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Abstract
A general viscosity iterative method for a finite family of generalized asymptotically
quasi-nonexpansive mappings in a convex metric space is introduced. Special cases
of the new iterative method are the viscosity iterative method of Chang et al. (Appl.
Math. Comput. 212:51-59, 2009), an analogue of the viscosity iterative method of
Fukhar-ud-din et al. (J. Nonlinear Convex Anal. 16:47-58, 2015) and an extension of the
multistep iterative method of Yildirim and Özdemir (Arab. J. Sci. Eng. 36:393-403,
2011). Our results generalize and extend the corresponding known results in
uniformly convex Banach spaces and CAT(0) spaces simultaneously.
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1 Introduction and preliminaries
Let C be a nonempty subset of a metric space X and T : C → C be a mapping. We as-
sume that F(T), the set of fixed points of T , is nonempty and I = {, , , . . . , r}. The map-
ping T is (i) quasi-nonexpansive if d(Tx, Ty) ≤ d(x, y) for x ∈ C, y ∈ F(T); (ii) asymptot-
ically quasi-nonexpansive if there exists a sequence of real numbers {un} in [,∞) with
limn→∞ un =  such that d(Tnx, p) ≤ ( + un)d(x, p) for all x ∈ C, p ∈ F(T) and n ≥ ;
(iii) generalized asymptotically quasi-nonexpansive [] if there exist two sequences of real
numbers {un} and {cn} in [,∞) with limn→∞ un =  = limn→∞ cn such that d(Tnx, p) ≤
d(x, p) + und(x, p) + cn for all x ∈ C, p ∈ F(T) and n ≥ ; (iv) uniformly L-Lipschitzian if
there exists a constant L >  such that d(Tnx, Tny) ≤ Ld(x, y) for all x, y ∈ C and n ≥ ;
(v) uniformly Hölder continuous if there are constants L > , γ >  such that d(Tnx, Tny) ≤
Ld(x, y)γ for all x, y ∈ C and n ≥ ; and (vi) semi-compact if for a sequence {xn} in C with
limn→∞ d(xn, Txn) = , there exists a subsequence {xni} of {xn} such that xni converges to a
point in C.

Clearly, the class of generalized asymptotically quasi-nonexpansive mappings includes
the class of asymptotically quasi-nonexpansive mappings.
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The following example improves and extends Example . in [] to a finite family of
generalized asymptotically quasi-nonexpansive mappings.

Example . Let E = R and C = [– 
π

, 
π

] and define Tix = x
i+ sin( 

x ) if x �=  and Tix =  if
x =  for all x ∈ C and i ∈ I . Then Tn

i x →  uniformly (see []). For each fixed n, define
fin(x) = ‖Tn

i x‖ – ‖x‖ for all x in C and i ∈ I . Set cin = supx∈C{fin(x), }. Then limn→∞ cin = 
and

∥
∥Tn

i x
∥
∥ ≤ ‖x‖ + cin.

This shows that {Ti : i ∈ I} is a finite family of generalized asymptotically quasi-nonex-
pansive mappings with

⋂

i∈I F(Ti) �= ∅.

Convergence theorems for various mappings through different iterative methods have
been obtained by a number of authors (e.g., [, , ] and the references therein). For more
on the study of fixed point iteration process, the interested reader is referred to Berinde
[] and Ciric [, ].

Let C be a convex subset of a normed space. Yildirim and Özdemir [] introduced the
following multistep iterative method:

x ∈ C,

xn+ = ( – an)yn+r– + anTn
 yn+r–,

yn+r– = ( – an)yn+r– + anTn
 yn+r–,

...

yn+ = ( – a(r–)n)yn + a(r–)nTn
(r–)yn,

yn = ( – arn)xn + arnTn
r xn, r ≥ , n ≥ ,

(.)

where {Ti : i ∈ I} is a family of self-mappings of C, ain ∈ [ε,  – ε], for some ε ∈ (, 
 ), for

all n ≥ .
If T = T = · · · = Tr and αjn =  for j = , . . . , r and r ≥ , then the iterative method (.)

reduces to the Mann iterative method []. Let us note that the scheme (.) and multistep
scheme (.) in [] are independent of each other.

Moudafi [] proposed a viscosity iterative method by selecting a particular fixed point of
a given nonexpansive mapping. The so-called viscosity iterative method has been studied
by many authors (see, for example, [, ]). These methods are very important because of
their applicability to convex optimization, linear programming, monotone inclusions and
elliptic differential equations [].

Recently, Chang et al. [] introduced and studied the following viscosity iterative
method:

xn+ = ( – αn)f (xn) + αnTnyn,

yn = ( – βn)xn + βnTnxn, n ≥ ,
(.)

where T is an asymptotically nonexpansive mapping [] and f is a fixed contraction.
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The iterative methods in (.) and (.) involve convex combinations, and so a convex
structure is needed to define them on a nonlinear domain.

A mapping W : X × J → X is a convex structure [] on a metric space X if

d
(

u, W (x, y,α)
) ≤ αd(u, x) + ( – α)d(u, y)

for all x, y, u ∈ X and α ∈ J = [, ]. The metric space X together with a convex structure
W is known as a convex metric space. A nonempty subset C of a convex metric space X is
convex if W (x, y,α) ∈ C for all x, y ∈ C and α ∈ J . All normed linear spaces are convex met-
ric spaces, but there are convex metric spaces which are not linear; for example, a CAT()
space [, ].

A convex metric space X is uniformly convex if for any ε > , there exists δ = δ(ε) > 
such that for all r >  and x, y, z ∈ X with d(z, x) ≤ r, d(z, y) ≤ r and d(x, y) ≥ rε imply that
d(z, W (x, y, 

 )) ≤ ( – δ)r.
A mapping η : (,∞) × (, ] → (, ] which provides such δ = η(r, ε) for given r >  and

ε ∈ (, ] is called modulus of uniform convexity. We call η monotone if it decreases with
r (for a fixed ε).

Obviously, uniformly convex Banach spaces are uniformly convex metric spaces.
In general, a convex structure W is not continuous []. Throughout this paper, we as-

sume that W is continuous.
We now devise a general iterative method which extends the methods in (.) and (.)

simultaneously in a convex metric space.
We define an Sn-mapping generated by a family {Ti : i ∈ I} of generalized asymptotically

quasi-nonexpansive mappings on C as

Snx = Urnx, (.)

where Un = I (the identity mapping), Unx = W (Tn
r Unx, Unx, arn), Unx = W (Tn

r–Unx,
Unx, a(r–)n), . . . , Urnx = W (Tn

 U(r–)nx, U(r–)nx, an).
For {αn} ⊂ J , a fixed contractive mapping f on C and Sn given in (.), we define {xn} as

follows:

x ∈ C, xn+ = W
(

f (xn), Snxn,αn
)

(.)

and call it a general viscosity iterative method in a convex metric space.
The purpose of this paper is to:
(i) establish a necessary and sufficient condition for convergence of iterative method

(.) to a common fixed point of a finite family of generalized asymptotically
quasi-nonexpansive mappings on a convex metric space;

(ii) prove strong convergence and �-convergence results for the iterative method (.)
to a common fixed point of a finite family of generalized asymptotically
quasi-nonexpansive mappings on a uniformly convex metric space.

We now assume that F =
⋂

i∈I F(Ti) �= ∅.
We need the following known results for our convergence analysis.
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Lemma . (cf. []) Let the sequences {an} and {un} of real numbers satisfy

an+ ≤ ( + un)an, an ≥ , un ≥ ,
∞

∑

n=

un < +∞.

Then (i) limn→∞ an exists; (ii) if lim infn→∞ an = , then limn→∞ an = .

Lemma . ([]) Let X be a uniformly convex metric space. Let x ∈ X and {an} be
a sequence in [b, c] for some b, c ∈ (, ). If {un} and {vn} are sequences in X such that
lim supn→∞ d(un, x) ≤ r, lim supn→∞ d(vn, x) ≤ r and limn→∞ d(W (un, vn, an), x) = r for
some r ≥ , then limn→∞ d(un, vn) = .

2 Convergence in convex metric spaces
In this section, we prove some results for the viscosity iterative method (.) to converge to
a common fixed point of a finite family of generalized asymptotically quasi-nonexpansive
mappings in a convex metric space.

Lemma . Let C be a nonempty, closed and convex subset of a convex metric space X and
{Ti : i ∈ I} be a family of generalized asymptotically quasi-nonexpansive self-mappings of
C, i.e., d(Tn

i x, pi) ≤ ( + uin)d(x, pi) + cin for all x ∈ C and pi ∈ F(Ti), i ∈ I , where {uin}
and {cin} are sequences in [,∞) with

∑∞
n= uin < ∞,

∑∞
n= cin < ∞ for each i. Then, for

the sequence {xn} in (.) with
∑∞

n= αn < ∞, there are sequences {νn} and {ξn} in [,∞)
satisfying

∑∞
n= νn < ∞,

∑∞
n= ξn < ∞ such that

(a) d(xn+, p) ≤ ( + νn)rd(xn, p) + ξn for all p ∈ F and all n ≥ ;
(b) d(xn+m, p) ≤ M(d(xn, p) +

∑∞
n= ξn) for all p ∈ F and n ≥ , m ≥ , M > .

Proof (a) Let p ∈ F and νn = maxi∈I uin for all n ≥ . Since
∑∞

n= uin < ∞ for each i, therefore
∑∞

n= νn < ∞.
Now we have

d(Unxn, p) = d
(

W
(

Tn
r Unxn, Unxn, arn

)

, p
)

≤ ( – arn)d(xn, p) + arnd
(

Tn
r xn, p

)

≤ ( – arn)d(xn, p) + arn
[

( + urn)d(xn, p) + crn
]

≤ ( + urn)d(xn, p) + crn

≤ ( + νn)d(xn, p) + crn.

Assume that d(Uknxn, p) ≤ ( + νn)kd(xn, p) + ( + νn)k– ∑k
i= c(r–i+)n holds for some  < k.

Consider

d(U(k+)nxn, p) = d
(

W
(

Tn
r–kUknxn, Uknxn, a(r–k)n

)

, p
)

≤ ( – a(r–k)n)d(Uknxn, p) + a(r–k)nd
(

Tn
r–kUknxn, p

)

≤ ( – a(r–k)n)d(Uknxn, p) + a(r–k)n
[

( + u(r–k)n)d(Uknxn, p) + c(r–k)n
]

≤ ( + νn)d(Uknxn, p) + c(r–k)n
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≤ ( + νn)

[

( + νn)kd(xn, p) + ( + νn)k–
k

∑

i=

c(r–i+)n

]

+ c(r–k)n

≤ ( + νn)k+d(xn, p) + ( + νn)k
k+
∑

i=

c(r–i+)n.

By mathematical induction, we have

d(Ujnxn, p) ≤ ( + νn)jd(xn, p) + ( + νn)j–
j

∑

i=

c(r–i+)n,  ≤ j ≤ r. (.)

Hence

d(Snxn, p) = d(Urnxn, p) ≤ ( + νn)rd(xn, p) + ( + νn)r–
r

∑

i=

c(r–i+)n. (.)

Now, by (.) and (.), we obtain

d(xn+, p) = d
(

W
(

f (xn), Snxn,αn
)

, p
)

≤ αnd
(

f (xn), p
)

+ ( – αn)d(Snxn, p)

≤ αnd(xn, p) + αnd
(

f (p), p
)

+ ( – αn)

(

( + νn)rd(xn, p) + ( + νn)r–
r

∑

i=

c(r–i+)n

)

≤ ( + νn)rd(xn, p) + ( – αn)( + νn)r–
r

∑

i=

c(r–i+)n + αnd
(

f (p), p
)

≤ ( + νn)rd(xn, p) + αnd
(

f (p), p
)

+ ( + νn)r–
r

∑

i=

c(r–i+)n.

Setting max{d(f (p), p), sup( + νn)r–} = M, we get that

d(xn+, p) ≤ ( + νn)rd(xn, p) + M

(

αn +
r

∑

i=

c(r–i+)n

)

.

That is,

d(xn+, p) ≤ ( + νn)rd(xn, p) + ξn,

where ξn = M(αn +
∑r

i= c(r–i+)n) and
∑∞

n= ξn < ∞.
(b) We know that  + t ≤ et for t ≥ . Thus, by part (a), we have

d(xn+m, p) ≤ ( + νn+m–)rd(xn+m–, p) + ξn+m–

≤ erνn+m– d(xn+m–, p) + ξn+m–

≤ er(νn+m–+νn+m–)d(xn+m–, p) + ξn+m– + ξn+m–

...
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≤ er
∑n+m–

i=n vi d(xn, p) +
n+m–
∑

i=n+

vi

n+m–
∑

i=n

ξi

≤ er
∑∞

i= vi

(

d(xn, p) +
∞

∑

i=

ξi

)

= M

(

d(xn, p) +
∞

∑

i=

ξi

)

, where M = er
∑∞

i= vi . �

The next result deals with a necessary and sufficient condition for the convergence of
{xn} in (.) to a point of F .

Theorem . Let C, {Ti : i ∈ I}, F , {uin} and {cin} be as in Lemma .. Let X be complete.
The sequence {xn} in (.) with

∑∞
n= αn < ∞ converges strongly to a point in F if and only

if lim infn→∞ d(xn, F) = , where d(x, F) = infp∈F (x, p).

Proof The necessity is obvious; we only prove the sufficiency. By Lemma .(a), we have

d(xn+, p) ≤ ( + νn)rd(xn, p) + ξn for all p ∈ F and n ≥ .

Therefore,

d(xn+, F) ≤ ( + νn)rd(xn, F) + ξn

=

(

 +
r

∑

k=

r(r – ) · · · (r – k + )
k!

νk
n

)

d(xn, F) + ξn.

As
∑∞

n= νn < +∞, so
∑∞

n=
∑r

k=
r(r–)···(r–k+)

k! νk
n < ∞. Now

∑∞
n= ξn < ∞ in Lemma .(a),

so by Lemma . and lim infn→∞ d(xn, F) = , we get that limn→∞ d(xn, F) = . Next, we
prove that {xn} is a Cauchy sequence in X. Let ε > . From the proof of Lemma .(b), we
have

d(xn+m, xn) ≤ d(xn+m, F) + d(xn, F) ≤ ( + M)d(xn, F) + M

∞
∑

i=n

ξi. (.)

As limn→∞ d(xn, F) =  and
∑∞

i= ξi < ∞, so there exists a natural number n such that

d(xn, F) ≤ ε

( + M)
and

∞
∑

i=n

ξi <
ε

M
for all n ≥ n.

So, for all integers n ≥ n, m ≥ , we obtain from (.) that

d(xn+m, xn) < (M + )
ε

( + M)
+ M

ε

M
= ε.

Thus, {xn} is a Cauchy sequence in X and so it converges to q ∈ X. Finally, we show that
q ∈ F . For any ε > , there exists a natural number n such that

d(xn, F) = inf
p∈F

d(xn, p) <
ε


and d(xn, q) <

ε


for all n ≥ n.
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There must exist p∗ ∈ F such that d(xn, p∗) < ε
 for all n ≥ n; in particular, d(xn , p∗) < ε


and d(xn , q) < ε

 .
Hence

d
(

p∗, q
) ≤ d

(

xn , p∗) + d(xn , q) < ε.

Since ε is arbitrary, therefore d(p∗, q) = . That is, q = p∗ ∈ F . �

Remark . A generalized asymptotically nonexpansive mapping is a generalized asymp-
totically quasi-nonexpansive mapping. So Theorem . holds good for the class of gener-
alized asymptotically nonexpansive mappings.

3 Results in a uniformly convex metric space
The aim of this section is to establish some convergence results for the iterative method
(.) of generalized asymptotically quasi-nonexpansive mappings on a uniformly convex
metric space.

Lemma . Let C be a nonempty, closed and convex subset of a uniformly convex metric
space X and {Ti : i ∈ I} be a family of uniformly Hölder continuous and generalized asymp-
totically quasi-nonexpansive self-mappings of C, i.e., d(Tn

i x, pi) ≤ ( + uin)d(x, pi) + cin for
all x ∈ C and pi ∈ F(Ti), where {uin} and {cin} are sequences in [,∞) with

∑∞
n= uin < ∞

and
∑∞

n= cin < ∞, respectively, for each i ∈ I . Then, for the sequence {xn} in (.) with
ain ∈ [δ,  – δ] for some δ ∈ (, 

 ) and
∑∞

n= αn < ∞, we have limn→∞ d(xn, Tjxn) =  for
each j ∈ I .

Proof Let p ∈ F and νn = maxi∈I uin for all n ≥ . By Lemma .(i) and Lemma .(a), it
follows that limn→∞ d(xn, p) exists for all p ∈ F . Assume that

lim
n→∞ d(xn, p) = c. (.)

Inequality (.) together with (.) gives that

lim sup
n→∞

d(Ujnxn, p) ≤ c,  ≤ j ≤ r. (.)

By (.), we have

d(xn+, p) = d
(

W
(

f (xn), Snxn,αn
)

, p
)

≤ αnd
(

f (xn), p
)

+ ( – αn)d(Snxn, p)

≤ αnd
(

f (xn), p
)

+ αnd
(

f (p), p
)

+ ( – αn)d(Urnxn, p),

and hence

c ≤ lim inf
n→∞ d(Urnxn, p). (.)

Combining (.) and (.), we get

lim
n→∞ d(Urnxn, p) = c.
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Note that

d(Urnxn, p) = d
(

W
(

Tn
 U(r–)nxn, U(r–)nxn, an

)

, p
)

≤ and
(

Tn
 U(r–)nxn, p

)

+ ( – an)d(U(r–)nxn, p)

≤ an
[

( + un)d(U(r–)nxn, p) + cn
]

+ ( – an)d(U(r–)nxn, p)

≤ an( + νn)d(U(r–)nxn, p) + ancn

≤ an( + νn)
[

an( + νn)d(U(r–)nxn, p) + ancn
]

+ an( + νn)cn

≤ anan( + νn)d(U(r–)nxn, p) + anan( + νn)cn + ancn

...

≤ anan · · ·a(j–)n( + νn)j–d(U(r–(j–))nxn, p)

+ anan · · ·a(j–)n( + νn)(j–)–c(j–)n

+ anan · · ·a((j–)–)n( + νn)(j–)–c((j–)–)n + · · ·
+ anan( + νn)cn + ancn.

Hence

c ≤ lim inf
n→∞ d(U(r–(j–))nxn, p),  ≤ j ≤ r. (.)

Using (.) and (.), we have

lim
n→∞ d(U(r–(j–))nxn, p) = c.

That is,

lim
n→∞ d

(

W
(

Tn
j U(r–j)nxn, U(r–j)nxn, ajn

)

, p
)

= c for  ≤ j ≤ r.

This together with (.), (.) and Lemma . gives that

lim
n→∞ d

(

Tn
j U(r–j)nxn, U(r–j)nxn,

)

=  for  ≤ j ≤ r. (.)

If j = r,we have by (.)

lim
n→∞ d

(

Tn
r xn, xn

)

= .

In case j ∈ {, , , . . . , r – }, we observe that

d(xn, U(r–j)nxn) = d
(

xn, W
(

Tn
j+U(r–(j+))nxn, U(r–(j+))nxn, a(j+)n

))

≤ a(j+)nd
(

Tn
j+U(r–(j+))nxn, xn

)

+ ( – a(j+)n)d(U(r–(j+))nxn, xn)

≤ ( + νn)d(U(r–(j+))nxn, xn) + c(j+)n

...
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≤ ( + νn)r–jd(Unxn, xn) + ( + νn)r–j–crn

+ ( + νn)r–j–c(r–)n + · · · + ( + νn)c(j+)n + c(j+)n.

Hence,

lim
n→∞ d(xn, U(r–j)nxn) = . (.)

Since Tj is uniformly Hölder continuous, therefore the inequality

d
(

Tn
j xn, xn

) ≤ d
(

Tn
j xn, Tn

j U(r–j)nxn
)

+ d
(

Tn
j U(r–j)nxn, U(r–j)nxn

)

+ d(U(r–j)nxn, xn)

≤ Ld(xn, U(r–j)nxn)γ + d(xn, U(r–j)nxn) + d
(

Tn
j U(r–j)nxn, U(r–j)nxn

)

together with (.) and (.) gives that

lim
n→∞ d

(

Tn
j xn, xn

)

= .

Hence,

d
(

Tn
j xn, xn

) →  as n → ∞ for  ≤ j ≤ r. (.)

As before, we can show that

d(xn, xn+) = d
(

xn, W
(

f (xn), Snxn,αn
))

≤ αn( + α)d(xn, p) + αnd
(

p, f (p)
)

+ ( – αn)
[

and
(

U(r–)nxn, Tn
 U(r–)nxn

)

+ d(xn, U(r–)nxn)
]

.

Therefore, by (.) and (.), we get

lim
n→∞ d(xn, xn+) = . (.)

Let us observe that

d(xn, Tjxn) ≤ d(xn, xn+) + d
(

xn+, Tn+
j xn+

)

+ d
(

Tn+
j xn+, Tn+

j xn
)

+ d
(

Tn+
j xn, Tjxn

)

≤ d(xn, xn+) + d
(

xn+, Tn+
j xn+

)

+ Ld(xn+, xn)γ + Ld
(

Tn
j xn, xn

)γ .

By the uniform Hölder continuity of Tj, (.) and (.), we get

lim
n→∞ d(xn, Tjxn) = ,  ≤ j ≤ r. (.)

�
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Theorem . Under the hypotheses of Lemma ., assume, for some  ≤ j ≤ r, that Tm
j

is semi-compact for some positive integer m. If X is complete, then {xn} in (.) converges
strongly to a point in F .

Proof Fix j ∈ I and suppose Tm
j to be semi-compact for some m ≥ . By (.), we obtain

d
(

Tm
j xn, xn

) ≤ d
(

Tm
j xn, Tm–

j xn
)

+ d
(

Tm–
j xn, Tm–

j xn
)

+ · · · + d
(

T
j xn, Tjxn

)

+ d(Tjxn, xn)

≤ d(Tjxn, xn) + (m – )Ld(Tjxn, xn)γ → .

Since {xn} is bounded and Tm
j is semi-compact, {xn} has a convergent subsequence {xni}

such that xni → q ∈ C. Hence, by (.), we have

d(q, Tiq) = lim
n→∞ d(xnj , Tixnj ) = , i ∈ I.

Thus q ∈ F , and so by Theorem ., {xn} converges strongly to a common fixed point q of
the family {Ti : i ∈ I}. �

An immediate consequence of Lemma . and Theorem . is the following strong con-
vergence result in uniformly convex metric spaces.

Theorem . Let C, {Ti : i ∈ I}, F , {uin} and {cin} be as in Lemma .. If there exists a
constant M such that d(xn, Tjxn) ≥ Md(xn, F) for all n ≥  and X is complete, then the
sequence {xn} in (.) converges strongly to a point in F .

The concept of �-convergence in a metric space was introduced by Lim [] and its
analogue in CAT() spaces was investigated by Dhompongsa and Panyanak []. Here we
study �-convergence in uniformly convex metric spaces.

For this, we collect some basic concepts.
Let {xn} be a bounded sequence in a uniformly convex metric space X. For x ∈ X, define

a continuous functional r(·, {xn}) : X → [,∞) by

r
(

x, {xn}
)

= lim sup
n→∞

d(x, xn).

The asymptotic radius ρ = r({xn}) of {xn} is given by

ρ = inf
{

r
(

x, {xn}
)

: x ∈ X
}

.

The asymptotic center of a bounded sequence {xn} with respect to a subset C of X is
defined as follows:

AC
({xn}

)

=
{

x ∈ X : r
(

x, {xn}
) ≤ r

(

y, {xn}
)

for any y ∈ C
}

.

If the asymptotic center is taken with respect to X, then it is simply denoted by A({xn}).
A sequence {xn} in X is said to �-converge to x ∈ X if x is the unique asymptotic center of
{un} for every subsequence {un} of {xn}. In this case, we write �-limn xn = x and call x as
�-limit of {xn}.
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Lemma . ([]) Let (X, d) be a complete uniformly convex metric space with monotone
modulus of uniform convexity. Then every bounded sequence {xn} in X has a unique asymp-
totic center with respect to any nonempty closed convex subset C of X.

Lemma . ([]) Let C be a nonempty closed convex subset of a uniformly convex metric
space and {xn} be a bounded sequence in C such that A({xn}) = {y} and r({xn}) = ρ . If {ym}
is another sequence in C such that limm→∞ r(ym, {xn}) = ρ , then limm→∞ ym = y.

Now, we establish �-convergence of the iterative method (.).

Theorem . Let C be a nonempty, closed and convex subset of a complete uniformly con-
vex metric space X with monotone modulus of uniform convexity η, and let {Ti : i ∈ I}
be a family of uniformly L-Lipschitzian and generalized asymptotically nonexpansive self-
mappings of C such that F �= φ, i.e., d(Tn

i x, Tn
i y) ≤ ( + uin)d(x, y) + cin for all x, y ∈ C, where

{uin} and {cin} are sequences in [,∞) with
∑∞

n= uin < ∞ and
∑∞

n= cin < ∞, respectively,
for each i ∈ I . Then the sequence {xn} in (.) with ain ∈ [δ,  – δ] for some δ ∈ (, 

 ) and
∑∞

n= αn < ∞, �-converges to a common fixed point of {Tj : j ∈ I}.

Proof By Lemma ., {xn} is bounded, and so by Lemma ., {xn} has a unique asymptotic
center, that is, A({xn}) = {x}. Let {zn} be any subsequence of {xn} such that A({zn}) = {z}.
Also by Lemma ., we have limn→∞ d(zn, Tjzn) =  for each j ∈ I .

We claim that z is a common fixed point of {Tj : j ∈ I}. To show this, we define a sequence
{wk} in C by wk = Tk

j z,

d(wk , zn) = d
(

Tk
j z, zn

)

≤ d
(

Tk
j z, Tk

j zn
)

+
k

∑

i=

d
(

Ti
j zn, Ti–

j zn
)

≤ ( + ujn)d(z, zn) + cjn + kLd(Tjzn, zn).

Taking lim sup,

lim sup
n→∞

d(wk , zn) ≤ lim sup
n→∞

d(z, zn),

i.e., r(Tk
j z, zn) ≤ r(z, zn). It follows from Lemma . that limk→∞ Tk

j z = z. As Tj is uniformly
continuous, we have Tjz = Tj(limk→∞ Tk

j z) = limk→∞ Tk+
j z = z. Therefore, z is a common

fixed point of {Tj : j ∈ I}.
Recall that limn→∞ d(xn, z) exists by Lemma ..
Suppose x �= z. By the uniqueness of asymptotic centers, we obtain

lim sup
n→∞

d(zn, z) < lim sup
n→∞

d(zn, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, z)

= lim sup
n→∞

d(zn, z),
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a contradiction. Hence x = z. Since {zn} is an arbitrary subsequence of {xn}, therefore
A({zn}) = {z} for all subsequences {zn} of {xn}. This proves that {xn} �-converges to a com-
mon fixed point of {Tj : j ∈ I}. �

Remark .
(i) Lemma ., Theorems . and . set an analogue of Theorems .-. in [] and

Lemma ., Theorems . and . in [], in uniformly convex metric spaces.
(ii) Lemma . and Theorem . provide an analogue of Lemma . and Theorem .

in [] and Lemma . and Theorem . in [] in uniformly convex metric spaces.
(iii) Theorems . and . extend Theorems ., ., and . in [], to convex metric

spaces.
(iv) Our results give an analogue of the results in [].

Open problem Assume that the initial point is the same in scheme (.) and multistep
scheme (.) in []. Under what conditions are these schemes equivalent?
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