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Abstract
The purpose of this paper is to study the extra-gradient methods for solving split
feasibility and fixed point problems involved in pseudo-contractive mappings in real
Hilbert spaces. We propose an Ishikawa-type extra-gradient iterative algorithm for
finding a solution of the split feasibility and fixed point problems involved in
pseudo-contractive mappings with Lipschitz assumption. Moreover, we also suggest
a Mann-type extra-gradient iterative algorithm for finding a solution of the split
feasibility and fixed point problems involved in pseudo-contractive mappings
without Lipschitz assumption. It is proven that under suitable conditions, the
sequences generated by the proposed iterative algorithms converge weakly to a
solution of the split feasibility and fixed point problems. The results presented in this
paper extend and improve some corresponding ones in the literature.
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1 Introduction
Let H and H be two real Hilbert spaces and C ⊂ H and Q ⊂ H be two nonempty
closed convex sets. Let A : H →H be a bounded linear operator with its adjoint A∗. Let
S : H →H and T : H →H be two nonlinear mappings.

The purpose of this paper is to study the following split feasibility and fixed point prob-
lems:

Find x∗ ∈ C ∩ Fix(T) such that Ax∗ ∈ Q ∩ Fix(S). (.)

We use � to denote the set of solutions of (.), that is,

� =
{

x∗ : x∗ ∈ C ∩ Fix(T), Ax∗ ∈ Q ∩ Fix(S)
}

.

In the sequel, we assume � �= ∅.
A special case of the split feasibility and fixed point problems is the split feasibility prob-

lem (SFP):

Find x∗ ∈ C such that Ax∗ ∈ Q. (.)
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We use � to denote the set of solutions of (.), that is,

� =
{

x∗ : x∗ ∈ C, Ax∗ ∈ Q
}

.

The SFP in finite-dimensional Hilbert spaces was first introduced by Censor and Elfv-
ing [] for modeling inverse problems which arise from phase retrievals and in medical
image reconstruction []. Recently, it has been found that the SFP can be applied to study
intensity-modulated radiation therapy (IMRT) [–]. In the recent past, a wide variety of
iterative algorithms have been used in signal processing and image reconstruction and for
solving the SFP; see, for example, [, , –] and the references therein (see also [–]
for relevant projection methods for solving image recovery problems).

The original algorithm given in [] involves the computation of the inverse A– (as-
suming the existence of the inverse of A), and thus does not become popular. A seem-
ingly more popular algorithm that solves the SFP is the CQ algorithm presented by
Byrne []:

xn+ = PC
(
I – γ A∗(I – PQ)A

)
xn, n ≥ , (.)

where the initial guess x ∈ H and γ ∈ (, 
λ

), with λ being the largest eigenvalue of the
matrix A∗A. Algorithm (.) is found to be a gradient-projection method (GPM) in convex
minimization. It is also a special case of the proximal forward-backward splitting method
[]. The CQ algorithm only involves the computations of the projections PC and PQ onto
the sets C and Q, respectively.

Many authors have also made a continuation of the study on the CQ algorithm and its
variant form, refer to [–]. In , Xu [] applied a Mann-type iterative algorithm to
the SFP and proposed an average CQ algorithm which was proven to be weakly conver-
gent to a solution of the SFP. He derived a weak convergence result, which shows that for
suitable choices of iterative paraments, the sequence of iterative algorithm solutions can
converge weakly to an exact solution of the SFP.

On the other hand, in , to study the saddle point problem, Korpelevich [] intro-
duced the so-called extra-gradient method:

⎧
⎨

⎩
yn = PC(xn – λAxn),

xn+ = PC(xn – λAyn), n ≥ ,

where λ > , operator A is both strongly monotone and Lipschitz continuous.
Very recently, Ceng et al. [] studied extra-gradient method for finding a common ele-

ment of the solution set � of the SFP and the set Fix(S) of fixed points of a nonexpansive
mapping S in the setting of infinite-dimensional Hilbert spaces. Motivated and inspired
by Nadezhkina and Takahashi [], the authors proposed an iterative algorithm in the
following manner:

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = PC(I – λn∇f )xn,

xn+ = βnxn + ( – βn)SPC(xn – λn∇f (yn)), n ≥ ,

(.)
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where {λn} ⊂ [a, b] for some a, b ∈ (, 
‖A‖ ) and {βn} ⊂ [c, d] for some c, d ∈ (, ). The

authors proved that the sequences generated by (.) converge weakly to an element x ∈
� ∩ Fix(S).

In , Yao et al. [] studied the split feasibility and fixed point problems. They con-
structed an iterative algorithm in the following way:

⎧
⎨

⎩
un = PC(αnu + ( – αn)(xn – δA∗(I – SPQ)Axn)),

xn+ = ( – βn)un + βnT(( – γn)un + γnTun), n ≥ ,
(.)

where {αn}, {βn}, {γn} are three real number sequences in (, ) and δ is a constant in
(, 

‖A‖ ). The authors proved that the sequences generated by (.) converge strongly to a
solution of the split feasibility and fixed point problems.

In this paper, motivated by the work of Ceng et al. [], Yao et al. [], we propose an
Ishikawa-type extra-gradient iterative algorithm for finding a solution of the split feasi-
bility and fixed point problems involved in pseudo-contractive mappings with Lipschitz
assumption. On the other hand, we also suggest a Mann-type extra-gradient iterative al-
gorithm for finding a solution of the split feasibility and fixed point problems involved in
pseudo-contractive mappings without Lipschitz assumption. We establish weak conver-
gence theorems for the sequences generated by the proposed iterative algorithms. Our
results substantially improve and develop the corresponding results in [, –]; for ex-
ample, [], Theorem ., [], Theorem ., [], Theorem . and [], Theorem .. It
is noteworthy that our results are new and novel.

2 Preliminaries
Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let C be a nonempty closed convex subset of H. We write xn ⇀ x to indicate
that the sequence {xn} converges weakly to x and xn → x to indicate that the sequence
{xn} converges strongly to x. Moreover, we use ωw(xn) to denote the weak ω-limit set of
the sequence {xn}, that is,

ωw(xn) =
{

x : xni ⇀ x for some subsequence {xni} of {xn}
}

.

Projections are an important tool for our work in this paper. Recall that the (nearest
point or metric) projection from H onto C, denoted by PC , is defined in such a way that,
for each x ∈H, PCx is the unique point in C with the property

‖x – PCx‖ = min
{‖x – y‖ : y ∈ C

}
.

Some important properties of projections are gathered in the following proposition.

Proposition . Given x ∈H and z ∈ C,
() z = PCx ⇔ 〈x – z, y – z〉 ≤  for all y ∈ C;
() z = PCx ⇔ ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖ for all y ∈ C;
() 〈x – y, PCx – PCy〉 ≥ ‖PCx – PCy‖ for all y ∈H, which hence implies that PC is

nonexpansive.
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We also need other sorts of nonlinear operators which are stated as follows.

Definition . A nonlinear operator T : H →H is said to be
() L-Lipschitzian if there exists L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈H;

if L = , we call T nonexpansive;
() firmly nonexpansive if T – I is nonexpansive, or equivalently,

〈x – y, Tx – Ty〉 ≥ ‖Tx – Ty‖, ∀x, y ∈H;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =



(I + S),

where S : H →H is nonexpansive;
() monotone if

〈x – y, Tx – Ty〉 ≥ , ∀x, y ∈H;

() β-strongly monotone, with β > , if

〈x – y, Tx – Ty〉 ≥ β‖x – y‖, ∀x, y ∈H;

() ν-inverse strongly monotone (ν-ism), with ν > , if

〈x – y, Tx – Ty〉 ≥ ν‖Tx – Ty‖, ∀x, y ∈H.

Inverse strongly monotone (also referred to as co-coercive) operators have been widely
applied in solving practical problems in various fields, for instance, in traffic assignment
problems; see, for example, [, ].

It is well known that metric projection PC : H → C is firmly nonexpansive, that is,

〈x – y, PCx – PCy〉 ≥ ‖PCx – PCy‖

⇔ ‖PCx – PCy‖ ≤ ‖x – y‖ –
∥∥(I – PC)x – (I – PC)y

∥∥, ∀x, y ∈H. (.)

For all x, y ∈H, the following conclusions hold:

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖, t ∈ [, ] (.)

and

‖x + y‖ = ‖x‖ + 〈x, y〉 + ‖y‖. (.)

On the other hand, in a real Hilbert space H, a mapping T : C → C is called pseudo-
contractive if

〈Tx – Ty, x – y〉 ≤ ‖x – y‖, ∀x, y ∈ C.
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It is well known that T is a pseudo-contractive mapping if and only if

‖Tx – Ty‖ ≤ ‖x – y‖ +
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C. (.)

The notation Fix(T) denotes the set of fixed points of the mapping T , that is, Fix(T) = {x ∈
H : Tx = x}.

Proposition . [] Let T : H →H be a given mapping.
() T is nonexpansive if and only if the complement I – T is 

 -ism.
() If T is ν-ism, then for γ > , γ T is ν

γ
-ism.

() T is averaged if and only if the complement I – T is ν-ism for some ν > 
 . Indeed, for

α ∈ (, ), T is α-averaged if and only if I – T is 
α

-ism.

Proposition . Let T be a pseudo-contractive mapping with the nonempty fixed point
set Fix(T), then the following conclusion holds:

〈
Ty – y, Ty – x∗〉 ≤ ‖Ty – y‖, ∀y ∈ C,∀x∗ ∈ Fix(T).

Proof From the definition of a pseudo-contractive mapping T , we have

〈
Ty – y, Ty – x∗〉 = ‖Ty – y‖ +

〈
Ty – y, y – x∗〉

= ‖Ty – y‖ +
〈
Ty – x∗, y – x∗〉 –

∥∥y – x∗∥∥

≤ ‖Ty – y‖. �

Generally speaking, pseudo-contractive mappings are assumed to be L-Lipschitzian
with L > . Next, to overcome the L-Lipschitzian property, we assume that the pseudo-
contractive mapping T satisfies the following condition:

〈
Ty – y, Ty – x∗〉 ≤ , ∀y ∈ C,∀x∗ ∈ Fix(T). (.)

The following demiclosedness principle for pseudo-contractive mappings will often be
used in the sequel.

Lemma . [] Let H be a real Hilbert space, C be a closed convex subset of H. Let T :
C → C be a continuous pseudo-contractive mapping. Then

() Fix(T) is a closed convex subset of C;
() (I – T) is demiclosed at zero.

The following result is useful when we prove weak convergence of a sequence.

Lemma . [] Let H be a Hilbert space and {xn} be a bounded sequence in H such that
there exists a nonempty closed convex set C of H satisfying:

() for every w ∈ C, limn→∞ ‖xn – w‖ exists;
() each weak-cluster point of the sequence {xn} is in C.

Then {xn} converges weakly to a point in C.
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We can use fixed point algorithms to solve the SFP on the basis of the following obser-
vation.

Let λ >  and assume that x∗ solves the SFP. Then Ax∗ ∈ Q, which implies that (I –
PQ)Ax∗ = , and thus, λ(I – PQ)Ax∗ = . Hence, we have the fixed point equation x∗ =
(I – λA∗(I – PQ)A)x∗. Requiring that x∗ ∈ C, we consider the fixed point equation

x∗ = PC
(
I – λA∗(I – PQ)A

)
x∗ = PC(I – λ∇f )x∗. (.)

It is proven in [] that the solutions of the fixed point equation (.) are exactly the so-
lutions of the SFP; namely, for given x∗ ∈ H, x∗ solves the SFP if and only if x∗ solves the
fixed point equation (.).

3 Ishikawa-type extra-gradient iterative algorithm involved in
pseudo-contractive mappings with Lipschitz assumption

We are now in a position to propose an Ishikawa-type extra-gradient iterative algorithm
for solving the split feasibility and fixed point problems involved in pseudo-contractive
mappings with Lipschitz assumption.

Theorem . Let H and H be two real Hilbert spaces and let C ⊂H and Q ⊂H be two
nonempty closed convex sets. Let A : H →H be a bounded linear operator. Let S : Q → Q
be a nonexpansive mapping and let T : C → C be an L-Lipschitzian pseudo-contractive
mapping with L > . For x ∈H arbitrarily, let {xn} be a sequence defined by the following
Ishikawa-type extra-gradient iterative algorithm:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yn = PC(xn – λnA∗(I – SPQ)Axn),

zn = PC(xn – λnA∗(I – SPQ)Ayn),

wn = ( – αn)zn + αnTzn,

xn+ = ( – βn)zn + βnTwn, n ≥ ,

(.)

where {λn} ⊂ (, 
‖A‖ ) and {αn}, {βn} ⊂ (, ) such that  < a < βn < c < αn < b < √

+L+
.

Then the sequence {xn} generated by algorithm (.) converges weakly to an element of �.

Proof Taking x∗ ∈ �, we have x∗ ∈ C ∩ Fix(T) and Ax∗ ∈ Q ∩ Fix(S). For simplicity, we
write ∇f S = A∗(I – SPQ)A, vn = PQAxn, un = xn – λnA∗(I – SPQ)Axn for all n ≥ . Thus, we
have yn = PCun for all n ≥ . By (.), we get

∥∥Svn – Ax∗∥∥ =
∥∥SPQAxn – SPQAx∗∥∥

≤ ∥∥PQAxn – PQAx∗∥∥

≤ ∥∥Axn – Ax∗∥∥ – ‖vn – Axn‖. (.)

Since PC is nonexpansive, using (.), we get

∥∥yn – x∗∥∥ =
∥∥PCun – x∗∥∥ ≤ ∥∥un – x∗∥∥

=
∥∥xn – x∗∥∥ + λn

〈
xn – x∗, A∗(Svn – Axn)

〉
+ λ

n
∥∥A∗(Svn – Axn)

∥∥. (.)
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Since A is a linear operator with its adjoint A∗, we have

〈
xn – x∗, A∗(Svn – Axn)

〉
=

〈
Axn – Ax∗, Svn – Axn

〉

=
〈
Axn – Ax∗ + Svn – Axn – (Svn – Axn), Svn – Axn

〉

=
〈
Svn – Ax∗, Svn – Axn

〉
– ‖Svn – Axn‖. (.)

Again using (.), we obtain

〈
Svn – Ax∗, Svn – Axn

〉
=



(∥∥Svn – Ax∗∥∥ + ‖Svn – Axn‖ –

∥∥Axn – Ax∗∥∥). (.)

From (.), (.) and (.), we get

〈
xn – x∗, A∗(Svn – Axn)

〉

=


(∥∥Svn – Ax∗∥∥ + ‖Svn – Axn‖ –

∥∥Axn – Ax∗∥∥) – ‖Svn – Axn‖

≤ 

(∥∥Axn – Ax∗∥∥ – ‖vn – Axn‖ + ‖Svn – Axn‖ –

∥∥Axn – Ax∗∥∥)

– ‖Svn – Axn‖

= –


‖vn – Axn‖ –



‖Svn – Axn‖. (.)

Substituting (.) into (.) and by the assumption of {λn}, we deduce

∥∥yn – x∗∥∥

≤ ∥∥xn – x∗∥∥ + λn

(
–



‖vn – Axn‖ –



‖Svn – Axn‖

)
+ λ

n‖A‖‖Svn – Axn‖

=
∥∥xn – x∗∥∥ – λn‖vn – Axn‖ – λn

(
 – λn‖A‖)‖Svn – Axn‖

≤ ∥∥xn – x∗∥∥. (.)

Since S and PQ are nonexpansive, we know that composition operator SPQ is still nonex-
pansive. By Proposition .() the complement I – SPQ is 

 -ism. Therefore, it is easy to see
that ∇f S = A∗(I – SPQ)A is 

‖A‖ -ism, that is,

〈
x – y,∇f S(x) – ∇f S(y)

〉 ≥ 
‖A‖

∥∥∇f S(x) – ∇f S(y)
∥∥. (.)

This together with Proposition .() implies that

∥∥zn – x∗∥∥

≤ ∥∥xn – λn∇f S(yn) – x∗∥∥ –
∥∥xn – λn∇f S(yn) – zn

∥∥

=
∥∥xn – x∗∥∥ – ‖xn – zn‖ + λn

〈∇f S(yn), x∗ – zn
〉

=
∥∥xn – x∗∥∥ – ‖xn – zn‖ + λn

(〈∇f S(yn) – ∇f S(x∗), x∗ – yn
〉

+
〈∇f S(x∗), x∗ – yn

〉
+

〈∇f S(yn), yn – zn
〉)
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≤ ∥∥xn – x∗∥∥ – ‖xn – zn‖ + λn
〈∇f S(yn), yn – zn

〉

=
∥∥xn – x∗∥∥ – ‖xn – yn‖ – ‖yn – zn‖ + 

〈
xn – λn∇f S(yn) – yn, zn – yn

〉
.

Further, by Proposition .() and (.), we have

〈
xn – λn∇f S(yn) – yn, zn – yn

〉

=
〈
xn – λn∇f S(xn) – yn, zn – yn

〉
+ λn

〈∇f S(xn) – ∇f S(yn), zn – yn
〉

≤ λn
〈∇f S(xn) – ∇f S(yn), zn – yn

〉

≤ λn
∥∥∇f S(xn) – ∇f S(yn)

∥∥‖zn – yn‖
≤ λn‖A‖‖xn – yn‖‖zn – yn‖.

By the assumption of {λn}, we obtain

∥∥zn – x∗∥∥

≤ ∥∥xn – x∗∥∥ – ‖xn – yn‖ – ‖yn – zn‖ + 
〈
xn – λn∇f S(yn) – yn, zn – yn

〉

≤ ∥∥xn – x∗∥∥ – ‖xn – yn‖ – ‖yn – zn‖ + λn‖A‖‖xn – yn‖‖zn – yn‖
≤ ∥∥xn – x∗∥∥ – ‖xn – yn‖ – ‖yn – zn‖ + ‖zn – yn‖ + λ

n‖A‖‖xn – yn‖

=
∥∥xn – x∗∥∥ –

(
 – λ

n‖A‖)‖xn – yn‖

≤ ∥∥xn – x∗∥∥. (.)

Similarly, we have

∥∥zn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ –
(
 – λ

n‖A‖)‖zn – yn‖

≤ ∥∥xn – x∗∥∥.

From (.), we have

∥∥Tzn – x∗∥∥ ≤ ∥∥zn – x∗∥∥ + ‖zn – Tzn‖ (.)

and

∥∥Twn – x∗∥∥ =
∥∥T

(
( – αn)zn + αnTzn

)
– x∗∥∥

≤ ∥∥( – αn)
(
zn – x∗) + αn

(
Tzn – x∗)∥∥

+
∥∥( – αn)zn + αnTzn – T

(
( – αn)zn + αnTzn

)∥∥. (.)

Applying equality (.), we have

∥∥( – αn)zn + αnTzn – T
(
( – αn)zn + αnTzn

)∥∥

=
∥∥( – αn)

(
zn – T

(
( – αn)zn + αnTzn

))
+ αn

(
Tzn – T

(
( – αn)zn + αnTzn

))∥∥
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= ( – αn)
∥∥zn – T

(
( – αn)zn + αnTzn

)∥∥ + αn
∥∥Tzn – T

(
( – αn)zn + αnTzn

)∥∥

– αn( – αn)‖zn – Tzn‖. (.)

Since T is L-Lipschitzian and zn – (( – αn)zn + αnTzn) = αn(zn – Tzn), by (.), we have

∥∥( – αn)zn + αnTzn – T
(
( – αn)zn + αnTzn

)∥∥

≤ ( – αn)
∥∥zn – T

(
( – αn)zn + αnTzn

)∥∥ + α
nL‖zn – Tzn‖

– αn( – αn)‖zn – Tzn‖

= ( – αn)
∥∥zn – T

(
( – αn)zn + αnTzn

)∥∥ +
(
α

nL + α
n – αn

)‖zn – Tzn‖. (.)

By (.) and (.), we have

∥∥( – αn)
(
zn – x∗) + αn

(
Tzn – x∗)∥∥

= ( – αn)
∥∥zn – x∗∥∥ + αn

∥∥Tzn – x∗∥∥ – αn( – αn)‖zn – Tzn‖

≤ ( – αn)
∥∥zn – x∗∥∥ + αn

(∥∥zn – x∗∥∥ + ‖zn – Tzn‖) – αn( – αn)‖zn – Tzn‖

=
∥∥zn – x∗∥∥ + α

n‖zn – Tzn‖. (.)

From (.), (.) and (.), we deduce

∥∥Twn – x∗∥∥ =
∥∥T

(
( – αn)zn + αnTzn

)
– x∗∥∥

≤ ∥∥zn – x∗∥∥ + ( – αn)
∥∥zn – T

(
( – αn)zn + αnTzn

)∥∥

– αn
(
 – αn – α

nL)‖zn – Tzn‖. (.)

Since αn < b < √
+L+

, we derive that

 – αn – α
nL > , n ≥ .

This together with (.) implies that

∥∥Twn – x∗∥∥ =
∥∥T

(
( – αn)zn + αnTzn

)
– x∗∥∥

≤ ∥∥zn – x∗∥∥ + ( – αn)
∥∥zn – T

(
( – αn)zn + αnTzn

)∥∥. (.)

By (.), (.) and (.), we have

∥∥xn+ – x∗∥∥ =
∥∥( – βn)zn + βnTwn – x∗∥∥

=
∥∥( – βn)zn + βnT

(
( – αn)zn + αnTzn

)
– x∗∥∥

= ( – βn)
∥
∥zn – x∗∥∥ + βn

∥∥T
(
( – αn)zn + αnTzn

)
– x∗∥∥

– βn( – βn)
∥∥zn – T

(
( – αn)zn + αnTzn

)∥∥

≤ ∥∥zn – x∗∥∥ – βn(αn – βn)
∥∥zn – T

(
( – αn)zn + αnTzn

)∥∥

≤ ∥∥zn – x∗∥∥. (.)
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This together with (.) implies that

∥∥xn+ – x∗∥∥ ≤ ∥∥xn – x∗∥∥

for every x∗ ∈ � and for all n ≥ . Thus, {xn} generated by algorithm (.) is the Féjer-
monotone with respect to �. So, we obtain limn→∞ ‖xn – x∗‖ exists immediately, this im-
plies that {xn} is bounded, the sequence {‖xn – x∗‖} is monotonically decreasing. Addi-
tionally, we get the boundedness of {yn} and {zn} from (.) and (.) immediately.

Returning to (.) and (.), we have

∥∥xn+ – x∗∥∥ ≤ ∥∥zn – x∗∥∥

≤ ∥∥xn – x∗∥∥ –
(
 – λ

n‖A‖)‖xn – yn‖.

Hence,

(
 – λ

n‖A‖)‖xn – yn‖ ≤ ∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥,

which implies that

lim
n→∞‖xn – yn‖ = . (.)

Similarly, we have

lim
n→∞‖zn – yn‖ = .

From (.) and (.), we have

λn‖vn – Axn‖ + λn
(
 – λn‖A‖)‖Svn – Axn‖

≤ ∥∥xn – x∗∥∥ –
∥∥yn – x∗∥∥

≤ (∥∥xn – x∗∥∥ +
∥∥yn – x∗∥∥)‖xn – yn‖,

which implies that

lim
n→∞‖vn – Axn‖ = lim

n→∞‖Svn – Axn‖ = .

So,

lim
n→∞‖vn – Svn‖ = .

From (.) and (.), we deduce

∥
∥xn+ – x∗∥∥ ≤ ∥∥zn – x∗∥∥ – βn(αn – βn)

∥∥zn – T
(
( – αn)zn + αnTzn

)∥∥

≤ ∥∥xn – x∗∥∥ – βn(αn – βn)
∥∥zn – T

(
( – αn)zn + αnTzn

)∥∥.
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It follows that

βn(αn – βn)
∥∥zn – T

(
( – αn)zn + αnTzn

)∥∥ ≤ ∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥.

Therefore,

lim
n→∞

∥∥zn – T
(
( – αn)zn + αnTzn

)∥∥ = . (.)

Observe that

‖zn – Tzn‖ ≤ ∥∥zn – T
(
( – αn)zn + αnTzn

)∥∥ +
∥∥T

(
( – αn)zn + αnTzn

)
– Tzn

∥∥

≤ ∥∥zn – T
(
( – αn)zn + αnTzn

)∥∥ + αnL‖zn – Tzn‖.

Thus,

‖zn – Tzn‖ ≤ 
 – αnL

∥∥zn – T
(
( – αn)zn + αnTzn

)∥∥.

This together with (.) implies that

lim
n→∞‖zn – Tzn‖ = .

Using the firm nonexpansiveness of PC , (.) and (.), we have

∥∥yn – x∗∥∥ =
∥∥PCun – x∗∥∥ ≤ ∥∥un – x∗∥∥ – ‖PCun – un‖

≤ ∥∥xn – x∗∥∥ – ‖yn – un‖.

It follows that

‖yn – un‖ ≤ ∥∥xn – x∗∥∥ –
∥∥yn – x∗∥∥

≤ (∥∥xn – x∗∥∥ +
∥∥yn – x∗∥∥)‖xn – yn‖.

From (.), we deduce

lim
n→∞‖yn – un‖ = .

Since the sequence {xn} is bounded, we can choose a subsequence {xni} of {xn} such that
xni ⇀ x̂. Consequently, we derive from the above conclusions that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xni ⇀ x̂,
yni ⇀ x̂,
uni ⇀ x̂,
zni ⇀ x̂

and

{
Axni ⇀ Ax̂,
vni ⇀ Ax̂.

(.)

Applying Lemma ., we deduce

x̂ ∈ Fix(T) and Ax̂ ∈ Fix(S).
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Note that yni = PCuni ∈ C and vni = PQAxni . From (.), we deduce

x̂ ∈ C and Ax̂ ∈ Q.

To this end, we deduce

x̂ ∈ C ∩ Fix(T) and Ax̂ ∈ Q ∩ Fix(S).

That is to say, x̂ ∈ �. This shows that ωw(xn) ⊂ �. Since the limn→∞ ‖xn – x∗‖ exists
for every x∗ ∈ �, the weak convergence of the whole sequence {xn} follows by applying
Lemma .. This completes the proof. �

Remark . Theorem . improves, extends and develops [], Theorem ., [], Theo-
rem ., [], Theorem . and [], Theorem . in the following aspects.

• Theorem . extends the extra-gradient method due to Nadezhkina and Takahashi
[], Theorem ..

• The corresponding iterative algorithms in [], Theorem . and [], Theorem .
are extended for developing our Ishikawa-type extra-gradient iterative algorithm
involved in pseudo-contractive mappings with Lipschitz assumption in Theorem ..

• The technique of proving weak convergence in Theorem . is different from those in
[], Theorem . and [], Theorem . because our technique depends only on the
demiclosedness principle for pseudo-contractive mappings in Hilbert spaces.

• The problem of finding an element of � is more general than the problem of finding a
solution of the SFP in [], Theorem . and the problem of finding an element of
� ∩ Fix(S) with S : C → C being a nonexpansive mapping in [], Theorem ..

• Algorithm . of Yao et al. [] is extended to develop the Ishikawa-type
extra-gradient iterative algorithm in our Theorem . by virtue of the extra-gradient
method.

Furthermore, we can immediately obtain the following weak convergence results.

Corollary . LetH andH be two real Hilbert spaces and let C ⊂H and Q ⊂H be two
nonempty closed convex sets. Let A : H →H be a bounded linear operator. Let S : Q → Q
be a nonexpansive mapping and let T : C → C be an L-Lipschitzian pseudo-contractive
mapping with L > . For x ∈H arbitrarily, let {xn} be a sequence defined by the following
Ishikawa-type iterative algorithm:

⎧
⎪⎪⎨

⎪⎪⎩

yn = PC(xn – λnA∗(I – SPQ)Axn),

zn = ( – αn)yn + αnTyn,

xn+ = ( – βn)yn + βnTzn, n ≥ ,

(.)

where {λn} ⊂ (, 
‖A‖ ) and {αn}, {βn} ⊂ (, ) such that  < a < βn < c < αn < b < √

+L+
.

Then the sequence {xn} generated by algorithm (.) converges weakly to an element of �.

Proof Taking x∗ ∈ �, we have x∗ ∈ C ∩ Fix(T) and Ax∗ ∈ Q ∩ Fix(S). For simplicity, we
write vn = PQAxn, un = xn – λnA∗(I – SPQ)Axn for all n ≥ . Thus, we have yn = PCun for all
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n ≥ . Similarly to Theorem ., we have

∥∥yn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ – λn‖vn – Axn‖ – λn
(
 – λn‖A‖)‖Svn – Axn‖ (.)

and

∥∥xn+ – x∗∥∥ ≤ ∥∥yn – x∗∥∥. (.)

Thus, the boundedness of the sequence {xn} yields our result.
From (.) and (.), we have

lim
n→∞‖vn – Axn‖ = lim

n→∞‖Svn – Axn‖ = . (.)

So,

lim
n→∞‖vn – Svn‖ = .

Using the firm nonexpansiveness of PC , we have

∥∥yn – x∗∥∥ =
∥∥PCun – x∗∥∥ ≤ ∥∥un – x∗∥∥ – ‖PCun – un‖

≤ ∥∥xn – x∗∥∥ – ‖yn – un‖.

This together with (.) implies that

‖yn – un‖ ≤ ∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥.

Hence,

lim
n→∞‖yn – un‖ = . (.)

By setting un = xn – λnA∗(I – SPQ)Axn, it follows from (.) that

lim
n→∞‖un – xn‖ = .

This together with (.) implies that

lim
n→∞‖xn – yn‖ = .

As in the proof of Theorem ., we have limn→∞ ‖yn – Tyn‖ = .
Therefore, all the conditions in Theorem . are satisfied. The conclusion of Corol-

lary . can be obtained from Theorem . immediately. �

Corollary . LetH andH be two real Hilbert spaces and let C ⊂H and Q ⊂H be two
nonempty closed convex sets. Let A : H →H be a bounded linear operator. Let T : C → C
be an L-Lipschitzian pseudo-contractive mapping with L >  such that � ∩ Fix(T) �= ∅. For
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x ∈ H arbitrarily, let {xn} be a sequence defined by the following Ishikawa-type extra-
gradient iterative algorithm:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yn = PC(xn – λnA∗(I – PQ)Axn),

zn = PC(xn – λnA∗(I – PQ)Ayn),

wn = ( – αn)zn + αnTzn,

xn+ = ( – βn)zn + βnTwn, n ≥ ,

(.)

where {λn} ⊂ (, 
‖A‖ ) and {αn}, {βn} ⊂ (, ) such that  < a < βn < c < αn < b < √

+L+
.

Then the sequence {xn} generated by algorithm (.) converges weakly to an element of
� ∩ Fix(T).

Remark . Corollary . improves, extends and develops [], Theorem . and [],
Theorem . in the following aspects.

• Compared with [], Theorem ., Corollary . is essentially coincident with [],
Theorem . whenever αn =  and T is a nonexpansive mapping in the scheme (.).

• The problem of finding an element of � ∩ Fix(T) with T : C → C being a
pseudo-contractive mapping is more general than the problem of finding a solution of
the SFP in [], Theorem . and the problem of finding an element of � ∩ Fix(S)
with S : C → C being a nonexpansive mapping in [], Theorem ..

4 Mann-type extra-gradient iterative algorithm involved in
pseudo-contractive mappings without Lipschitz assumption

We are now in a position to propose a Mann-type extra-gradient iterative algorithm for
solving the split feasibility and fixed point problems involved in pseudo-contractive map-
pings without Lipschitz assumption.

Theorem . Let H and H be two real Hilbert spaces and let C ⊂ H and Q ⊂ H be
two nonempty closed convex sets. Let A : H → H be a bounded linear operator. Let S :
Q → Q be a nonexpansive mapping and let T : C → C be a continuous pseudo-contractive
mapping. For x ∈H arbitrarily, let {xn} be a sequence defined by the following Mann-type
extra-gradient iterative algorithm:

⎧
⎪⎪⎨

⎪⎪⎩

yn = PC(xn – λnA∗(I – SPQ)Axn),

zn = PC(xn – λnA∗(I – SPQ)Ayn),

xn+ = ( – αn)zn + αnTzn, n ≥ ,

(.)

where {λn} ⊂ (, 
‖A‖ ) and {αn} ⊂ (, ) such that lim infn→∞ αn( – αn) > .

Then the sequence {xn} generated by algorithm (.) converges weakly to an element
of �.

Proof Taking x∗ ∈ �, we have x∗ ∈ C ∩ Fix(T) and Ax∗ ∈ Q ∩ Fix(S). For simplicity, we
write un = xn – λnA∗(I – SPQ)Axn for all n ≥ . Thus, we have yn = PCun for all n ≥ . As is
proven in Theorem .,

∥∥yn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ – λn‖vn – Axn‖ – λn
(
 – λn‖A‖)‖Svn – Axn‖ (.)
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and

∥∥zn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ –
(
 – λ

n‖A‖)‖xn – yn‖. (.)

Similarly, we have

∥∥zn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ –
(
 – λ

n‖A‖)‖zn – yn‖.

From (.), (.), (.) and (.), we obtain that

∥∥xn+ – x∗∥∥ =
∥∥( – αn)zn + αnTzn – x∗∥∥

= ( – αn)
∥∥zn – x∗∥∥ + αn

∥∥Tzn – x∗∥∥ – αn( – αn)‖zn – Tzn‖

= ( – αn)
∥∥zn – x∗∥∥ + αn

〈
Tzn – zn, Tzn – x∗〉

+ αn
〈
zn – x∗, Tzn – x∗〉 – αn( – αn)‖zn – Tzn‖

≤ ∥∥zn – x∗∥∥ – αn( – αn)‖zn – Tzn‖

≤ ∥∥xn – x∗∥∥ –
(
 – λ

n‖A‖)‖xn – yn‖ – αn( – αn)‖zn – Tzn‖. (.)

It follows from the assumption of {λn} that

∥∥xn+ – x∗∥∥ ≤ ∥∥xn – x∗∥∥.

As the same argument of Theorem ., the boundedness of the sequence {xn} yields our
result.

Returning to (.), we have

αn( – αn)‖zn – Tzn‖ +
(
 – λ

n‖A‖)‖xn – yn‖

≤ ∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥.

Therefore, by the assumption of {αn}, we have

lim
n→∞‖zn – Tzn‖ = ,

and by the assumption of {λn}, we have

lim
n→∞‖xn – yn‖ = . (.)

Similarly, we have

lim
n→∞‖zn – yn‖ = .

Returning to (.), we have

λn‖vn – Axn‖ + λn
(
 – λn‖A‖)‖Svn – Axn‖

≤ ∥∥xn – x∗∥∥ –
∥∥yn – x∗∥∥

≤ (∥∥xn – x∗∥∥ +
∥∥yn – x∗∥∥)‖xn – yn‖.



Chen et al. Fixed Point Theory and Applications  (2015) 2015:192 Page 16 of 21

From (.) and by the assumption of {λn}, we have

lim
n→∞‖vn – Axn‖ = lim

n→∞‖Svn – Axn‖ = . (.)

So,

lim
n→∞‖vn – Svn‖ = .

By setting un = xn – λnA∗(I – SPQ)Axn, it follows from (.) that

lim
n→∞‖un – xn‖ = .

This together with (.) implies that

lim
n→∞‖un – yn‖ = .

Therefore, all the conditions in Theorem . are satisfied. The conclusion of Theorem .
can be obtained from Theorem . immediately. �

Remark . Theorem . improves, extends and develops [], Theorem ., [], The-
orem ., [], Theorem . and [], Theorem . in the following aspects.

• Theorem . extends the extra-gradient method due to Nadezhkina and Takahashi
[], Theorem ..

• The corresponding iterative algorithms in [], Theorem . and [], Theorem .
are extended for developing our Mann-type extra-gradient iterative algorithm
involved in pseudo-contractive mappings without Lipschitz assumption in
Theorem ..

• The technique of proving weak convergence in Theorem . is different from those in
[], Theorem . and [], Theorem . because our technique depends on the
demiclosedness principle for pseudo-contractive mappings and bases on condition
(.) in Hilbert spaces.

• The problem of finding an element of � is more general than the problem of finding a
solution of the SFP in [], Theorem . and the problem of finding an element of
� ∩ Fix(S) with S : C → C being a nonexpansive mapping in [], Theorem ..

• In Algorithm . of [], Yao et al. proposed the following iterative algorithm:

un = PC
(
αnu + ( – αn)

(
xn – δA∗(I – SPQ)Axn

))
,

xn+ = ( – βn)un + βnT
(
( – γn)un + γnTun

)
, n ≥ .

Via replacing the first iterative step by the extra-gradient method and replacing the
second iterative step by the Mann-type iterative algorithm, we obtain the Mann-type
extra-gradient iterative algorithm (.) in Theorem ..

Utilizing Theorem ., we have the following two new results in the setting of real Hilbert
spaces.
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Corollary . Let H and H be two real Hilbert spaces and let C ⊂ H and Q ⊂ H be
two nonempty closed convex sets. Let A : H → H be a bounded linear operator. Let S :
Q → Q be a nonexpansive mapping and let T : C → C be a continuous pseudo-contractive
mapping. For x ∈H arbitrarily, let {xn} be a sequence defined by the following Mann-type
iterative algorithm:

⎧
⎨

⎩
yn = PC(xn – λnA∗(I – SPQ)Axn),

xn+ = ( – αn)yn + αnTyn, n ≥ ,
(.)

where {λn} ⊂ (, 
‖A‖ ) and {αn} ⊂ (, ) such that lim infn→∞ αn( – αn) > .

Then the sequence {xn} generated by algorithm (.) converges weakly to an element of �.

Proof Taking an x∗ ∈ �, we have x∗ ∈ C ∩ Fix(T) and Ax∗ ∈ Q ∩ Fix(S). For simplicity,
we write un = xn – λnA∗(I – SPQ)Axn for all n ≥ . Thus, we have yn = PCun for all n ≥ .
Similarly to Theorem .,

lim
n→∞‖yn – Tyn‖ = 

and

lim
n→∞‖vn – Axn‖ = lim

n→∞‖Svn – Axn‖ = lim
n→∞‖vn – Svn‖ = .

Similarly to Corollary .,

lim
n→∞‖un – yn‖ = lim

n→∞‖xn – yn‖ = .

Therefore, all the conditions in Theorem . are satisfied. The conclusion of Corol-
lary . can be obtained from Theorem . immediately. �

Corollary . Let H and H be two real Hilbert spaces and let C ⊂ H and Q ⊂ H

be two nonempty closed convex sets. Let A : H → H be a bounded linear operator. Let
T : C → C be a continuous pseudo-contractive mapping such that � ∩Fix(T) �= ∅. For x ∈
H arbitrarily, let {xn} be a sequence defined by the following Mann-type extra-gradient
iterative algorithm:

⎧
⎪⎪⎨

⎪⎪⎩

yn = PC(xn – λnA∗(I – PQ)Axn),

zn = PC(xn – λnA∗(I – PQ)Ayn),

xn+ = ( – αn)zn + αnTzn, n ≥ ,

(.)

where {λn} ⊂ (, 
‖A‖ ) and {αn} ⊂ (, ) such that lim infn→∞ αn( – αn) > .

Then the sequence {xn} generated by algorithm (.) converges weakly to an element of
� ∩ Fix(T).

Remark . Corollary . improves, extends and develops [], Theorem . and [],
Theorem . in the following aspects.
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• Compared with [], Theorem ., Corollary . is essentially coincident with [],
Theorem . whenever T is a nonexpansive mapping. Hence our Corollary .
includes [], Theorem . as a special case.

• The problem of finding an element of � ∩ Fix(T) with T : C → C being a
pseudo-contractive mapping is more general than the problem of finding a solution of
the SFP in [], Theorem . and the problem of finding an element of � ∩ Fix(S)
with S : C → C being a nonexpansive mapping in [], Theorem ..

Example . [] Let H = R with the inner product defined by 〈x, y〉 = xy for all x, y ∈ R
and the absolute-valued norm | · |. Let C = [, +∞) and Tx = x –  + 

x+ for all x ∈ C.
Obviously, Fix(T) = . It is easy to see that

〈Tx – Ty, x – y〉 =
〈
x –  +


x + 

– y +  –


y + 
, x – y

〉

≤
(

 –


(x + )(y + )

)
|x – y|

≤ |x – y|

and

|Tx – Ty| ≤
∣∣∣∣x –  +


x + 

– y +  –


y + 

∣∣∣∣

≤
∣∣∣∣ –


(x + )(y + )

∣∣∣∣|x – y|

≤ |x – y|

for all x, y ∈ C. But
∣∣∣∣T

(



)
– T()

∣∣∣∣ =



>



.

Thus, T is a Lipschitzian pseudo-contractive mapping but not a nonexpansive one.

The above example satisfies condition (.). Indeed, note that

〈Tx – , x – 〉 =
〈
x –  +


x + 

– , x – 
〉

≤
(

 –


x + 

)
|x – |

for all x ∈ C. Hence, we have

〈Tx – x, Tx – 〉 = |Tx – x| + 〈Tx – , x – 〉 – 〈x – , x – 〉

≤ |Tx – x| +
(

 –


x + 

)
|x – | – |x – |

= |Tx – x| –


x + 
|x – | ≤ |Tx – x|

for all x ∈ C.
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So, it follows that

〈Tx – x, Tx – 〉 = |Tx – x| + 〈Tx – , x – 〉 – 〈x – , x – 〉

≤ |Tx – x| +
(

 –


x + 

)
|x – | – |x – |

= |Tx – x| –


x + 
|x – |

=
(

 –


x + 

)

–


x + 
|x – |

= –
x – x + x

x + x + 
≤ 

for all x ∈ C. So, it is reasonable that we introduce condition (.) in Theorem .. Thus, we
can use condition (.) to replace the Lipschitz assumption of pseudo-contractive map-
pings when we study a split feasibility problem or other problems involved in pseudo-
contractive mappings.

5 Numerical example
In this section, we consider the following example to illustrate the theoretical result.

Let H = H = R with the inner product defined by 〈x, y〉 = xy for all x, y ∈ R and the
standard norm | · |. Let C = [, +∞) and Tx = x–+ 

x+ for all x ∈ C. Let Q = R and Sx = x
 +

for all x ∈ Q. Let Ax = 
 x for all x ∈ R. Let λn = , αn = 

 , βn = 
 . Let the sequence {xn} be

generated iteratively by (.), then the sequence {xn} converges to .

Figure 1 The convergence of {xn} with initial
value 8.

Figure 2 The convergence of {xn} with initial
value –2.
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Table 1 The initial value is number 8

n xn

0 8.000000000000000
1 7.232040784873107
2 6.576740838659221
3 6.018450105660861
4 5.543605651619651
...

...
96 3.000000139089063
97 3.000000115627270
98 3.000000096123055
99 3.000000079908846
100 3.000000066429678

Table 2 The initial value is number –2

n xn

0 –2.000000000000000
1 0.278571428571429
2 0.825823030475218
3 1.240382351822075
4 1.565072721297795
...

...
96 2.999999933179721
97 2.999999944451085
98 2.999999953821176
99 2.999999961610703
100 2.999999968086279

Solution: It is easy to see that A is a bounded linear operator with its adjoint A∗ = A,
Fix(T) =  and Fix(S) = 

 . It can be observed that all the assumptions of Theorem . are
satisfied. It is also easy to check that � = {}. We now rewrite (.) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn = PC( xn
 + 

 ),

zn = PC(xn – yn
 + 

 ),

wn = zn + 
(zn+) – 

 ,

xn+ = zn + 
(zn+) + 

zn+ 
(zn+) + 


– 

 , n ≥ .

Choosing initial values x =  and x = – respectively, we see that figures (see Figures 
and ) and numerical results (see Tables  and ) demonstrate Theorem ..
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