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Abstract
In this paper, we prove sharpened versions of some classical order-theoretic metrical
fixed point theorems due to Nieto and Rodríguez-López (Order 22(3):223-239, 2005)
using order-theoretic variants of completeness and continuity besides some another
notions such as: the ICC property, the DCC property, and theMCC property. In this
continuation, we further extend our results for Boyd-Wong type nonlinear
contractions. Finally, as an application of our certain newly proved results, we
establish the existence and uniqueness of solution of a first order periodic boundary
value problem.
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1 Introduction
Throughout this paper, the pair (X,�), stands for a nonempty set X equipped with a par-
tial order � often called an ordered set wherein x � y means y � x. Two elements x and
y in an ordered set (X,�) are said to be comparable if either x � y or x � y and denote it
by x ≺� y. A subset E of an ordered set (X,�) is called totally ordered if x ≺� y for all
x, y ∈ E. A self-mapping f defined on an ordered set (X,�) is called increasing (or isotone
or order-preserving) if for any x, y ∈ X, x � y implies f (x) � f (y). As per standard prac-
tice, we can define the notions of increasing, decreasing, monotone, bounded above and
bounded below sequences besides bounds (upper as well as lower) of a sequence in an
ordered set (X,�), which on the set of real numbers under natural ordering coincide with
their usual senses. Following O’Regan and Petruşel [], the triple (X, d,�) is called ordered
metric space wherein X denotes a nonempty set endowed with a metric d and a partial
order �. If in addition, d is a complete metric on X, then we say that (X, d,�) is an ordered
complete metric space.

In the recent years, a multitude of order-theoretic metrical fixed point theorems have
been proved for order-preserving contractions. In such results, the involved contraction
condition is considerably weakened as one is merely required to hold only on those ele-
ments which are comparable in the underlying partial ordering. The techniques involved
in the proofs of such results is the combination of ideas used in the contraction principle
together with the one employed in monotone iterative technique. This trend is essentially

© 2015 Kutbi et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13663-015-0446-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-015-0446-7&domain=pdf
mailto:mhimdad@gmail.com


Kutbi et al. Fixed Point Theory and Applications  (2015) 2015:198 Page 2 of 15

initiated by Turinici [, ]. Later, Ran and Reurings [] proved a slightly more natural
version of the corresponding fixed point theorems of Turinici (cf. [, ]) for continuous
monotone mappings with some applications to matrix equations. In the same lieu, Nieto
and Rodríguez-López [] proved some variants of Ran and Reuring fixed point theorem
for increasing mappings. Nieto and Rodríguez-López fixed point theorems were also ex-
tended by several authors (see [, –]).

Before discussing such results, we summarize some relevant basic terminologies needed
in our subsequent discussion. Throughout this manuscript, N stands for the set of natural
numbers and N for the set of whole numbers (i.e. N = N∪ {}).

Let (X, d,�) be an ordered metric space and {xn} a sequence in X. We adopt the following
notations.

(i) If {xn} is increasing and xn
d−→ x, then we denote it symbolically by xn ↑ x.

(ii) If {xn} is decreasing and xn
d−→ x, then we denote it symbolically by xn ↓ x.

(iii) If {xn} is monotone and xn
d−→ x, then we denote it symbolically by xn ↑↓ x.

Alam et al. [] formulated the following notions by using certain properties on ordered
metric space (in order to avoid the necessity of continuity requirement on underlying map-
ping) utilized by earlier authors especially from [, ] besides some other ones.

Definition  [] Let (X, d,�) be an ordered metric space. We say that
(i) (X, d,�) has the ICU (increasing-convergence-upper bound) property if every

increasing convergent sequence {xn} in X is bounded above by its limit (as an upper
bound), i.e.,

xn ↑ x ⇒ xn � x ∀n ∈N,

(ii) (X, d,�) has the DCL (decreasing-convergence-lower bound) property if every
decreasing convergent sequence {xn} in X is bounded below by its limit (as a lower
bound), i.e.,

xn ↓ x ⇒ xn � x ∀n ∈N, and

(iii) (X, d,�) has the MCB (monotone-convergence-boundedness) property if X has
both the ICU and the DCL property.

Alam et al. [] further weakened the notions embodied in Definition  as follows.

Definition  [] Let (X, d,�) be an ordered metric space. We say that
(i) (X, d,�) has the ICC (increasing-convergence-comparable) property if every

increasing convergent sequence {xn} in X has a subsequence {xnk } such that every
term of {xnk } is comparable with the limit of {xn}, i.e.,

xn ↑ x ⇒ ∃ a subsequence {xnk } of {xn} with xnk ≺� x ∀k ∈N,

(ii) (X, d,�) has the DCC (decreasing-convergence-comparable) property if every
decreasing convergent sequence {xn} in X has a subsequence {xnk } such that every
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term of {xnk } is comparable with the limit of {xn}, i.e.,

xn ↓ x ⇒ ∃ a subsequence {xnk } of {xn} with xnk ≺� x ∀k ∈N, and

(iii) (X, d,�) has the MCC (monotone-convergence-comparable) property if every
monotone convergent sequence {xn} in X has a subsequence {xnk } such that every
term of {xnk } is comparable with the limit of {xn}, i.e.,

xn ↑↓ x ⇒ ∃ a subsequence {xnk } of {xn} with xnk ≺� x ∀k ∈N.

Remark  For an ordered metric space:
ICU property ⇒ ICC property.
DCL property ⇒ DCC property.
MCB property ⇒ MCC property ⇒ ICC property as well as DCC property.

Jleli et al. [] formulated the following notion by using a certain property on an ordered
set (in order to prove the uniqueness of fixed points) utilized by Nieto and Rodríguez-
López [].

Definition  [] Let (X,�) be an ordered set and f a self-mappings on X. We say that
(X,�) is directed if for each pair x, y ∈ X, ∃z ∈ X such that x ≺� z and y ≺� z.

Notice that (X,�) is directed if and only if every pair of elements of X has a lower bound
or an upper bound (cf. []).

Definition  [] Let (X,�) be an ordered set and x, y ∈ X. A finite subset {z, z, . . . , zk} ⊆
X is called ≺�-chain between x and y if

(i) k ≥ ,
(ii) z = x and zk = y,

(iii) z ≺� z ≺� · · · ≺� zk– ≺� zk .

We denote by C(x, y,≺�) the class of all ≺�-chains between x and y. If (X,�) is directed
then C(x, y,≺�) is nonempty, for each x, y ∈ X (cf. []).

For the sake of completeness, we record the following well-known core results.

Theorem  (Nieto and Rodríguez-López []) Let (X, d,�) be an ordered metric space and
f a self-mapping on X. Suppose that the following conditions hold:

(a) (X, d) is complete,
(b) f is increasing,
(c) either f is continuous or (X, d,�) has the ICU property,
(d) there exists x ∈ X such that x � f (x),
(e) there exists α ∈ [, ) such that

d(fx, fy) ≤ αd(x, y) ∀x, y ∈ X with x ≺� y.

Then f has a fixed point.
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Theorem  (Nieto and Rodríguez-López []) Theorem  remains true if the conditions (c)
and (d) are replaced by the conditions (c)′ and (d)′, respectively (besides retaining the rest
of the hypotheses):

(c)′ either f is continuous or (X, d,�) has the DCL property,
(d)′ there exists x ∈ X such that x � f (x).

Theorem  (Nieto and Rodríguez-López []) In addition to the hypotheses of Theorem 
(resp. Theorem ), suppose that the following condition holds:

(f ) (X,�) is directed.

Then f has a unique fixed point.

Theorem  (Turinici []) Theorem  remains true if the condition (f) is replaced by the
following condition (besides retaining the rest of the hypotheses):

(f)′ C(x, y,≺�) is nonempty for each x, y ∈ X .

Recently, Alam et al. [] adopted the notions of completeness and continuity with re-
spect to order-theoretic metrical structure, which run as follows.

Definition  [] An ordered metric space (X, d,�) is called
(i) O-complete if every increasing Cauchy sequence in X converges,

(ii) O-complete if every decreasing Cauchy sequence in X converges, and
(iii) O-complete if every monotone Cauchy sequence in X converges.

Here it can be pointed out that the notion of O-completeness is previously defined by
Turinici [] by recalling that d is (�)-complete.

Remark  In an ordered metric space, completeness ⇒ O-completeness ⇒ O-com-
pleteness as well as O-completeness.

Definition  [] Let (X, d,�) be an ordered metric space, f : X → X a mapping and
x ∈ X. Then f is called

(i) O-continuous at x ∈ X if for any sequence {xn} ⊂ X ,

xn ↑ x ⇒ f (xn)
d−→ f (x),

(ii) O-continuous at x ∈ X if for any sequence {xn} ⊂ X ,

xn ↓ x ⇒ f (xn)
d−→ f (x), and

(iii) O-continuous at x ∈ X if for any sequence {xn} ⊂ X ,

xn ↑↓ x ⇒ f (xn)
d−→ f (x).

Moreover, f is called O-continuous (resp. O-continuous, O-continuous) if it is O-
continuous (resp. O-continuous, O-continuous) at each point of X.
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Here it can be pointed out that the notion of O-continuity is previously defined by
Turinici [] by recalling that f is (d,�)-continuous.

Remark  In an ordered metric space, continuity ⇒ O-continuity ⇒ O-continuity as well
as O-continuity.

2 Fixed point theorems for linear contractions
In this section, we present sharpened forms of Theorems -, which are new results on
their own and are proved without completeness (of the metric space), without continuity
(of the underlying mapping) and without the ICU property/DCL property/MCB property
(of an ordered metric space).

Theorem  Let (X, d,�) be an ordered metric space and f a self-mapping on X. Suppose
that the following conditions hold:

(a) (X, d,�) is O-complete,
(b) f is increasing,
(c) either f is O-continuous or (X, d,�) has the ICC property,
(d) there exists x ∈ X such that x � f (x),
(e) there exists α ∈ [, ) such that

d(fx, fy) ≤ αd(x, y) ∀x, y ∈ X with x ≺� y.

Then f has a fixed point.

Proof In view of assumption (d) if x = f (x), then x is a fixed point of f and hence proof
is completed. Otherwise, define a sequence {xn} of Picard iterates, i.e., xn = f n(x) ∀n ∈N.
As x � f (x) and f is increasing, we obtain by induction that

f (x) � f (x) � f (x) � · · · � f n(x) � f n+(x) � · · ·

so that

xn � xn+ ∀n ∈N. ()

Thus the sequence {xn} is increasing. Applying the contractivity condition (e) to (), we
deduce, for all n ∈ N, that

d(xn, xn+) ≤ αd(xn–, xn). ()

By induction, () reduces to

d(xn, xn+) ≤ αd(xn–, xn) ≤ αd(xn–, xn–) ≤ · · · ≤ αnd(x, x) ∀n ∈N,

so that

d(xn, xn+) ≤ αnd(x, x) ∀n ∈ N. ()
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For n < m, using triangular inequality and (), we obtain

d(xn, xm) ≤ d(xn, xn+) + d(xn+, xn+) + · · · + d(xm–, xm)

≤ (
αn + αn+ + · · · + αm–)d(x, x)

=
αn – αm

 – α
d(x, x)

≤ αn

 – α
d(x, x)

→  as m, n → ∞,

which implies that the sequence {xn} is Cauchy in X. Therefore, {xn} is an increasing

Cauchy sequence. As X is O-complete, ∃x ∈ X such that xn
d−→ x, which, on combining

with (), yields

xn ↑ x ()

Now, in lieu of (c), first, we assume that f is O-continuous. Then using () and O-

continuity of f , we obtain xn+ = f (xn)
d−→ f (x). Owing to the uniqueness of limit, we obtain

f (x) = x, i.e., x is a fixed point of f .
Second, let us assume that (X, d,�) has the ICC property. Then using () and the ICC

property of X, we may obtain a subsequence {xnk } of {xn} such that

xnk ≺� x ∀k ∈N. ()

Applying the contractivity condition (e) to () and using xnk

d−→ x, we obtain

d(xnk +, fx) = d(fxnk , fx) ≤ αd(xnk , x)

→  as k → ∞

so that xnk +
d−→ f (x). Again, owing to the uniqueness of the limit, we obtain f (x) = x so

that x is a fixed point of f . �

Next, we present a dual result to Theorem .

Theorem  Theorem  remains true if certain involved terms namely: O-complete, O-
continuous and the ICC property are, respectively, replaced by O-complete, O-continuous
and the DCC property provided the assumption (d) is replaced by the following (besides
retaining the rest):

(d)′ there exists x ∈ X such that x � f (x).

Proof The scheme of the proof is similar to the one followed in the proof of Theorem .
Following the lines of the proof of Theorem , using x � f (x) and the increasing property
of f , we obtain by induction

f (x) � f (x) � f (x) � · · · � f n(x) � f n+(x) � · · ·
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so that

xn � xn+ ∀n ∈N.

i.e. the sequence {xn} is decreasing. An analogous procedure to the proof of Theorem ,
we can also show that {xn} is Cauchy. The O-completeness of X implies the existence of
x ∈ X such that

xn ↓ x. ()

Now, in lieu of (c), first, we assume that f is O-continuous. Then using () and O-

continuity of f , we obtain xn+ = f (xn)
d−→ f (x). Owing to the uniqueness of limit, we obtain

f (x) = x, i.e., x is a fixed point of f .
Second, let us assume that (X, d,�) has the DCC property. Then using () and the DCC

property of X, we may obtain a subsequence {xnk } of {xn} such that

xnk ≺� x ∀k ∈N. ()

Applying the contractivity condition (e) to () and using xnk

d−→ x, we obtain

d(xnk +, fx) = d(fxnk , fx) ≤ αd(xnk , x)

→  as k → ∞

so that xnk +
d−→ f (x). Again, owing to the uniqueness of limit, we obtain f (x) = x so that x

is a fixed point of f . �

Remark  Notice that Theorems  and  sharpen Theorems  and , respectively. Here
we observe that in Nieto and Rodríguez-López theorems the completeness, continuity,
the ICU property, and the DCL property are not necessary as the same can alternately be
replaced by their respective relatively weaker notions.

On combining Theorem  and Theorem , we obtain the following result.

Theorem  Theorem  remains true if certain involved terms namely: O-complete, O-
continuous, and the ICC property are, respectively, replaced by O-complete, O-continuous
and the MCC property provided the assumption (d) is replaced by the following (besides
retaining the rest):

(d)′′ there exists x ∈ X such that x ≺� f (x).

Finally, we prove certain unique fixed point results corresponding to Theorems -.

Theorem  In addition to the hypotheses of Theorem  (resp. Theorem  or Theorem ),
suppose that the following condition holds:

(f ) C(fx, fy,≺�) is nonempty for each x, y ∈ X .

Then f has a unique fixed point.
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Proof In view of Theorem  (resp. Theorem  or Theorem ), the set of fixed points of f
is nonempty. Take two fixed points x and y of f , i.e.,

f (x) = x and f (y) = y. ()

By assumption (f ), there exists a ≺�-chain (say {z, z, . . . , zk}) between f (x) and f (y) so
that

z = x, zk = y and zi ≺� zi+ for each i ( ≤ i ≤ k – ). ()

As f is increasing, we have

f n(zi) ≺� f n(zi+) for each i ( ≤ i ≤ k – ) and for each n ∈N. ()

Making use of (), (), (), the triangular inequality, and assumption (e), we obtain

d(x, y) = d
(
f nz, f nzk

) ≤
k–∑

i=

d
(
f nzi, f nzi+

) ≤ α

k–∑

i=

d
(
f n–zi, f n–zi+

)

≤ α
k–∑

i=

d
(
f n–zi, f n–zi+

) ≤ · · · ≤ αn
k–∑

i=

d(zi, zi+)

→  as n → ∞

so that x = y. Hence f has a unique fixed point. �

3 Fixed point theorems for nonlinear contractions
In this section, we discuss some variants of preceding results for nonlinear contractions
due to Boyd and Wong []. As per standard practice, a function ϕ : [,∞) → [,∞) sat-
isfying ϕ(t) < t for each t >  is called a control function. Further, a self-mapping f defined
on a metric space (X, d) is called a nonlinear contraction with respect to control function
ϕ (or, in short, ϕ-contraction) if

d(fx, fy) ≤ ϕ
(
d(x, y)

) ∀x, y ∈ X.

Indeed for each α ∈ [, ), on setting ϕ(t) = αt, ϕ-contraction reduces to α-contraction
(i.e. usual contraction). In , Boyd and Wong [] introduced the following family of
control functions:

� =
{
ϕ : [,∞) → [,∞) : ϕ(t) < t for each t >  and lim sup

r→t+
ϕ(r) < t for each t > 

}
.

We need the following known results in the proof of our main results of this section.

Lemma  [] Let ϕ ∈ �. If {an} ⊂ (,∞) is a sequence such that an+ ≤ ϕ(an) ∀n ∈N, then
limn→∞ an = .
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Lemma  [] Let (X, d) be a metric space and {xn} a sequence in X such that limn→∞ d(xn,
xn+) = . If {xn} is not a Cauchy sequence, then there exist ε >  and two subsequences {xnk }
and {xmk } of {xn} such that

(i) nk > mk ≥ k,
(ii) d(xmk , xnk ) ≥ ε,

(iii) d(xmk , xnk –) < ε,
(iv) the following four sequences tend to ε when k → ∞:

d(xmk , xnk ), d(xmk +, xnk ), d(xmk , xnk +), d(xmk +, xnk +).

Now, we extend Theorems  and  for nonlinear contractions as follows.

Theorem  Theorem  (resp. Theorem  or Theorem ) remains true if the assumption (e)
is replaced by the following (besides retaining the rest):

(e)′ there exists ϕ ∈ � such that

d(fx, fy) ≤ ϕ
(
d(x, y)

) ∀x, y ∈ X with x ≺� y.

Proof We start the proof proceeding the lines similar to the proof of Theorem  (resp.
Theorem  or Theorem ). Following its lines, we define the sequence {xn} of Picard it-
erates and then we can prove that the sequence {xn} is increasing (resp. decreasing or
monotone).

If xn = xn+ for some n ∈ N, then we have xn = f (xn ), i.e., xn is a fixed point of f so
that we are done. On the other hand, if xn �= xn+ for each n ∈ N, then in this case, as an
analog of (), we obtain, for all n ∈N,

d(xn, xn+) ≤ ϕ
(
d(xn–, xn)

)
,

which on applying Lemma  gives rise

lim
n→∞ d(xn, xn+) = . ()

Next, we show that {xn} is a Cauchy sequence. On the contrary, suppose that {xn} is not
a Cauchy sequence. Hence, in view of () and Lemma , there exist ε >  and two sub-
sequences {xnk } and {xmk } of {xn} such that nk > mk ≥ k, d(xmk , xnk ) ≥ ε, d(xmk , xnk –) < ε,
and

lim
k→∞

d(xmk , xnk ) = lim
k→∞

d(xmk +, xnk )

= lim
k→∞

d(xmk , xnk +)

= lim
k→∞

d(xmk +, xnk +) = ε. ()

Denote rk := d(xmk , xnk ). As mk < nk , due to () we have xmk � xnk . On applying the con-
tractivity condition (e)′, we obtain

d(xmk +, xnk +) = d(fxmk , fxnk ) ≤ ϕ
(
d(xmk , xnk )

)
= ϕ(rk)
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so that

d(xmk +, xnk +) ≤ ϕ(rk). ()

On taking the limit superior as k → ∞ in () and using () and the definition of �, we
have

ε = lim sup
k→∞

d(xmk+, xnk +) ≤ lim sup
k→∞

ϕ(rk) = lim sup
rk→ε+

ϕ(rk) < ε,

which is a contradiction. Therefore {xn} is a Cauchy sequence.
Now, assumption (a) implies the existence of x ∈ X such that xn ↑ x (resp. xn ↓ x or

xn ↑↓ x). To prove x ∈ X is a fixed point of f , firstly we suppose that f is O-continuous (resp.
O-continuous or O-continuous). In this case, proceeding along the lines of the proof of
Theorem  (resp. Theorem  or Theorem ), we can show that f (x) = x. Otherwise suppose
that (X, d,�) has the ICC property (resp. the DCC property or the MCC property), which
provides the existence of a subsequence {xnk } of {xn} such that

xnk ≺� x ∀k ∈N. ()

On using () and assumption (e)′, we obtain

d(xnk +, fx) = d(fxnk , fx) ≤ ϕ
(
d(xnk , x)

) ∀k ∈N.

We claim that

d(xnk +, fx) ≤ d(xnk , x) ∀k ∈ N. ()

On account of two different possibilities arising here, we consider a partition {N,N+} ofN,
i.e., N ∪N

+ = N and N
 ∩N

+ = ∅ verifying that
(i) d(xnk , x) =  ∀k ∈N

,
(ii) d(xnk , x) >  ∀k ∈ N

+.
In case (i), we have d(fxnk , fx) =  ∀k ∈ N

, which implies that d(xnk +, fx) =  ∀k ∈ N


and hence () holds for all k ∈ N
. If case (ii) holds, by the definition of �, we have

d(xnk +, fx) ≤ ϕ(d(xnk , x)) < d(xnk , x) ∀k ∈N
+ and hence () holds for all k ∈N

+. Thus ()
holds for all k ∈ N.

Taking the limit of () as n → ∞ and using xnk

d−→ x, we obtain xnk +
d−→ f (x). Owing

to the uniqueness of limit, we obtain f (x) = x so that x is a fixed point of f . �

Remark  Notice that for ϕ(t) = α · t with α ∈ [, ), Theorem  reduces to Theorems -.

Theorem  In addition to the hypotheses of Theorem , suppose that the following as-
sumption (f) (of Theorem ) holds, then f has a unique fixed point.

Proof We can prove this result easily by using the similar technique as utilized in Theo-
rem . �
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4 Application to boundary value problem
In this section, we present an example, where Theorems  and  can be applied. We study
the existence and uniqueness of solution for the following first order periodic boundary
value problem:

⎧
⎨

⎩
u′(t) = f (t, u(t)), t ∈ I = [, T],

u() = u(T),
()

where T >  and f : I ×R →R is a continuous function.
Let C(I) denote the space of all continuous functions defined on I . Now, we recall the

following definitions.

Definition  [] A function α ∈ C(I) is called a lower solution of (), if

⎧
⎨

⎩
α′(t) ≤ f (t,α(t)), t ∈ I,

α() ≤ α(T).

Definition  [] A function α ∈ C(I) is called an upper solution of (), if

⎧
⎨

⎩
α′(t) ≥ f (t,α(t)), t ∈ I,

α() ≥ α(T).

Let F denote the family of functions φ : [,∞] → [,∞] satisfying the following condi-
tions:

(i) φ is continuous and increasing,
(ii) φ(t) < t for each t > .

Typical examples of F are φ(t) = α · t,  ≤ α < , φ(t) = t
+t , and φ(t) = ln( + t). Also, clearly

F ⊂ �.

Now, we prove the following result regarding the existence and uniqueness of a solution
of problem () in the presence of a lower solution or an upper solution.

Theorem  In addition to the problem (), suppose that there exist λ >  and φ ∈ F such
that for all x, y ∈R with x ≤ y

 ≤ f (t, y) + λy –
[
f (t, x) + λx

] ≤ λφ(y – x). ()

Then the existence of a lower solution or an upper solution of problem () provides the
existence and uniqueness of a solution of problem ().

Proof Problem () can be rewritten as

⎧
⎨

⎩
u′(t) + λu(t) = f (t, u(t)) + λu(t), ∀t ∈ I,

u() = u(T).
()
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Problem () is equivalent to the integral equation

u(t) =
∫ T


G(t, ξ )

[
f
(
ξ , u(ξ )

)
+ λu(ξ )

]
dξ , ()

where the Green function G(t, ξ ) is given by

G(t, ξ ) =

⎧
⎨

⎩

eλ(T+ξ–t)

eλT – ,  ≤ ξ < t ≤ T ,
eλ(ξ–t)

eλT – ,  ≤ t < ξ ≤ T .

Define a function A : C(I) → C(I) by

(Au)(t) =
∫ T


G(t, ξ )

[
f
(
ξ , u(ξ )

)
+ λu(ξ )

]
dξ ∀t ∈ I. ()

Clearly, if u ∈ C(I) is a fixed point of A then u ∈ C(I) is a solution of () and hence of ().
On C(I), define a metric d given by

d(u, v) = sup
t∈I

∣∣u(t) – v(t)
∣∣ ∀u, v ∈ C(I). ()

On C(I), define a partial order � given by

u, v ∈ C(I); u � v ⇐⇒ u(t) ≤ v(t) ∀t ∈ I. ()

Now we check that all the conditions of Theorem  are satisfied:
(a) Clearly, (C(I), d,�) is an O-complete ordered metric space.
(b) Take u, v ∈ C(I) such that u � v, then by (), we obtain

f
(
t, u(t)

)
+ λu(t) ≤ f

(
t, v(t)

)
+ λv(t) ∀t ∈ I. ()

On using (), (), and the fact that G(t, ξ ) >  for (t, ξ ) ∈ I × I , we get

(Au)(t) =
∫ T


G(t, ξ )

[
f
(
ξ , u(ξ )

)
+ λu(ξ )

]
dξ

≤
∫ T


G(t, ξ )

[
f
(
ξ , v(ξ )

)
+ λv(ξ )

]
dξ

= (Av)(t) ∀t ∈ I,

which owing to () implies that A(u) �A(v) so that A is increasing.
(c) Take a sequence {un} ⊂ C(I) such that un ↑↓ u ∈ C(I), then for each t ∈ I , {un(t)} is

monotone sequence in R converging to u(t). Hence, for all n ∈N and for all t ∈ I , we have

un(t) ≤ u(t) if
{

un(t)
}

is increasing,

un(t) ≥ u(t) if
{

un(t)
}

is decreasing,

which by using () implies that un ≺� u ∀n ∈ N so that (C(I), d,�) has the MCC prop-
erty.
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(d) Let α ∈ C(I) be a lower solution of (), then we have

α′(t) + λα(t) ≤ f
(
t,α(t)

)
+ λα(t) ∀t ∈ I.

Multiplying on both sides by eλt , we get

(
α(t)eλt)′ ≤ [

f
(
t,α(t)

)
+ λα(t)

]
eλt ∀t ∈ I,

which implies that

α(t)eλt ≤ α() +
∫ t



[
f
(
ξ ,α(ξ )

)
+ λα(ξ )

]
eλξ dξ ∀t ∈ I. ()

As α() ≤ α(T), we get

α()eλT ≤ α(T)eλT ≤ α() +
∫ T



[
f
(
ξ ,α(ξ )

)
+ λα(ξ )

]
eλξ dξ

so that

α() ≤
∫ T



eλξ

eλT – 
[
f
(
ξ ,α(ξ )

)
+ λα(ξ )

]
dξ . ()

On using () and (), we obtain

α(t)eλt ≤
∫ T



eλξ

eλT – 
[
f
(
ξ ,α(ξ )

)
+ λα(ξ )

]
dξ +

∫ t


eλξ

[
f
(
ξ ,α(ξ )

)
+ λα(ξ )

]
dξ

=
∫ t



eλ(T+ξ )

eλT – 
[
f
(
ξ ,α(ξ )

)
+ λα(ξ )

]
dξ +

∫ T

t

eλξ

eλT – 
[
f
(
ξ ,α(ξ )

)
+ λα(ξ )

]
dξ

so that

α(t) ≤
∫ t



eλ(T+ξ–t)

eλT – 
[
f
(
ξ ,α(ξ )

)
+ λα(ξ )

]
dξ +

∫ T

t

eλ(ξ–t)

eλT – 
[
f
(
ξ ,α(ξ )

)
+ λα(ξ )

]
dξ

=
∫ T


G(t, ξ )

[
f
(
ξ ,α(ξ )

)
+ λα(ξ )

]
dξ

= (Aα)(t)

for all t ∈ I , which implies that α � A(α). Otherwise, if α ∈ C(I) is an upper solution
of (), then in a similar manner, we get α � A(α). Hence, in both the cases, we have
α ≺�A(α), for some lower or upper solution α.

(e)′ Take u, v ∈ C(I) such that u � v, using (), (), and (), we obtain

d(Au,Av) = sup
t∈I

∣
∣(Au)(t) – (Av)(t)

∣
∣ = sup

t∈I

(
(Av)(t) – (Au)(t)

)

≤ sup
t∈I

∫ T


G(t, ξ )

[
f
(
ξ , v(ξ )

)
+ λv(ξ ) – f

(
ξ , u(ξ )

)
– λu(ξ )

]
dξ

≤ sup
t∈I

∫ T


G(t, ξ )λφ

(
v(ξ ) – u(ξ )

)
dξ . ()
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Given that φ is increasing on [,∞) and u � v, which implies that φ(v(ξ ) – u(ξ )) ≤
φ(d(u, v)). Hence, () reduces to

d(Au,Av) ≤ λφ
(
d(u, v)

)
sup
t∈I

∫ T


G(t, ξ ) dξ

= λφ
(
d(u, v)

)
sup
t∈I


eλT – 

(

λ

eλ(T+ξ–t)
∣∣
∣
t


+


λ

eλ(ξ–t)
∣∣
∣
T

t

)

= λφ
(
d(u, v)

) 
λ(eλT – )

(
eλT – 

)

= φ
(
d(u, v)

)

so that

d(Au,Av) ≤ φ
(
d(u, v)

) ∀u, v ∈ C(I) such that u � v,

where φ ∈ F ⊂ �.
Hence, all the conditions of Theorem  are satisfied consequently A has a fixed point.
Finally choose arbitrary u, v ∈ C(I), then w := max{Au,Av} ∈ C(I). As A(u) � w and

A(v) � w, {Au, w,Av} is a ≺�-chain between A(u) and A(v). Thus, by Theorem , A has
a unique fixed point, which is, indeed, a unique solution of problem (). �
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