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Abstract
In this paper, we propose a new iterative sequence for solving common problems
which consist of split equilibrium problems and fixed point problems for
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projection method. Our results improve and extend the previous results given in the
literature.
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1 Introduction
Throughout this paper, let R and N denote the set of all real numbers and the set of all
positive integers, respectively. Let H be a real Hilbert space and C be a nonempty closed
convex subset of H .

A mapping T : C × C → R is said to be asymptotically nonexpansive if there exists a
sequence {kn} ⊂ [,∞) with limn→∞ kn =  such that

∥
∥Tnx – Tny

∥
∥ ≤ kn‖x – y‖

for all x, y ∈ C. It is easy to see that, if kn ≡ , then T is said to be nonexpansive. We de-
note the set of fixed point of T by F(T), that is, F(T) = {x ∈ C : Tx = x}. There are many
iterative methods for solving a fixed point problem corresponding to an asymptotically
nonexpansive mapping (see also [–]).

Recall that a Hilbert space H satisfies Opial’s condition [], that is, for any subsequence
{xn} ⊂ H with xn ⇀ x, the following inequality

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖
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holds for all y ∈ H with y 	= x. Furthermore, a Hilbert space H has a Kadec-Klee property,
i.e., xn ⇀ x and ‖xn‖ → ‖x‖ imply xn → x. In fact, from

‖xn – x‖ = ‖xn‖ – 〈xn, x〉 + ‖x‖,

we can conclude that a Hilbert space has a Kadec-Klee property.
In , Blum and Oettli [] introduced the equilibrium problem which is to find x ∈ C

such that

F(x, y) ≥  for all y ∈ C. (.)

They denoted the solution set of problem (.) as EP(F). Since the well-known problems
were variational problems, complementary problems, fixed point problems, saddle point
problems and other problems proposed from the equilibrium problem, it has become the
most attractive topic for many mathematicians [–]. They have widely spread its applica-
tions to other applied disciplines including physics, chemistry, economics and engineering
(see, for example, [–]).

In , Combettes and Hirstoaga [] proposed an iterative method for solving problem
(.) by the assumption that EP(F) 	= ∅. Moreover, there are many new iteratively generated
sequences for solving this problem together with fixed point problems (see [–]).

Later, the so-called split equilibrium problem was introduced (shortly, SEP). Let H, H

be two real Hilbert spaces. Let C, Q be closed convex subsets of H and H, respectively,
and let A : H → H be a bounded linear operator. Further, let F : C × C → R and F :
Q × Q →R be two bifunctions. The SEP is to find the element x∗ ∈ C such that

F
(

x∗, y
) ≥  for all y ∈ C (.)

and such that

Ax∗ ∈ Q solves F
(

Ax∗, v
) ≥  for all v ∈ Q. (.)

The solution sets of problems (.) and (.) are symbolized by EP(F) and EP(F), re-
spectively. Therefore, we denote � = {v ∈ C : v ∈ EP(F) such that Av ∈ EP(F)} as the so-
lution set of SEP.

Clearly, the SEP contains two equilibrium problems, that is, we find out the solution
of one equilibrium problem, i.e., its image under a given bounded linear operator, must
be the solution of another equilibrium problem. In order to find a common solution of
equilibrium problems, it has been mostly considered in the same spaces. However, we
normally found that, in the real-life problems, it may be considered in different spaces.
That is how the SEP works very well for this case (see, for example, []). Moreover, the
split variational inequality problem (shortly, SVIP) is its special case, which is to find x∗ ∈ C
such that

〈

f
(

x∗), x – x∗〉 ≥  for all x ∈ C, (.)

and corresponding to

y∗ = Ax∗ ∈ Q solves
〈

g
(

y∗), y – y∗〉 ≥  for all y ∈ Q, (.)
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where f : H → H and g : H → H are nonlinear mappings and A : H → H is a bounded
linear operator (see []).

In , He [] proposed the new algorithm for solving a split equilibrium problem and
investigated the convergence behavior in several ways including both weak and strong
convergence. Moreover, they gave some examples and mentioned that there exist many
SEPs, and the new methods for solving it further need to be explored in the future. Later,
in , Kazmi and Rizvi [] considered the iterative method to compute the common
approximate solution of a split equilibrium problem, a variational inequality problem and
a fixed point problem for a nonexpansive mapping in the framework of real Hilbert spaces.
They generated the sequence iteratively as follows:

⎧

⎪⎨

⎪⎩

un = JF
rn (I + γ A∗(JF

rn – I)A)xn,
yn = PC(un – λnDun),
xn+ = αnv + βnxn + γnSyn

(.)

for each n ≥ , where A : H → H is a bounded linear operator, D : C → H is a τ -inverse
strongly monotone mapping, F : C × C → R, F : Q × Q → R are two bifunctions. They
found that, under the sufficient conditions of rn, λn, γ , βn and γn, the generated sequence
{xn} converges strongly to a common solution of all mentioned problems.

Recently, in , Bnouhachem [] introduced a new iterative method for solving split
equilibrium problem and hierarchical fixed point problems by defining the sequence {xn}
as follows:

⎧

⎪⎨

⎪⎩

un = TF
rn (I + γ A∗(TF

rn – I)A)xn,
yn = βnSxn + ( – βn)un,
xn+ = PC[αnρU(xn) + (I – αnμF)(T(yn))]

(.)

for each n ≥ , where S, T are nonexpansive mappings, F : C → C is a k-Lipschitz map-
ping and η-strongly monotone, U : C → C is a τ -Lipschitz mapping. Also, they proved
some strong convergence theorems for the proposed iteration under some appropriate
conditions.

In this paper, motivated and inspired by the results [, , ] and the recent works in
this field, we introduce the shrinking projection method for solving split equilibrium prob-
lems and fixed point problems for asymptotically nonexpansive mappings in the frame-
work of Hilbert spaces and prove some strong convergence theorems for the proposed
new iterative method. In fact, our results improve and extend the results given by some
authors.

2 Preliminaries
In this section, we recall some concepts including the assumption which will be needed
for the proof of our main result.

Let H be a Hilbert space and C be a nonempty closed convex subset of H . For each x ∈ H ,
there exists a unique nearest point of C, denoted by PCx, such that

‖x – Pcx‖ ≤ ‖x – y‖
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for all y ∈ C. PC is called the metric projection from H onto C. It is well known that PC is
a firmly nonexpansive mapping from H onto C, that is,

‖PCx – PCy‖ ≤ 〈PCx – PCy, x – y〉

for all x, y ∈ H . Furthermore, for any x ∈ H and z ∈ C, z = PCx if and only if

〈x – z, z – y〉 ≥ 

for all y ∈ C. A mapping A : C → H is called α-inverse strongly monotone if there exists
α >  such that

〈x – y, Ax – Ay〉 ≥ α‖Ax – Ay‖

for all x, y ∈ H . Moreover, we can investigate that, for each λ ∈ (, α], I – λA is a nonex-
pansive mapping of C into H (see []).

Lemma . In a Hilbert space H , the following identity holds:

∥
∥λx + ( – λ)y

∥
∥

 = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖

for all x, y ∈ H and λ ∈ [, ].

Lemma . [] Let T be an asymptotically nonexpansive mapping defined on a bounded
closed convex subset C of a Hilbert space H . Assume that {xn} is a sequence in C with the
following properties:

() xn ⇀ z;
() Txn – xn → .

Then z ∈ F(T).

Assumption . [] Let F : C × C → R be a bifunction satisfying the following condi-
tions:

(A) F(x, x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y, x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C, limt↓ F(tz + ( – t)x, y) ≤ F(x, y);
(A) for each x ∈ C, y �→ F(x, y) is convex and lower semi-continuous.

Lemma . [] Let C be a nonempty closed convex subset of a Hilbert space H and F :
C × C → R be a bifunction which satisfies conditions (A)-(A). For any x ∈ H and r > ,
define a mapping TF

r : H → C by

TF
r (x) =

{

z ∈ C : F(z, y) +

r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

.

Then TF
r is well defined and the following hold:

() TF
r is single-valued;
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() TF
r is firmly nonexpansive, i.e., for any x, y ∈ H ,

∥
∥TF

r x – TF
r y

∥
∥

 ≤ 〈

TF
r x – TF

r y, x – y
〉

;

() F(TF
r ) = EP(F);

() EP(F) is closed and convex.

3 Main results
In this section, we prove some strong convergence theorems of an iterative algorithm for
solving a split equilibrium together with a fixed point problem revolving an asymptotically
nonexpansive mapping in the framework of Hilbert spaces.

Theorem . Let H, H be two real Hilbert spaces and C, Q be nonempty closed convex
subsets of Hilbert spaces H and H, respectively. Let F : C × C → R and F : Q × Q →
R be two bifunctions satisfying conditions (A)-(A) and F be upper semi-continuous in
the first argument. Let T : C → C be an asymptotically nonexpansive mapping and A :
H → H be a bounded linear operator. Suppose that F(T) ∩ � 	= ∅, where � = {v ∈ C : v ∈
EP(F) such that Av ∈ EP(F)}, and let x ∈ C. For C = C and x = PC x, define a sequence
{xn} iteratively as follows:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

un = TF
rn (I – γ A∗(I – TF

rn )A)xn,
yn = αnxn + ( – αn)Tnun,
Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖ + θn},
xn+ = PCn+ x

(.)

for each n ≥ , where θn = ( – αn)(k
n – ) sup{‖xn – z‖ : z ∈ �},  ≤ αn ≤ a <  for all

n ∈ N,  < b ≤ rn < ∞, γ ∈ (, /L), L is the spectral radius of the operator A∗A and A∗

is the adjoint of A. Then the sequence {xn} generated by (.) strongly converges to a point
z ∈ F(T) ∩ �.

Proof First of all, we investigate that, for each n ∈N, A∗(I – TF
rn )A is a 

L -inverse strongly
monotone mapping. Since TF

rn is firmly nonexpansive and (I – TF
rn ) is 

 -inverse strongly
monotone, it follows that

∥
∥A∗(I – TF

rn

)

Ax – A∗(I – TF
rn

)

Ay
∥
∥



=
〈

A∗(I – TF
rn

)

(Ax – Ay), A∗(I – TF
rn

)

(Ax – Ay)
〉

=
〈(

I – TF
rn

)

(Ax – Ay), AA∗(I – TF
rn

)

(Ax – Ay)
〉

≤ L
〈(

I – TF
rn

)

(Ax – Ay),
(

I – TF
rn

)

(Ax – Ay)
〉

= L
∥
∥
(

I – TF
rn

)

(Ax – Ay)
∥
∥



≤ L
〈

x – y, A∗(I – TF
rn

)

(Ax – Ay)
〉

for all x, y ∈ H , from which it can be concluded that A∗(I – TF
rn )A is a 

L -inverse strongly
monotone mapping. Moreover, we claim that since γ ∈ (, 

L ), I – γ A∗(I – TF
rn )A is nonex-

pansive.
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Next, we show that F(T) ∩ � ⊂ Cn+ for all n ∈ N. Let p ∈ F(T) ∩ �, i.e., TF
rn p = p and

(I –γ A∗(I –TF
rn )A)p = p. By mathematical induction, we have p ∈ C = C and hence F(T)∩

� ⊂ C. Let F(T) ∩ � ⊂ Ck for some k ∈N. It follows that

‖uk – p‖ =
∥
∥TF

rk

(

I – γ A∗(I – TF
rk

)

A
)

xk – TF
rk

(

I – γ A∗(I – TF
rk

)

A
)

p
∥
∥

≤ ∥
∥
(

I – γ A∗(I – TF
rk

)

A
)

xk –
(

I – γ A∗(I – TF
rk

)

A
)

p
∥
∥

≤ ‖xk – p‖ (.)

and

‖yk – p‖

=
∥
∥αkxk + ( – αk)Tnuk – p

∥
∥



≤ αk‖xk – p‖ + ( – αk)
∥
∥Tnuk – Tn – p

∥
∥

 – αk( – αk)
∥
∥xk – p –

(

Tnuk – Tnp
)∥
∥



≤ αk‖xk – p‖ + ( – αk)‖uk – p‖ – αk( – αk)
∥
∥xk – Tnuk

∥
∥



≤ αk‖xk – p‖ + ( – αk)k
k ‖xk – p‖

= ‖xk – p‖ + ( – αk)
(

k
k – 

)‖xk – p‖

≤ ‖xk – p‖ + ( – αk)
(

k
k – 

)

M
k

= ‖xk – p‖ + θk , (.)

where Mk = sup{‖xk – z‖ : z ∈ �} and θk = ( – αk)(k
k – )M

k . It can be concluded that
p ∈ Ck+ and F(T) ∩ � ⊂ Ck+ and, further, F(T) ∩ � ⊂ Cn for all n ∈N.

Next, we show that Cn is closed and convex for all n ∈ N. First, it is obvious that C = C
is closed and convex. By induction, we suppose that Ck is closed and convex for some
k ∈ N. Let zm ∈ Ck+ ⊂ Ck with zm → z. Since Ck is closed, it follows that x ∈ Ck and
‖yk – zm‖ ≤ ‖zm – xk‖ + θk . Then we have

‖yk – z‖ = ‖yk – zm + zm – z‖

= ‖yk – zm‖ + ‖zm – z‖ + 〈yk – zm, zm – z〉
≤ ‖zm – xk‖ + θk + ‖zm – z‖ + ‖yk – zm‖‖zm – z‖.

Letting m → ∞, we have

‖yk – z‖ ≤ ‖z – xk‖ + θk ,

which means that z ∈ Ck+. Let x, y ∈ Ck+ ⊂ Ck and z = αx + ( – α)y for any α ∈ [, ].
Since Ck is convex, z ∈ Ck , ‖yk – x‖ ≤ ‖x – xk‖ + θk and ‖yk – y‖ ≤ ‖x – xk‖ + θk and so

‖yk – z‖ =
∥
∥yk –

(

αx + ( – α)y
)∥
∥



=
∥
∥α(yk – x) + ( – α)(yk – y)

∥
∥



= α‖yk – x‖ + ( – α)‖yk – y‖ – α( – α)
∥
∥yk – x – (yk – y)

∥
∥
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≤ α
(‖x – xk‖ + θk

)

+ ( – α)
(‖y – xk‖ + θk

)

– α( – α)‖y – x‖

≤ α‖x – xk‖ + θk + ( – α)‖y – xk‖ – α( – α)
∥
∥(xk – x) – (xk – y)

∥
∥



= α‖x – xk‖ + ( – α)‖y – xk‖ – α( – α)
∥
∥(xk – x) – (xk – y)

∥
∥

 + θk

=
∥
∥α(xk – x) + ( – α)(xk – y)

∥
∥

 + θk

= ‖xk – z‖ + θk .

Therefore, z ∈ Ck+ and hence Ck+ is closed and convex. It is immediately concluded that
Cn is closed and convex for all n ∈N, which implies that {xn} is well defined.

Next, from xn = PCn x, we have

〈x – xn, xn – y〉 ≥ 

for all y ∈ Cn. Since p ∈ F(T) ∩ �, we have

〈x – xn, xn – p〉 ≥ 

for all p ∈ F(T) ∩ �, that is, we have

 ≤ 〈x – xn, xn – p〉 ≤ –‖xn – x‖ + ‖x – xn‖‖x – p‖.

This implies that

‖xn – x‖ ≤ ‖x – p‖ (.)

for all n ∈N. From xn = PCn x and xn+ = PCn+ x ∈ Cn+ ⊂ Cn, we also have

〈x – xn, xn – xn+〉 ≥  (.)

for all n ∈N, and so we have

 ≤ 〈x – xn, xn – xn+〉
= 〈x – xn, xn – x + x – xn+〉
≤ –‖xn – x‖ + ‖x – xn‖‖x – xn+‖.

Hence we have

‖xn – x‖ ≤ ‖x – xn‖‖x – xn+‖, (.)

that is, ‖xn – x‖ ≤ ‖x – xn+‖ for all n ∈N. From (.), it follows that {xn} is bounded and
limn→∞ ‖xn – x‖ exists.

Next, we show that ‖xn – xn+‖ → . From (.), we have

‖xn – xn+‖

=
∥
∥(xn – x) + (x – xn+)

∥
∥
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= ‖xn – x‖ + 〈xn – x, x – xn+〉 + ‖x – xn+‖

= ‖xn – x‖ + 〈xn – x, x – xn〉 + 〈xn – x, xn – xn+〉 + ‖x – xn+‖

≤ ‖xn – x‖ – ‖xn – x‖ + ‖x – xn+‖

= ‖x – xn+‖ – ‖xn – x‖.

Since the limit of {‖xn – x‖} exists, we have

lim
n→∞‖xn – xn+‖ = . (.)

Thus, by (.) and (.), we have

‖yn – xn‖ ≤ ‖yn – xn+‖ + ‖xn+ – xn‖ →  (.)

as n → ∞. Furthermore, since TF
rn is firmly nonexpansive, we have

‖un – p‖ =
∥
∥TF

rn

(

xn – γ A∗(I – TF
rn

)

Axn
)

– TF
rn

(

p – γ A∗(I – TF
rn

)

Ap
)∥
∥



≤ ∥
∥
(

I – γ A∗(I – TF
rn

)

A
)

xn –
(

I – γ A∗(I – TF
rn

)

A
)

p
∥
∥



–
∥
∥
(

I – TF
rn

)(

I – γ A∗(I – TF
rn

)

Axn
)

–
(

I – TF
rn

)(

I – γ A∗(I – TF
rn

)

Ap
)∥
∥



=
∥
∥xn – p – γ

(

A∗(I – TF
rn

)

Axn – A∗(I – TF
rn

)

Ap
)∥
∥

 –
∥
∥zn – TF

rn zn
∥
∥



= ‖xn – p‖ – γ
〈

xn – p, A∗(I – TF
rn

)

Axn – A∗(I – TF
rn

)

Ap
〉

+ γ ∥∥A∗(I – TF
rn

)

Axn – A∗(I – TF
rn

)

Ap
∥
∥

 –
∥
∥zn – TF

rn zn
∥
∥



≤ ‖xn – p‖ + γ

(

γ –

L

)
∥
∥A∗(I – TF

rn

)

Axn
∥
∥

 –
∥
∥zn – TF

rn zn
∥
∥

,

where zn = (I – γ A∗(I – TF
rn )A)xn. Moreover,

‖yn – p‖ =
∥
∥αnxn + ( – αn)Tnun – p

∥
∥



≤ αn‖xn – p‖ + ( – αn)k
n

[

‖xn – p‖

+ γ

(

γ –

L

)
∥
∥A∗(I – TF

rn

)

Axn
∥
∥

 –
∥
∥zn – TF

rn zn
∥
∥


]

= αn‖xn – p‖ + ( – αn)k
n‖xn – p‖ – ( – αn)k

n
∥
∥zn – TF

rn zn
∥
∥



+ ( – αn)k
nγ

(

γ –

L

)
∥
∥A∗(I – TF

rn

)

Axn
∥
∥

,

which leads to

( – αn)k
n

[

γ

(

L

– γ

)
∥
∥A∗(I – TF

rn

)

Axn
∥
∥

 +
∥
∥zn – TF

rn zn
∥
∥


]

≤ (

αn + ( – αn)k
n
)‖xn – p‖ – ‖yn – p‖. (.)
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Letting ρn = kn – . Then it is clear that ρn →  as n → ∞ and, by (.), we exactly have

( – αn)k
n

[

γ

(

L

– γ

)
∥
∥A∗(I – TF

rn

)

Axn)
∥
∥

 +
∥
∥zn – TF

rn zn
∥
∥


]

≤ αn‖xn – p‖ + ( – αn)(ρn + )‖xn – p‖ – ‖yn – p‖

≤ ‖xn – p‖ – ‖yn – p‖ + ( – αn)
(

ρ
n + ρn

)‖xn – p‖

≤ (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖ + ( – αn)
(

ρ
n + ρn

)‖xn – p‖.

By (.) and ρn →  as n → ∞, we have

∥
∥A∗(I – TF

rn

)

Axn
∥
∥ → ,

∥
∥zn – TF

rn zn
∥
∥ →  (.)

as n → ∞. Furthermore, since A is linear bounded and so is A∗, we can conclude that

lim
n→∞

∥
∥
(

I – TF
rn

)

Axn
∥
∥ = . (.)

Next, we show that ‖un – xn‖ → . We investigate the following:

‖un – xn‖ =
∥
∥TF

rn zn – xn
∥
∥

≤ ∥
∥TF

rn zn – zn
∥
∥ + ‖zn – xn‖

=
∥
∥TF

rn zn – zn
∥
∥ +

∥
∥
(

I – γ A∗(I – TF
rn

)

A
)

xn – xn
∥
∥

=
∥
∥TF

rn zn – zn
∥
∥ + γ

∥
∥A∗(I – TF

rn

)

Axn
∥
∥. (.)

Consequently, by (.), we can conclude that

‖un – xn‖ → . (.)

Next, we show that ‖Tnxn – xn‖ → . We first consider

‖yn – xn‖ =
∥
∥αnxn + ( – αn)Tnun

∥
∥ = ( – αn)

∥
∥Tnun – xn

∥
∥,

and since xn+ ∈ Cn+ ⊂ Cn, we have

‖yn – xn+‖ ≤ ‖xn – xn+‖ + θn,

which means that

‖yn – xn+‖ ≤ ‖xn – xn+‖ +
√

θn. (.)

Hence,

∥
∥Tnun – xn

∥
∥ =


 – αn

‖yn – xn‖

≤ 
 – a

(‖yn – xn+‖ + ‖xn+ – xn‖
)

≤ 
 – a

(‖xn – xn+‖ +
√

θn
)

+


 – a
‖xn+ – xn‖,
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and so ‖Tnun – xn‖ → . Consider

∥
∥Tnxn – xn

∥
∥ ≤ ∥

∥Tnxn – Tnun
∥
∥ +

∥
∥Tnun – xn

∥
∥

≤ kn‖xn – un‖ +
∥
∥Tnun – xn

∥
∥.

Therefore, we have ‖Tnxn – xn‖ →  as n → ∞. Putting k∞ = sup{kn : n ≥ } < ∞, we
deduce that

∥
∥Txn – xn

∥
∥ ≤ ∥

∥Txn – Tn+xn
∥
∥ +

∥
∥Tn+xn – Tn+xn+

∥
∥

+
∥
∥Tn+xn+ – xn+

∥
∥ + ‖xn+ – xn‖

≤ k∞
∥
∥xn – Tnxn

∥
∥ + ( + k∞)‖xn – xn+‖ +

∥
∥Tn+xn+ – xn+

∥
∥.

Hence we have ‖Txn –xn‖ →  as n → ∞. Without loss of generality, since {xn} is bounded,
we may assume that xn ⇀ x∗. It is easy to see that x∗ ∈ Cn for all n ≥ . On the other hand,
we have

‖xn – x‖ ≤ ∥
∥x∗ – x

∥
∥.

It follows that

∥
∥x∗ – x

∥
∥ ≤ lim inf

n→∞ ‖xn – x‖ ≤ lim sup
n→∞

‖xn – x‖ ≤ ∥
∥x∗ – x

∥
∥

and so

lim
n→∞‖xn – x‖ =

∥
∥x∗ – x

∥
∥.

Hence ‖xn‖ → ‖x∗‖. Since every Hilbert space has the Kadec-Klee property, we immedi-
ately have xn → x∗.

Finally, we prove that x∗ ∈ F(T)∩�. Since xn → x∗ and xn –Txn →  as n → ∞, consider

∥
∥x∗ – Tx∗∥∥ ≤ ∥

∥x∗ – xn
∥
∥ + ‖xn – Txn‖ +

∥
∥Txn – Tx∗∥∥

≤ ( + k)
∥
∥x∗ – xn

∥
∥ + ‖xn – Txn‖.

We can see that ‖x∗ – Tx∗‖ =  and, further, x∗ ∈ F(T). Therefore, we have x∗ ∈ F(T).
Next, we show that x∗ ∈ �. By (.), un = TF

rn (I – γ A∗(I – TF
rn )), that is,

F(un, y) +

rn

〈y – un, un – xn〉 –

rn

〈

y – un,γ A∗(TF
rn – I

)

Axn
〉 ≥ 

for all y ∈ C. From (A), it follows that

–

rn

〈

y – un,γ A∗(TF
rn – I

)

Axn
〉

+

rn

〈y – un, un – xn〉 ≥ F(y, un)

for all y ∈ C. Since ‖A∗(TF
rn – I)Axn‖ → , ‖un – xn‖ →  and ‖xn – x∗‖ →  as n → ∞,

we have

F
(

y, x∗) ≤ 
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for all y ∈ C. Let yt = ty + ( – t)x∗ for any  < t ≤  and y ∈ C. It means that yt ∈ C and
hence

 = F(yt , yt) ≤ tF(yt , y) + ( – t)F
(

yt , x∗) ≤ tF(yt , y),

and then F(yt , y) ≥ . Letting t → , we immediately have F(x∗, y) ≥ , i.e., x∗ ∈ EP(F).
Next, we show that Ax∗ ∈ EP(F). Since A is a bounded linear operator and (.), we

have

∥
∥TF

rn Axn – Ax∗∥∥ ≤ ∥
∥TAxn

rn

∥
∥ –

∥
∥Axn – Ax∗∥∥ → 

as n → ∞, which yields that TF
rn Axn → Ax∗. By the definition of TF

rn , we have

F
(

TF
rn Axn, y

)

+

rn

〈

y – TF
rn Axn, TF

rn Axn – Axn
〉 ≥  (.)

for all y ∈ C. Since F is upper semi-continuous in the first argument, taking lim sup in
(.), it follows that

F
(

Ax∗, y
) ≥ 

for all x, y ∈ C, from which it can be concluded that Ax∗ ∈ EP(F). Consequently, x∗ ∈ �.
This completes the proof. �

In Theorem ., if the mapping T is a nonexpansive mapping, then we immediately have
the following.

Corollary . Let H, H be two real Hilbert spaces and C, Q be nonempty closed convex
subsets of Hilbert spaces H and H, respectively. Let F : C ×C →R and F : Q×Q →R be
two bifunctions satisfying conditions (A)-(A) and F be upper semi-continuous in the first
argument. Let T : C → C be a nonexpansive mapping and A : H → H be a bounded linear
operator. Suppose that F(T) ∩ � 	= ∅, where � = {v ∈ C : v ∈ EP(F) such that Av ∈ EP(F)},
and let x ∈ C. For C = C and x = PC x, define a sequence {xn} iteratively as follows:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

un = TF
rn (I – γ A∗(I – TF

rn )A)xn,
yn = αnxn + ( – αn)Tun,
Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖ + θn},
xn+ = PCn+ x

(.)

for each n ∈N, where Mn = sup{‖xn – z‖ : x ∈ �} and θn = ( –αn)(k
n – )M

n,  ≤ αn ≤ a < 
for all n ∈ N,  < b ≤ rn < ∞, γ ∈ (, /L), L is the spectral radius of the operator A∗A and
A∗ is the adjoint of A. Then the sequence {xn} generated by (.) strongly converges to a
point z ∈ F(T) ∩ �.

If H = H, C = Q and A = I in Theorem ., then we have the following.

Corollary . Let H be a real Hilbert space and C be a nonempty closed convex subset
of a Hilbert space H . Let F, F : C × C → R be bifunctions satisfying conditions (A)-(A)
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and F be upper semi-continuous in the first argument. Let T : C → C be an asymptotically
nonexpansive mapping. Suppose that F(T)∩� 	= ∅, where � = {v ∈ C : v ∈ EP(F)∩EP(F)},
and let x ∈ C. For C = C and x = PC x, define a sequence {xn} iteratively as follows:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

un = TF
rn TF

rn xn,
yn = αnxn + ( – αn)Tnun,
Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖ + θn},
xn+ = PCn+ x

(.)

for each n ∈ N, where Mn = sup{‖xn – z‖ : z ∈ �} and θn = ( – αn)(k
n – )(Mn),  ≤ αn ≤

a <  and  < b ≤ rn < ∞ for all n ∈ N. Then the sequence {xn} generated by (.) strongly
converges to a point z ∈ F(T) ∩ �.

4 Applications
4.1 Applications to split variational inequality problems
Firstly, we point out the so-called variational inequality problem (shortly, VIP), which is
to find a point x∗ ∈ C which satisfies the following inequality:

〈

Ax∗, z – x∗〉 ≥ 

for all z ∈ C. Its solution set is symbolized by VI(A, C).
In , Censor et al. [] proposed the split variational inequality problem (shortly,

SVIP) which is formulated as follows:

Find a point x∗ ∈ C such that
〈

f
(

x∗), x – x∗〉 ≥  for all x ∈ C

and such that

y∗ = Ax∗ ∈ Q solves
〈

g
(

y∗), y – y∗〉 ≥  for all y ∈ Q,

where A : C → C is a bounded linear operator. The solution set of split variational inequal-
ity problem is denoted by the SVIP.

Setting F(x, y) = 〈f (x), y – x〉 and F(x, y) = 〈g(x), y – x〉, it is clear that F, F satisfy con-
ditions (A)-(A), where f and g are η- and η-inverse strongly monotone mappings,
respectively. Then, by Theorem ., we get the following.

Theorem . Let H, H be two real Hilbert spaces and C, Q be nonempty closed con-
vex subsets of Hilbert spaces H and H, respectively. Let f and g be η- and η-inverse
strongly monotone mappings, respectively. Let F : C × C →R and F : Q × Q →R be two
bifunctions satisfying conditions (A)-(A), which are defined by f and g , and F be upper
semi-continuous in the first argument. Let T : C → C be an asymptotically nonexpansive
mapping and A : H → H be a bounded linear operator. Suppose that F(T) ∩� 	= ∅, where
� = {v ∈ C : v ∈ EP(F) such that Av ∈ EP(F)}, and let x ∈ C. For C = C and x = PC x,
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define a sequence {xn} iteratively as follows:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

un = TF
rn (I – γ A∗(I – TF

rn )A)xn,
yn = αnxn + ( – αn)Tnun,
Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖ + θn},
xn+ = PCn+ x

(.)

for each n ∈ N, where Mn = sup{‖xn – z‖ : z ∈ �} and θn = ( –αn)(k
n – )M

n,  ≤ αn ≤ a < 
for all n ∈ N,  < b ≤ rn < ∞, γ ∈ (, /L), L is the spectral radius of the operator A∗A and
A∗ is the adjoint of A. Then the sequence {xn} generated by (.) strongly converges to a
point z ∈ F(T) ∩ �.

Proof The desired result can be proved directly through Theorem .. �

4.2 Applications to split optimization problems
In this section, we mention applications to the split optimization problem, which is to find
x∗ ∈ C such that

f
(

x∗) ≥ f (x) for all x ∈ C satisfying Ax∗ = y∗ ∈ Q solves g
(

y∗) ≥ g(y) (.)

for all y ∈ Q. We symbolize � for the solution set of the split optimization problem.
Let f : C →R and g : Q →R be two functions satisfying the following assumption:
() for each x, y ∈ C, f (tx + ( – t)y) ≤ f (y), and for each u, v ∈ Q, g(tu + ( – t)v) ≤ g(v);
() f (x) is concave and upper semi-continuous for all x ∈ C and g(u) is concave and

upper semi-continuous for all u ∈ Q.
Let F(x, y) = f (x) – f (y) for all x, y ∈ C and F(u, v) = g(u) – g(v) for all u, v ∈ Q. If f and g

satisfy conditions () and (), then it is clear that F : C × C → R and F : Q × Q → R are
two bifunctions satisfying conditions (A)-(A). Therefore, by Theorem ., we have the
following.

Theorem . Let H, H be two real Hilbert spaces and C, Q be nonempty closed convex
subsets of Hilbert spaces H and H, respectively. Let f : C → R and g : Q → R be two
functions satisfying conditions () and (). Let F : C × C →R and F : Q × Q → R be two
bifunctions satisfying conditions (A)-(A) and F be upper semi-continuous in the first
argument. Let A : H → H be a bounded linear operator. Suppose that F(T) ∩ � 	= ∅ and
let x ∈ C. For C = C and x = PC x, define a sequence {xn} iteratively as follows:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

un = TF
rn (I – γ A∗(I – TF

rn )A)xn,
yn = αnxn + ( – αn)un,
Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ = PCn+ x

(.)

for each n ∈ N, where  ≤ αn ≤ a < ,  < b ≤ rn < ∞, and γ ∈ (, /L), L is the spectral
radius of the operator A∗A and A∗ is the adjoint of A. Then the sequence {xn} generated by
(.) strongly converges to a point z ∈ F(T) ∩ �.

Proof The desired result can be proved directly through Theorem .. �
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