)

where ϕ : C → R is a real-valued convex function and assumes that the problem (.) is
consistent (i.e., its solution set is nonempty). Let � denote its solution set.

For the minimization problem (.), if ϕ is (Fréchet) differentiable, then we have the
following lemma.

Lemma . (Optimality condition) [] A necessary condition of optimality for a point
x∗ ∈ C to be a solution of the minimization problem (.) is that x∗ solves the variational
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inequality

〈∇ϕ
(

x∗), x – x∗〉 ≥ , ∀x ∈ C. (.)

Equivalently, x∗ ∈ C solves the fixed point equation

x∗ = PC
(

x∗ – λ∇ϕ
(

x∗))

for every constant λ > . If, in addition, ϕ is convex, then the optimality condition (.) is
also sufficient.

It is well known that the mapping PC(I – λA) is nonexpansive when the mapping A is
δ-inverse-strongly monotone and  < λ < δ. We therefore have the following results.

Theorem . Let C be a nonempty closed convex subset of the real Hilbert space H . For the
minimization problem (.), assume that ϕ is (Fréchet) differentiable and the gradient ∇ϕ

is a δ-inverse-strongly monotone mapping for some positive real number δ. Let f : C → C
be a contraction with coefficient θ ∈ [, ). Pick any x ∈ C, let {xn} be a sequence generated
by

xn+ = αnf (xn) + ( – αn)PC(I – λ∇ϕ)
(

snxn + ( – sn)xn+
)

,

where λ ∈ (, δ), {αn}, {sn} ⊂ (, ), satisfying the following conditions:
() limn→∞ αn = ;
()

∑∞
n= αn = ∞;

()
∑∞

n= |αn+ – αn| < ∞;
()  < ε ≤ sn ≤ sn+ <  for all n ≥ .

Then {xn} converges strongly to a solution x∗ of the minimization problem (.), which is
also the unique solution of the variational inequality

〈

(I – f )x, y – x
〉 ≥ , ∀y ∈ �.

In other words, x∗ is the unique fixed point of the contraction P�f , that is, P�f (x∗) = x∗.

Theorem . Let C be a nonempty closed convex subset of the real Hilbert space H . For the
minimization problem (.), assume that ϕ is (Fréchet) differentiable and the gradient ∇ϕ

is a δ-inverse-strongly monotone mapping for some positive real number δ. Let f : C → C
be a contraction with coefficient θ ∈ [, ). Pick any x ∈ C, let {xn} be a sequence generated
by

xn+ = αnxn + βnf (xn) + γnPC(I – λ∇ϕ)
(

snxn + ( – sn)xn+
)

,

where λ ∈ (, δ), {αn}, {βn}, {γn}, {sn} ⊂ (, ), satisfying the following conditions:
() αn + βn + γn =  and limn→∞ γn = ;
()

∑∞
n= βn = ∞;

()
∑∞

n= |αn+ – αn| < ∞ and
∑∞

n= |βn+ – βn| < ∞;
()  < ε ≤ sn ≤ sn+ <  for all n ≥ .
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Then {xn} converges strongly to a solution x∗ of the minimization problem (.), which is
also the unique solution of the variational inequality

〈

(I – f )x, y – x
〉 ≥ , ∀y ∈ �.

In other words, x∗ is the unique fixed point of the contraction P�f , that is, P�f (x∗) = x∗.

4.3 K-Mapping
In , Kangtunyakarn and Suantai [] gave K-mapping generated by T, T, . . . , TN and
λ,λ, . . . ,λN as follows.

Definition . [] Let C be a nonempty convex subset of a real Banach space. Let {Ti}N
i=

be a finite family of mappings of C into itself and let λ,λ, . . . ,λN be real numbers such
that  ≤ λi ≤  for every i = , , . . . , N . We define a mapping K : C → C as follows:

U = λT + ( – λ)I,

U = λTU + ( – λ)U,

U = λTU + ( – λ)U,

. . . ,

UN– = λN–TN–UN– + ( – λN–)UN–,

K = UN = λN TN UN– + ( – λN )UN–.

Such a mapping K is called the K-mapping generated by T, T, . . . , TN and λ,λ, . . . ,λN .

In , Suwannaut and Kangtunyakarn [] established the following main result for the
K-mapping generated by T, T, . . . , TN and λ,λ, . . . ,λN .

Lemma . [] Let C be a nonempty closed convex subset of the real Hilbert space H . For
i = , , . . . , N , let {Ti}N

i= be a finite family of κi-strictly pseudo-contractive mapping of C
into itself with κi ≤ ω and

⋂N
i= F(Ti) �= ∅, namely, there exist constants κi ∈ [, ) such that

‖Tix – Tiy‖ ≤ ‖x – y‖ + κi
∥
∥(I – Ti)x – (I – Ti)y

∥
∥

, ∀x, y ∈ C.

Let λ,λ, . . . ,λN be real numbers with  < λi < ω for all i = , , . . . , N and ω + ω < .
Let K be the K-mapping generated by T, T, . . . , TN and λ,λ, . . . ,λN . Then the following
properties hold:

() F(K) =
⋂N

i= F(Ti);
() K is a nonexpansive mapping.

Based on Lemma ., we have the following results.

Theorem . Let C be a nonempty closed convex subset of the real Hilbert space H . For
i = , , . . . , N , let {Ti}N

i= be a finite family of κi-strictly pseudo-contractive mapping of C into
itself with κi ≤ ω and

⋂N
i= F(Ti) �= ∅. Let λ,λ, . . . ,λN be real numbers with  < λi < ω for

all i = , , . . . , N and ω + ω < . Let K be the K-mapping generated by T, T, . . . , TN and
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λ,λ, . . . ,λN . Let f : C → C be a contraction with coefficient θ ∈ [, ). Pick any x ∈ C, let
{xn} be a sequence generated by

xn+ = αnf (xn) + ( – αn)K
(

snxn + ( – sn)xn+
)

,

where {αn}, {sn} ⊂ (, ), satisfying the following conditions:
() limn→∞ αn = ;
()

∑∞
n= αn = ∞;

()
∑∞

n= |αn+ – αn| < ∞;
()  < ε ≤ sn ≤ sn+ <  for all n ≥ .

Then {xn} converges strongly to a common fixed point x∗ of the mappings {Ti}N
i=, which is

also the unique solution of the variational inequality

〈

(I – f )x, y – x
〉 ≥ , ∀y ∈ F(K) =

N
⋂

i=

F(Ti).

In other words, the point x∗ is the unique fixed point of the contraction P⋂N
i= F(Ti)f , that is,

P⋂N
i= F(Ti)f (x∗) = x∗.

Theorem . Let C be a nonempty closed convex subset of the real Hilbert space H . For
i = , , . . . , N , let {Ti}N

i= be a finite family of κi-strictly pseudo-contractive mapping of C into
itself with κi ≤ ω and

⋂N
i= F(Ti) �= ∅. Let λ,λ, . . . ,λN be real numbers with  < λi < ω for

all i = , , . . . , N and ω + ω < . Let K be the K-mapping generated by T, T, . . . , TN and
λ,λ, . . . ,λN . Let f : C → C be a contraction with coefficient θ ∈ [, ). Pick any x ∈ C, let
{xn} be a sequence generated by

xn+ = αnxn + βnf (xn) + γnG
(

snxn + ( – sn)xn+
)

,

where {αn}, {βn}, {γn}, {sn} ⊂ (, ), satisfying the following conditions:
() αn + βn + γn =  and limn→∞ γn = ;
()

∑∞
n= βn = ∞;

()
∑∞

n= |αn+ – αn| < ∞ and
∑∞

n= |βn+ – βn| < ∞;
()  < ε ≤ sn ≤ sn+ <  for all n ≥ .

Then {xn} converges strongly to a common fixed point x∗ of the mappings {Ti}N
i=, which is

also the unique solution of the variational inequality

〈

(I – f )x, y – x
〉 ≥ , ∀y ∈ F(K) =

N
⋂

i=

F(Ti).

In other words, the point x∗ is the unique fixed point of the contraction P⋂N
i= F(Ti)f , that is,

P⋂N
i= F(Ti)f (x∗) = x∗.
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