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Abstract
For the purpose of this paper, we use the method different from the relaxed
extragradient method for finding a common element of the set of fixed points of a
quasi-nonexpansive mapping, the set of solutions of equilibrium problems, and the
set of solutions of a modified system of variational inequalities without demiclosed
condition ofW andWω := (1 –ω)I +ωW , whereW is a quasi-nonexpansive mapping
and ω ∈ (0, 12 ) in the framework of Hilbert space. By using our main result, we obtain a
strong convergence theorem involving a finite family of nonspreading mappings and
another corollary. Moreover, we give a numerical example to encourage our main
theorem.
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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H . Recall that the map-
ping W : C → C is called quasi-nonexpansive if

‖Wp – q‖ ≤ ‖p – q‖,

for all p ∈ C and q ∈ F(W ). We denote by F(W ) the set of fixed points of W . Fixed point
problems have been widely studied and developed in the literature.

Let � be a bifunction of C × C into R, where R is the set of real numbers. The equilib-
rium problem for � : C × C →R is to find p ∈ C such that

�(p, ζ ) ≥ , ∀ζ ∈ C. (.)

We denote the set of solutions of (.) by EP(�). Equilibrium problems were introduced
by Blum and Oettli [] in  and included many well-known problems such as the varia-
tional inequality problem, the optimization problem, and the nonexpansive mapping and
fixed point problem.
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A mapping D : C → H is called d-inverse strongly monotone if there exists a positive
real number d >  such that

〈Dp – Dζ , p – ζ 〉 ≥ d‖Dp – Dζ‖,

for all p, ζ ∈ C.
Let B : C → H . The variational inequality is to find a point φ ∈ C such that

〈Bφ,ψ – φ〉 ≥ , (.)

for all ψ ∈ C. The set of solutions of (.) is denoted by VIP(C, B). The variational inequal-
ities were initially studied and introduced by Lions and Stampacchia [].

The concept of quasi-nonexpansive mapping was investigated by Diaz and Metcalf [].
In , Su et al. [] introduced strong convergence theorems for quasi-nonexpansive
mappings, the monotone hybrid iteration method used to approximate the fixed point of
quasi-nonexpansive mappings. In , Tian and Jin [] introduced an iterative method of
a quasi-nonexpansive mapping in the framework of Hilbert space. They proved the strong
convergence theorem of iterative scheme {pn} generated by (.) as follows.

Theorem . Let H be a real Hilbert space, let F be a κ-Lipschitzian and η-strongly mono-
tone operator on H with κ > , η >  and let W be a quasi-nonexpansive mapping on H , and
f is a L-Lipschitzian mapping with coefficient L >  for all p, ζ ∈ H . Assume the set F(W ) of
fixed points of W is nonempty closed and convex. Let  < μ < η

κ ,  < γ < μ(η– μκ

 )/L = τ /L
and start with an arbitrary chosen p ∈ H , let the sequence {pn} be generated by

pn+ = αnγ f (pn) + (I – αnμF)Wωpn, (.)

where the sequence {αn} ⊂ (, ) satisfies limn→∞ αn = , and
∑∞

n= αn = ∞. Also ω ∈ (, 
 ),

Wω := ( – ω)I + ωW with two conditions on W :
. ‖Wp – q‖ ≤ ‖p – q‖ for any p ∈ H , and q ∈ F(W ); this means that W is a

quasi-nonexpansive mapping;
. W is demiclosed on H ; that is, if {ζk} ⊂ H , ζk ⇀ ξ , and (I – W )ζk → , then ξ ∈ F(W ).

Then {pn} converges strongly to the p∗ ∈ F(W ) which is the unique solution of the VIP:

〈
(μF – γ f )p∗, p – p∗〉 ≤ , ∀p ∈ F(W ).

Many strong convergence theorems of quasi-nonexpansive mapping W were proved by
assuming the following conditions:

. Wω := ( – ω)I + ωW for all ω ∈ (, 
 ),

. W is demiclosed on H .
In , Dong et al. [] proved strong convergence theorem by using a relaxed extragra-

dient method as follows.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
the mappings D, D : C → H be d-inverse strongly monotone and d-inverse strongly
monotone, respectively. Let � be a bifunction from C × C → R satisfying (J)-(J) and
let {Wn}∞n= : C → C be a countable family of nonexpansive mappings such that � :=
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⋂∞
n= F(Wn)∩EP(�)∩F(G) �= ∅. Let f : C → C be a contraction with coefficient ρ ∈ (, /).

Set β = . For given p ∈ C arbitrarily, let the sequences {pn}, {ζn}, {ξn}, and {φn} be gener-
ated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(φn, ζ ) + 
gn

〈ζ – φn,φn – pn〉 ≥ , ∀ζ ∈ C,

ξn = PC(φn – λBDφn),

ζn = αnf (pn) + ( – αn)PC(ξn – λADξn),

pn+ = βnpn + σn
∑∞

i=(βi– – βi)Wiζn

+ ( – βn)( – σn)PC(ξn – λADξn), ∀n ∈N,

(.)

where λA ∈ (, d), λB ∈ (, d), and the sequences {αn} ⊂ [, ], {βn} ⊂ [, ], {σn} ⊂ [, ],
and {gn} ⊂ (r,∞), r > , are such that

(i) {βn} is strictly decreasing,
(ii)  < lim infn→∞ βn < lim supn→∞ βn < ,

(iii) limn→∞ αn =  and
∑∞

n= αn = ∞,
(iv) σn > /( – ρ),

∑∞
n= |σn – σn–| < ∞,

(v)
∑∞

n= |gn – gn–| < ∞.
Then the sequence {pn} generated by (.) converges strongly to p∗ = P� · f (p∗), and (p∗, ζ ∗) is
a solution of the general system of variational inequalities (.) where ζ ∗ = PC(p∗ –λBDp∗).

Many authors used the extragradient method to prove fixed point theorem of nonlinear
mappings.

Let D, D : C → H be two mappings. In , Ceng et al. [] introduced a relaxed ex-
tragradient method for finding solutions of problem (p∗, ξ ∗) ∈ C × C such that

⎧
⎨

⎩

〈λADξ
∗ + p∗ – ξ ∗, p – p∗〉 ≥ , ∀p ∈ C,

〈λBDp∗ + ξ ∗ – p∗, p – ξ ∗〉 ≥ , ∀p ∈ C,
(.)

which is called a system of variational inequalities where λA,λB > .
In , Kangtunyakarn [] modified (.) for finding (p∗, ξ ∗) ∈ C × C such that

⎧
⎨

⎩

〈p∗ – (I – λAD)(ap∗ + ( – a)ξ ∗), p – p∗〉 ≥ , ∀p ∈ C,

〈ξ ∗ – (I – λBD)p∗, p – ξ ∗〉 ≥ , ∀p ∈ C,
(.)

which is called a modification of system of variational inequalities, for every λA,λB >  and
a ∈ [, ]. If a = , (.) reduces to (.). He introduced the relation between solutions of
(.) and fixed point of the mapping G as follows.

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space H and let
D, D : C → H be mappings. For every λA,λB >  and a ∈ [, ], the following statements
are equivalent:

. (p∗, ξ ∗) ∈ C × C is a solution of problem (.),
. p∗ is a fixed point of the mapping G : C → C, i.e., p∗ ∈ F(G), defined by

G(p) = PC(I – λAD)
(
ap + ( – a)PC(I – λBD)p

)
,

where ξ ∗ = PC(I – λBD)p∗.
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After we investigated Theorem ., Theorem . and researchers in the same direction,
we have the questions as follows:

() Can we prove strong convergence theorem without demiclosed condition and
Wω := ( – ω)I + ωW , where W is a quasi-nonexpansive mapping and ω ∈ (, 

 ) in
the framework of Hilbert space?

() Can we prove strong convergence theorem without relaxed extragradient method?
In this paper, we give the answer for the mentioned questions and introduce the method

of iterative scheme {pn} for finding a common element of the set of fixed points of a quasi-
nonexpansive mapping, the set of solutions of equilibrium problems and the set of solu-
tions of a modified system of variational inequalities. Applying our main result, we prove
strong convergence theorem involving a finite family of nonspreading mappings and an-
other corollary. Moreover, We also give a numerical example to support our main theorem.

2 Preliminaries
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. In this paper, we use
the symbol of weak and strong convergence by ‘⇀’ and ‘→’, respectively. For every p ∈ H ,
there exists a unique nearest point PCp in C such that ‖p – PCp‖ ≤ ‖p – ζ‖ for all ζ ∈ C.
PC is called the metric projection of H onto C.

Remark . It is well known that metric projection PC has the following properties:
. PC is firmly nonexpansive, i.e.,

‖PCp – PCζ‖ ≤ 〈PCp – PCζ , p – ζ 〉, ∀p, ζ ∈ H .

. For each p ∈ H ,

ξ = PC(p) ⇔ 〈p – ξ , ξ – ζ 〉 ≥ , ∀ζ ∈ C.

Recall that H satisfies Opial’s condition [], i.e., for any sequence {pn} with pn ⇀ p, the
inequality

lim
n→∞ inf‖pn – p‖ < lim

n→∞ inf‖pn – ζ‖

holds for every ζ ∈ H with ζ �= p.

Lemma . Let H be a real Hilbert space. Then we have the following well-known results:
. ‖p ± ζ‖ = ‖p‖ ± 〈p, ζ 〉 + ‖ζ‖,
. ‖p + ζ‖ ≤ ‖p‖ + 〈ζ , p + ζ 〉,

for all p, ζ ∈ H .

Lemma . ([]) Let (E, 〈·, ·〉) be an inner product space. Then, for all p, ζ , ξ ∈ E and
α,α,α ∈ [, ] with α + α + α = , we have

‖αp + αζ + αξ‖ = α‖p‖ + α‖ζ‖ + α‖ξ‖ – αα‖p – ζ‖

– αα‖p – ξ‖ – αα‖ζ – ξ‖.
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For solving the equilibrium problem, we assume that the bifunction � : C × C → R

satisfies the following conditions:
(J) �(p, p) =  for all p ∈ C;
(J) � is monotone, i.e., �(p, ζ ) + �(ζ , p) ≤  for all p, ζ ∈ C;
(J) for each p, ζ , ξ ∈ C,

lim
t↓

�
(
tξ + ( – t)p, ζ

) ≤ �(p, ζ );

(J) for each p ∈ C, ζ �→ �(p, ζ ) is convex and lower semicontinuous.

Lemma . ([]) Let C be a nonempty closed convex subset of H and let � be a bifunction
of C × C into R satisfying (J)-(J). Let r >  and p ∈ H . Then there exists ξ ∈ C such that

�(ξ , ζ ) +

r
〈ζ – ξ , ξ – p〉 ≥ , ∀ζ ∈ C.

Lemma . ([]) Assume that � : C × C → R satisfies (J)-(J). For r > , define a map-
ping Wr : H → C as follows:

Wr(p) =
{

ξ ∈ C : �(ξ , ζ ) +

r
〈ζ – ξ , ξ – p〉 ≥ ,∀ζ ∈ C

}

,

for all p ∈ H . Then the following hold:
() Wr is single-valued;
() Wr is firmly nonexpansive, i.e., for any p, ζ ∈ H ,

∥
∥Wr(p) – Wr(ζ )

∥
∥ ≤ 〈

Wr(p) – Wr(ζ ), p – ζ
〉
;

() F(Wr) = EP(�);
() EP(�) is closed and convex.

Lemma . ([]) Let {hn} be a sequence of nonnegative real numbers satisfying

hn+ ≤ ( – αn)hn + δn, ∀n ≥ ,

where {αn} is a sequence in (, ) and {δn} is a sequence such that
()

∑∞
n= αn = ∞,

() lim supn→∞
δn
αn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ hn = .

Lemma . ([]) Let H be a real Hilbert space, let C be a nonempty closed convex subset
of H and let D be a mapping of C into H . Let u ∈ C. Then for λ > ,

u = PC(I – λD)u ⇔ u ∈ VIP(C, D),

where PC is the metric projection of H onto C.
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Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H and
let W : C → C be a quasi-nonexpansive mapping with F(W ) �= ∅. Then VIP(C, I – W ) =
F(W ).

Remark . From Lemmas . and ., we have

F(W ) = VIP(C, I – W ) = F
(
PC

(
I – λ(I – W )

))
,

for all λ > .

3 Main result
Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , let
�,� : C × C → R be bifunctions satisfying (J)-(J) and let W : C → C be a quasi-
nonexpansive mapping. Let D, D : C → H be d, d-inverse strongly monotone mappings,
respectively. Define the mapping G : C → C by G(p) = PC(I – λAD)(ap + ( – a)PC(I –
λBD)p) for all p ∈ C and a ∈ [, ]. Assume F = EP(�) ∩ EP(�) ∩ F(G) ∩ F(W ) �= ∅.
Suppose that p, u ∈ C and let {pn}, {φn}, and {ψn} be sequences generated by

⎧
⎪⎪⎨

⎪⎪⎩

�(φn, ζ ) + 
gn

〈ζ – φn,φn – pn〉 ≥ , ∀ζ ∈ C,

�(ψn, ζ ) + 
hn

〈ζ – ψn,ψn – pn〉 ≥ , ∀ζ ∈ C,

pn+ = αnu + βnpn + γnPC(I – λn(I – W ))φn + δnG(ψn), ∀n ∈ N,

(.)

where the sequences λA ∈ (, d), λB ∈ (, d) and {αn}, {βn}, {γn}, {δn} ⊆ [, ] with αn +
βn + γn + δn =  for all n ∈ N. Suppose the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞,
(ii)  < c ≤ βn,γn, δn ≤ d <  for some c, d >  and for all n ≥ ,

(iii)  < e ≤ gn, hn ≤ f for some e, f >  and for all n ≥ ,
(iv)

∑∞
n= λn < ∞ and  < λn < ,

(v)
∑∞

n= |αn+ – αn| < ∞,
∑∞

n= |βn+ – βn| < ∞,
∑∞

n= |γn+ – γn| < ∞,
∑∞

n= |λn+ – λn| < ∞,
∑∞

n= |gn+ – gn| < ∞,
∑∞

n= |hn+ – hn| < ∞.
Then {pn}, {φn}, and {ψn} converge strongly to p = PFu and (p, ξ) is a solution of (.)
where ξ = PC(I – λBD)p.

Proof First, we show that G is a nonexpansive mapping. Let p, ζ ∈ C. Since D, D are
d, d-inverse strongly monotone, λA ∈ (, d), and λB ∈ (, d), we have

∥
∥(I – λAD)p – (I – λAD)ζ

∥
∥

= ‖p – ζ‖ – λA〈p – ζ , Dp – Dζ 〉 + λ
A‖Dp – Dζ‖

≤ ‖p – ζ‖ – dλA‖Dp – Dζ‖ + λ
A‖Dp – Dζ‖

= ‖p – ζ‖ + λA(λA – d)‖Dp – Dζ‖

≤ ‖p – ζ‖.

Then I – λAD is a nonexpansive mapping. Similarly I – λBD is a nonexpansive mapping.
Then G is a nonexpansive mapping.
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Next, we show {pn} is bounded. Let ξ ∈ F , then φn = Wgn pn and ψn = Whn pn. It is clear
that ‖φn – ξ‖ ≤ ‖pn – ξ‖ and ‖ψn – ξ‖ ≤ ‖pn – ξ‖. By Remark ., we have

ξ ∈ F
(
PC

(
I – λn(I – W )

))
. (.)

Observe that

‖Wφn – ξ‖ =
∥
∥(φn – ξ ) – (I – W )φn

∥
∥

= ‖φn – ξ‖ – 
〈
φn – ξ , (I – W )φn

〉
+

∥
∥(I – W )φn

∥
∥

≤ ‖φn – ξ‖.

It implies that

∥
∥(I – W )φn

∥
∥ ≤ 

〈
φn – ξ , (I – W )φn

〉
. (.)

From (.) and (.), we have

∥
∥PC

(
I – λn(I – W )

)
φn – ξ

∥
∥ =

∥
∥PC

(
I – λn(I – W )

)
φn – PC

(
I – λn(I – W )

)
ξ
∥
∥

≤ ∥
∥(φn – ξ ) – λn

(
(I – W )φn – (I – W )ξ

)∥
∥

= ‖φn – ξ‖ – λn
〈
φn – ξ , (I – W )φn

〉

+ λ
n
∥
∥(I – W )φn

∥
∥

≤ ‖φn – ξ‖ + λn(λn – )
∥
∥(I – W )φn

∥
∥

≤ ‖φn – ξ‖. (.)

From the definition of pn and (.), we have

‖pn+ – ξ‖ =
∥
∥αn(u – ξ ) + βn(pn – ξ ) + γn

(
PC

(
I – λn(I – W )

)
φn – ξ

)

+ δn
(
G(ψn) – ξ

)∥
∥

≤ αn‖u – ξ‖ + βn‖pn – ξ‖ + γn
∥
∥PC

(
I – λn(I – W )

)
φn – ξ

∥
∥

+ δn
∥
∥G(ψn) – ξ

∥
∥

≤ αn‖u – ξ‖ + βn‖pn – ξ‖ + γn‖φn – ξ‖ + δn‖ψn – ξ‖
≤ αn‖u – ξ‖ + βn‖pn – ξ‖ + γn‖pn – ξ‖ + δn‖pn – ξ‖
= αn‖u – ξ‖ + ( – αn)‖pn – ξ‖.

By induction, we can conclude that

‖pn – ξ‖ ≤ max
{‖u – ξ‖,‖p – ξ‖},

for all n ≥ . This implies that the sequence {pn} is bounded and so are {φn}, {ψn}, {(I –
W )φn}, and {PC(I – λn(I – W ))φn}.

Then we show that limn→∞ ‖pn+ – pn‖ = .
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From the definition of pn and nonexpansiveness of G, we have

‖pn+ – pn‖ =
∥
∥(αn – αn–)u + βn(pn – pn–) + (βn – βn–)pn–

+ γn
(
PC

(
I – λn(I – W )

)
φn – PC

(
I – λn–(I – W )

)
φn–

)

+ (γn – γn–)PC
(
I – λn–(I – W )

)
φn–

+ δn
(
G(ψn) – G(ψn–)

)
+ (δn – δn–)G(ψn–)

∥
∥

≤ |αn – αn–|‖u‖ + βn‖pn – pn–‖ + |βn – βn–|‖pn–‖
+ γn

∥
∥PC

(
I – λn(I – W )

)
φn – PC

(
I – λn–(I – W )

)
φn–

∥
∥

+ |γn – γn–|
∥
∥PC

(
I – λn–(I – W )

)
φn–

∥
∥

+ δn
∥
∥G(ψn) – G(ψn–)

∥
∥ + |δn – δn–|

∥
∥G(ψn–)

∥
∥

≤ |αn – αn–|‖u‖ + βn‖pn – pn–‖ + |βn – βn–|‖pn–‖
+ γn

∥
∥(φn – φn–) –

(
λn(I – W )φn – λn(I – W )φn–

)

–
(
λn(I – W )φn– – λn–(I – W )φn–

)∥
∥

+ |γn – γn–|
∥
∥PC

(
I – λn–(I – W )

)
φn–

∥
∥ + δn‖ψn – ψn–‖

+ |δn – δn–|
∥
∥G(ψn–)

∥
∥

≤ |αn – αn–|‖u‖ + βn‖pn – pn–‖ + |βn – βn–|‖pn–‖
+ γn‖φn – φn–‖ + λn

∥
∥(I – W )φn – (I – W )φn–

∥
∥

+ |λn – λn–|
∥
∥(I – W )φn–

∥
∥

+ |γn – γn–|
∥
∥PC

(
I – λn–(I – W )

)
φn–

∥
∥ + δn‖ψn – ψn–‖

+ |δn – δn–|
∥
∥G(ψn–)

∥
∥. (.)

On the other hand, from φn = Wgn pn and φn+ = Wgn+ pn+, we have

�(φn, ζ ) +

gn

〈ζ – φn,φn – pn〉 ≥ , ∀ζ ∈ C (.)

and

�(φn+, ζ ) +


gn+
〈ζ – φn+,φn+ – pn+〉 ≥ , ∀ζ ∈ C. (.)

Putting ζ = φn+ in (.) and ζ = φn in (.), we have

�(φn,φn+) +

gn

〈φn+ – φn,φn – pn〉 ≥ 

and

�(φn+,φn) +


gn+
〈φn – φn+,φn+ – pn+〉 ≥ .
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From (J), we have

〈

φn+ – φn,
φn – pn

gn
–

φn+ – pn+

gn+

〉

≥ .

So
〈

φn+ – φn,φn – φn+ + φn+ – pn –
gn

gn+
(φn+ – pn+)

〉

≥ .

Then

‖φn+ – φn‖ ≤
〈

φn+ – φn, pn+ – pn + φn+ – pn+ –
gn

gn+
(φn+ – pn+)

〉

=
〈

φn+ – φn, pn+ – pn +
(

 –
gn

gn+

)

(φn+ – pn+)
〉

≤ ‖φn+ – φn‖
(

‖pn+ – pn‖ +
∣
∣
∣
∣ –

gn

gn+

∣
∣
∣
∣‖φn+ – pn+‖

)

,

and hence

‖φn+ – φn‖ ≤ ‖pn+ – pn‖ +


gn+
|gn+ – gn|‖φn+ – pn+‖

≤ ‖pn+ – pn‖ +

e
|gn+ – gn|‖φn+ – pn+‖. (.)

We use ψn = Whn pn and ψn+ = Whn+ pn+. By using the same method as (.), we have

‖ψn+ – ψn‖ ≤ ‖pn+ – pn‖ +

e
|hn+ – hn|‖ψn+ – pn+‖. (.)

From (.), (.), and (.), we have

‖pn+ – pn‖ ≤ |αn – αn–|‖u‖ + βn‖pn – pn–‖ + |βn – βn–|‖pn–‖

+ γn

(

‖pn+ – pn‖ +

e
|gn+ – gn|‖φn+ – pn+‖

)

+ λn
∥
∥(I – W )φn – (I – W )φn–

∥
∥ + |λn – λn–|

∥
∥(I – W )φn–

∥
∥

+ |γn – γn–|
∥
∥PC

(
I – λn–(I – W )

)
φn–

∥
∥

+ δn

(

‖pn+ – pn‖ +

e
|hn+ – hn|‖ψn+ – pn+‖

)

+ |δn – δn–|
∥
∥G(ψn–)

∥
∥

≤ |αn – αn–|‖u‖ + βn‖pn – pn–‖ + |βn – βn–|‖pn–‖
+ γn‖pn+ – pn‖ +


e
|gn+ – gn|‖φn+ – pn+‖

+ λn
∥
∥(I – W )φn – (I – W )φn–

∥
∥ + |λn – λn–|

∥
∥(I – W )φn–

∥
∥

+ |γn – γn–|
∥
∥PC

(
I – λn–(I – W )

)
φn–

∥
∥ + δn‖pn+ – pn‖

+

e
|hn+ – hn|‖ψn+ – pn+‖ + |δn – δn–|

∥
∥G(ψn–)

∥
∥
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≤ ( – αn)‖pn – pn–‖ + |αn – αn–|M + |βn – βn–|M
+ |γn – γn–|M + |δn – δn–|M + |λn – λn–|M + λnM

+

e
|gn+ – gn|M +


e
|hn+ – hn|M,

where

M := max
n∈N

{‖u‖,‖pn‖,
∥
∥PC

(
I – λn(I – W )

)
φn

∥
∥,

∥
∥G(ψn)

∥
∥,

∥
∥(I – W )φn

∥
∥,

∥
∥(I – W )φn+ – (I – W )φn

∥
∥,‖φn – pn‖,‖ψn – pn‖

}
.

From the conditions (i), (iv), (v), and Lemma ., we have

lim
n→∞‖pn+ – pn‖ = . (.)

Since Wgn is a firmly nonexpansive mapping, we obtain

‖φn – ξ‖ = ‖Wgn pn – Wgnξ‖

≤ 〈Wgn pn – Wgnξ , pn – ξ 〉
≤ 〈φn – ξ , pn – ξ 〉

=


(‖φn – ξ‖ + ‖pn – ξ‖ – ‖φn – pn‖).

It implies that

‖φn – ξ‖ ≤ ‖pn – ξ‖ – ‖φn – pn‖. (.)

By using the same method as (.), we have

‖ψn – ξ‖ ≤ ‖pn – ξ‖ – ‖ψn – pn‖. (.)

From the definition of pn, (.), (.), and (.), we have

‖pn+ – ξ‖ =
∥
∥αn(u – ξ ) + βn(pn – ξ ) + γn

(
PC

(
I – λn(I – W )

)
φn – ξ

)

+ δn
(
G(ψn) – ξ

)∥
∥

≤ αn‖u – ξ‖ + βn‖pn – ξ‖ + γn
∥
∥PC

(
I – λn(I – W )

)
φn – ξ

∥
∥

+ δn
∥
∥G(ψn) – ξ

∥
∥ – βnγn

∥
∥PC

(
I – λn(I – W )

)
φn – pn

∥
∥

– βnδn
∥
∥G(ψn) – pn

∥
∥

≤ αn‖u – ξ‖ + βn‖pn – ξ‖ + γn‖φn – ξ‖ + δn‖ψn – ξ‖

– βnγn
∥
∥PC

(
I – λn(I – W )

)
φn – pn

∥
∥ – βnδn

∥
∥G(ψn) – pn

∥
∥

≤ αn‖u – ξ‖ + βn‖pn – ξ‖ + γn
(‖pn – ξ‖ – ‖φn – pn‖)

+ δn
(‖pn – ξ‖ – ‖ψn – pn‖) – βnδn

∥
∥G(ψn) – pn

∥
∥
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– βnγn
∥
∥PC

(
I – λn(I – W )

)
φn – pn

∥
∥

= αn‖u – ξ‖ + ( – αn)‖pn – ξ‖ – γn‖φn – pn‖

– δn‖ψn – pn‖ – βnγn
∥
∥PC

(
I – λn(I – W )

)
φn – pn

∥
∥

– βnδn
∥
∥G(ψn) – pn

∥
∥

≤ αn‖u – ξ‖ + ‖pn – ξ‖ – γn‖φn – pn‖ – δn‖ψn – pn‖

– βnγn
∥
∥PC

(
I – λn(I – W )

)
φn – pn

∥
∥ – βnδn

∥
∥G(ψn) – pn

∥
∥,

which implies that

γn‖φn – pn‖ ≤ αn‖u – ξ‖ + ‖pn – ξ‖ – ‖pn+ – ξ‖

≤ αn‖u – ξ‖ + ‖pn – pn+‖
(‖pn – ξ‖ + ‖pn+ – ξ‖).

From the conditions (i), (ii), and (.), we have

lim
n→∞‖φn – pn‖ = . (.)

By using the same method as (.), we can imply that

lim
n→∞‖ψn – pn‖ = lim

n→∞
∥
∥PC

(
I – λn(I – W )

)
φn – pn

∥
∥ = lim

n→∞
∥
∥G(ψn) – pn

∥
∥ = . (.)

From (.) and (.), we have

lim
n→∞‖φn – ψn‖ = . (.)

Afterwards, we show that lim supn→∞〈u – p, pn – p〉 ≤ , where p = PFu. To show this
inequality, take a subsequence {pnj} of {pn} such that

lim sup
n→∞

〈u – p, pn – p〉 = lim
j→∞〈u – p, pnj – p〉.

Without loss of generality, we may assume that unj ⇀ ω as j → ∞. From (.), we have
vnj ⇀ ω as j → ∞. By using the same method as [] in Theorem ., we have

ω ∈ EP(�) (.)

and

ω ∈ EP(�). (.)

Furthermore, we show that ω ∈ F(W ). From Remark ., we have F(W ) = F(PC(I – λnj (I –
W ))). Assume that ω /∈ F(W ), we have ω �= PC(I –λnj (I – W ))ω. From (.), we have pnj ⇀

ω as j → ∞. By (.), (.), the condition (iv), and Opial’s property, we have

lim inf
j→∞ ‖pnj – ω‖ < lim inf

j→∞
∥
∥pnj – PC

(
I – λnj (I – W )

)
ω

∥
∥

≤ lim inf
j→∞

(∥
∥pnj – PC

(
I – λnj (I – W )

)
unj

∥
∥
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+
∥
∥PC

(
I – λnj (I – W )

)
unj – PC

(
I – λnj (I – W )

)
pnj

∥
∥

+
∥
∥PC

(
I – λnj (I – W )

)
pnj – PC

(
I – λnj (I – W )

)
ω

∥
∥
)

≤ lim inf
j→∞

(‖unj – pnj‖ + λnj

∥
∥(I – W )unj – (I – W )pnj

∥
∥

+ ‖pnj – ω‖ + λnj

∥
∥(I – W )pnj – (I – W )ω

∥
∥
)

= lim inf
j→∞ ‖pnj – ω‖.

It is a contradiction. So we have

ω ∈ F(W ). (.)

After that, we show that ω ∈ F(G). Assume that ω /∈ F(G), that is, ω �= G(ω). Since pnj ⇀

ω as j → ∞, (.), the condition (iv), and Opial’s property, we have

lim inf
j→∞ ‖pnj – ω‖ < lim inf

j→∞
∥
∥pnj – G(ω)

∥
∥

≤ lim inf
j→∞

(∥
∥pnj – G(ψnj )

∥
∥ +

∥
∥G(ψnj ) – G(pnj )

∥
∥

+
∥
∥G(pnj ) – G(ω)

∥
∥
)

≤ lim inf
j→∞

(‖ψnj – pnj‖ + ‖pnj – ω‖)

= lim inf
j→∞ ‖pnj – ω‖.

It is a contradiction. So we have

ω ∈ F(G). (.)

Therefore ω ∈F . Since pnj ⇀ ω as j → ∞, we have

lim sup
n→∞

〈u – p, pn – p〉 = lim
j→∞〈u – p, pnj – p〉

= 〈u – p,ω – p〉 ≤ . (.)

Finally, we show that the sequences {pn}, {φn}, and {ψn} converge strongly to p = PFu.
From the definition of pn, (.), and p = PFu, we have

‖pn+ – p‖ =
∥
∥αn(u – p) + βn(pn – p) + γn

(
PC

(
I – λn(I – W )

)
φn – p

)

+ δn
(
G(ψn) – p

)∥
∥

≤ ∥
∥βn(pn – p) + γn

(
PC

(
I – λn(I – W )

)
φn – p

)

+ δn
(
G(ψn) – p

)∥
∥ + αn〈u – p, pn+ – p〉

≤ ( – αn)‖pn – p‖ + αn〈u – p, pn+ – p〉.

From the condition (i), (.), and Lemma ., we can conclude that the sequence {pn}
converges strongly to p = PFu. Consequently, we see that {φn} and {ψn} also converge
strongly to p = PFu. This completes the proof. �
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From our main result, if we take a = , we have the following corollary.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H , let
�,� : C × C → R be bifunctions satisfying (J)-(J) and let W : C → C be a quasi-
nonexpansive mapping. Let D, D : C → H be d, d-inverse strongly monotone mappings,
respectively. Define the mapping G : C → C by G(p) = PC(I – λAD)(PC(I – λBD)p) for all
p ∈ C. Assume F = EP(�) ∩ EP(�) ∩ F(G) ∩ F(W ) �= ∅. Suppose that p, u ∈ C and let
{pn}, {φn}, and {ψn} be sequences generated by

⎧
⎪⎪⎨

⎪⎪⎩

�(φn, ζ ) + 
gn

〈ζ – φn,φn – pn〉 ≥ , ∀ζ ∈ C,

�(ψn, ζ ) + 
hn

〈ζ – ψn,ψn – pn〉 ≥ , ∀ζ ∈ C,

pn+ = αnu + βnpn + γnPC(I – λn(I – W ))φn + δnG(ψn), ∀n ∈ N,

(.)

where the sequences λA ∈ (, d), λB ∈ (, d) and {αn}, {βn}, {γn}, {δn} ⊆ [, ] with αn +
βn + γn + δn =  for all n ∈ N. Suppose the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞,
(ii)  < c ≤ βn,γn, δn ≤ d <  for some c, d >  and for all n ≥ ,

(iii)  < e ≤ gn, hn ≤ f for some e, f >  and for all n ≥ ,
(iv)

∑∞
n= λn < ∞ and  < λn < ,

(v)
∑∞

n= |αn+ – αn| < ∞,
∑∞

n= |βn+ – βn| < ∞,
∑∞

n= |γn+ – γn| < ∞,
∑∞

n= |λn+ – λn| < ∞,
∑∞

n= |gn+ – gn| < ∞,
∑∞

n= |hn+ – hn| < ∞.
Then {pn}, {φn}, and {ψn} converge strongly to p = PFu and (p, ξ) is a solution of (.)
where ξ = PC(I – λBD)p.

4 Application
In this section, we use our main result to obtain Theorem . and Theorem .. Before we
prove these theorems, we need the following definition and lemma. A mapping W : C → C
is said to be nonspreading if

‖Wp – Wζ‖ ≤ ‖Wp – ζ‖ + ‖Wζ – p‖, ∀p, ζ ∈ C. (.)

Such a mapping is defined by Kohsaka and Takahashi [].
In , Iemoto and Takahashi [] proved that (.) is equivalent to

‖Wp – Wζ‖ ≤ ‖p – ζ‖ + 〈p – Wp, ζ – Wζ 〉, ∀p, ζ ∈ C. (.)

Remark . A nonspreading mapping W with F(W ) �= ∅ is quasi-nonexpansive mapping.

Example . Let W : [–,∞) → [–,∞) be defined by

Wp =
p – 


, ∀p ∈ [–,∞).

Since W is a nonspreading mapping and F(W ) = {–}, we have W is a quasi-nonexpansive
mapping.

The following lemmas and definition are used to prove the results in this section.
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Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H
and let D, D : C → H be d, d-inverse strongly monotone mappings, respectively, with
VIP(C, D) ∩ VIP(C, D) �= ∅. Define a mapping G : C → C by

G(p) = PC(I – λAD)
(
ap + ( – a)PC(I – λBD)p

)
,

for every λA ∈ (, d), λB ∈ (, d) and a ∈ (, ). Then F(G) = VIP(C, D) ∩ VIP(C, D).

Lemma . ([]) Let H be a Hilbert space, let C be a nonempty closed convex subset of
H , and let W be a nonspreading mapping of C into itself. Then F(W ) is closed and convex.

In , Kangtunyakarn and Suantai [] introduced the S-mapping generated by
W, W, W, . . . , WN and λ,λ, . . . ,λN as follows.

Definition . Let C be a nonempty convex subset of a real Banach space. Let {Wi}N
i= be

a finite family of (nonexpansive) mappings of C into itself. For each j = , , . . . , N , let αj =
(αj

,αj
,αj

) ∈ I × I × I , where I ∈ [, ] and α
j
 + α

j
 + α

j
 = . Define the mapping S : C → C

as follows:

U = I,

U = α
WU + α

U + α
I,

U = α
 WU + α

U + α
I,

U = α
 WU + α

U + α
I,

. . . ,

UN– = αN–
 WN–UN– + αN–

 UN– + αN–
 I,

S = UN = αN
 WN UN– + αN

 UN– + αN
 I.

This mapping is called an S-mapping generated by W, W, . . . , WN and α,α, . . . ,αN .

For every i = , , . . . N , put αi
 =  in Definition ., then the S-mapping is reduced to the

K-mapping generated by α
 ,α

 , . . . ,αN
 where the K-mapping is defined by Kangtunyakarn

and Suantai [] as follows.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space. Let
{Wi}N

i= be a finite family of nonspreading mappings of C into C with
⋂N

i= F(Wi) �= ∅, and
let αj = (αj

,αj
,αj

) ∈ I × I × I , j = , , . . . , N , where I = [, ], α
j
 + α

j
 + α

j
 = , α

j
,αj

 ∈ (, )
for all j = , , . . . , N –  and αN

 ∈ (, ], αN
 ∈ [, ), αj

 ∈ [, ) for all j = , , . . . , N . Let S be
the mapping generated by W, W, . . . , WN and α,α, . . . ,αN . Then F(S) =

⋂N
i= F(Wi) and

S is a quasi-nonexpansive mapping.

By using these results, we obtain the following theorems.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , let
�,� : C × C → R be bifunctions satisfying (J)-(J) and let W : C → C be a quasi-
nonexpansive mapping. Let D, D : C → H be d, d-inverse strongly monotone mappings,
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respectively. Assume F = EP(�) ∩ EP(�) ∩ F(W ) ∩ VIP(C, D) ∩ VIP(C, D) �= ∅. Suppose
that p, u ∈ C and let {pn}, {φn}, and {ψn} be sequences generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�(φn, ζ ) + 
gn

〈ζ – φn,φn – pn〉 ≥ , ∀ζ ∈ C,

�(ψn, ζ ) + 
hn

〈ζ – ψn,ψn – pn〉 ≥ , ∀ζ ∈ C,

pn+ = αnu + βnpn + γnPC(I – λn(I – W ))φn

+ δnPC(I – λAD)(apn + ( – a)PC(I – λBD)pn), ∀n ∈N,

(.)

where the sequences λA ∈ (, d), λB ∈ (, d), and {αn}, {βn}, {γn}, {δn} ⊆ [, ] with αn +
βn + γn + δn = , for all n ∈N, and a ∈ (, ). Suppose the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞,
(ii)  < c ≤ βn,γn, δn ≤ d <  for some c, d >  and for all n ≥ ,

(iii)  < e ≤ gn, hn ≤ f for some e, f >  and for all n ≥ ,
(iv)

∑∞
n= λn < ∞ and  < λn < ,

(v)
∑∞

n= |αn+ – αn| < ∞,
∑∞

n= |βn+ – βn| < ∞,
∑∞

n= |γn+ – γn| < ∞,
∑∞

n= |λn+ – λn| < ∞,
∑∞

n= |gn+ – gn| < ∞,
∑∞

n= |hn+ – hn| < ∞.
Then {pn}, {φn}, and {ψn} converge strongly to p = PFu and (p, ξ) be a solution of (.)
where ξ = PC(I – λBD)p.

Proof By using Theorem . and Lemma ., we obtain the conclusion. �

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , let
�,� : C × C →R be bifunctions satisfying (J)-(J). Let {Wi}N

i= be a finite family of non-
spreading mappings of C into C and let αj = (αj

,αj
,αj

) ∈ I × I × I , j = , , . . . , N , where
I = [, ], αj

 + α
j
 + α

j
 = , αj

,αj
 ∈ (, ) for all j = , , . . . , N –  and αN

 ∈ (, ], αN
 ∈ [, ),

α
j
 ∈ [, ) for all j = , , . . . , N . Let S be the mapping generated by W, W, . . . , WN , and

α,α, . . . ,αN . Let D, D : C → H be d, d-inverse strongly monotone mappings, respec-
tively. Define the mapping G : C → C by G(p) = PC(I – λAD)(ap + ( – a)PC(I – λBD)p) for
all p ∈ C and a ∈ [, ]. Assume F = EP(�) ∩ EP(�) ∩ F(G) ∩ ⋂N

i= F(Wi) �= ∅. Suppose
that p, u ∈ C and let {pn}, {φn}, and {ψn} are sequences generated by

⎧
⎪⎪⎨

⎪⎪⎩

�(φn, ζ ) + 
gn

〈ζ – φn,φn – pn〉 ≥ , ∀ζ ∈ C,

�(ψn, ζ ) + 
hn

〈ζ – ψn,ψn – pn〉 ≥ , ∀ζ ∈ C,

pn+ = αnu + βnpn + γnPC(I – λn(I – S))φn + δnG(ψn), ∀n ∈ N,

(.)

where the sequences λA ∈ (, d), λB ∈ (, d), and {αn}, {βn}, {γn}, {δn} ⊆ [, ] with αn +
βn + γn + δn =  for all n ∈ N. Suppose the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞,
(ii)  < c ≤ βn,γn, δn ≤ d <  for some c, d >  and for all n ≥ ,

(iii)  < e ≤ gn, hn ≤ f for some e, f >  and for all n ≥ ,
(iv)

∑∞
n= λn < ∞ and  < λn < ,

(v)
∑∞

n= |αn+ – αn| < ∞,
∑∞

n= |βn+ – βn| < ∞,
∑∞

n= |γn+ – γn| < ∞,
∑∞

n= |λn+ – λn| < ∞,
∑∞

n= |gn+ – gn| < ∞,
∑∞

n= |hn+ – hn| < ∞.
Then {pn}, {φn}, and {ψn} converge strongly to p = PFu and (p, ξ) is a solution of (.)
where ξ = PC(I – λBD)p.
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Proof By using Theorem . and Lemma ., we obtain the conclusion. �

The following result is directly proven from Theorem .. Therefore, we omit the proof.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H , let
�,� : C × C →R be bifunctions satisfying (J)-(J). Let W be a nonspreading mappings
of C into itself with F(W ) �= ∅. Let D, D : C → H be d, d-inverse strongly monotone map-
pings, respectively. Define the mapping G : C → C by G(p) = PC(I –λAD)(ap + ( – a)PC(I –
λBD)p) for all p ∈ C and a ∈ [, ]. Assume F = EP(�) ∩ EP(�) ∩ F(G) ∩ F(W ) �= ∅. Sup-
pose that p, u ∈ C and let {pn}, {φn}, and {ψn} be sequences generated by

⎧
⎪⎪⎨

⎪⎪⎩

�(φn, ζ ) + 
gn

〈ζ – φn,φn – pn〉 ≥ , ∀ζ ∈ C,

�(ψn, ζ ) + 
hn

〈ζ – ψn,ψn – pn〉 ≥ , ∀ζ ∈ C,

pn+ = αnu + βnpn + γnPC(I – λn(I – W ))φn + δnG(ψn), ∀n ∈ N,

(.)

where the sequences λA ∈ (, d), λB ∈ (, d) and {αn}, {βn}, {γn}, {δn} ⊆ [, ] with αn +
βn + γn + δn =  for all n ∈ N. Suppose the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn = ∞,
(ii)  < c ≤ βn,γn, δn ≤ d <  for some c, d >  and for all n ≥ ,

(iii)  < e ≤ gn, hn ≤ f for some e, f >  and for all n ≥ ,
(iv)

∑∞
n= λn < ∞ and  < λn < ,

(v)
∑∞

n= |αn+ – αn| < ∞,
∑∞

n= |βn+ – βn| < ∞,
∑∞

n= |γn+ – γn| < ∞,
∑∞

n= |λn+ – λn| < ∞,
∑∞

n= |gn+ – gn| < ∞,
∑∞

n= |hn+ – hn| < ∞.
Then {pn}, {φn}, and {ψn} converge strongly to p = PFu and (p, ξ) is a solution of (.)
where ξ = PC(I – λBD)p.

5 Example and numerical results
In this section, we give an example supporting Theorem ..

Example . Let R be the set of real numbers and let the mapping D, D : R →R defined
by Dp = p–

 and Dp = p–
 , ∀p ∈ R, respectively. Let the mapping W : R → R be defined

by Wp = p+
 , ∀p ∈R, let �,� : R×R→R be defined by

�(p, ζ ) = –(p – ζ )(– + p + ζ ), ∀p, ζ ∈R

and

�(p, ζ ) = –(p – ) + (p – )(ζ – ) + (ζ – ), ∀p, ζ ∈R.

By the definition of �, we have

 ≤ �(φn, ζ ) +

gn

〈ζ – φn,φn – pn〉

= –(φn – ζ )(– + φn + ζ ) +

gn

(ζ – φn)(φn – pn)

= –(φn – ζ )(– + φn + ζ ) +

gn

(
ζφn – ζpn – φ

n + φnpn
)



Cheawchan et al. Fixed Point Theory and Applications  (2015) 2015:216 Page 17 of 19

⇔  ≤ –gn(φn – ζ )(– + φn + ζ ) +
(
ζφn – ζpn – φ

n + φnpn
)

= gnφn – φ
n – gnφ


n + φnpn + (–gn + φn – pn)ζ + gnζ

.

Let G(ζ ) = gnζ
 +(–gn +φn –pn)ζ +gnφn –φ

n –gnφ

n +φnpn, which is a quadratic function

of ζ with coefficient a = gn, b = –gn +φn – pn, and c = gnφn –φ
n – gnφ


n +φnpn. Determine

the discriminant � of G as follows:

� = b – ac

= (–gn + φn – pn) – gn
(
gnφn – φ

n – gnφ

n + φnpn

)

= g
n – gnφn – g

nφn + φ
n + gnφ


n + g

nφ
n + gnpn – φnpn – gnφnpn + p

n

= (–gn + φn + gnφn – pn).

We know that G(ζ ) ≥ , ∀ζ ∈ R. If it has at most one solution in R, then � ≤ . So we
obtain

φn =
gn + pn

 + gn
. (.)

By using the same method as (.), we have

ψn =
hn + pn

 + hn
. (.)

Let p, u ∈R, and {pn} be generated by (.) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

�(φn, ζ ) + 
gn

〈ζ – φn,φn – pn〉 ≥ , ∀ζ ∈ C,

�(ψn, ζ ) + 
hn

〈ζ – ψn,ψn – pn〉 ≥ , ∀ζ ∈ C,

pn+ = αnu + βnpn + γnPC(I – λn(I – W ))φn + δnG(ψn), ∀n ∈ N,

where a = ., λA = , λB = , gn = n
n+ , hn = n

n+ , αn = 
n , βn = n–

n , γn = n–
n , δn = n–

n ,
and λn = 

n for all n ∈ N. By the definitions of �, �, G, and W , we have EP(�) ∩
EP(�) ∩ F(G) ∩ F(W ) = {}. From Theorem ., we can conclude that the sequences {pn},
{φn}, and {ψn} converge strongly to . From (.) and (.), we can rewrite (.) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

φn = gn+pn
+gn

,

ψn = hn+pn
+hn

,

pn+ = 
n u + n–

n pn + n–
n (I – 

n (I – W ))φn + n–
n G(ψn), ∀n ≥ .

(.)

Table  shows the values of the sequences {pn}, {φn}, and {ψn} where u = p = – and
u = p =  and n = .

Conclusion
. The sequences {pn}, {φn}, and {ψn} in Table  and Figure  converge to , where

{} = EP(�) ∩ EP(�) ∩ F(G) ∩ F(W ).
. Theorem . ensures the convergence of {pn}, {φn}, and {ψn} in Example ..
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Table 1 The values of {φn}, {ψn}, and {pn} where n = 300

n u = p1 = –1 u = p1 = 5

φn ψn pn φn ψn pn

1 0.0000 0.1250 –1.0000 4.000000 3.8750 5.0000
2 0.4339 0.5234 –0.4609 3.5661 3.4766 4.4609
3 0.7688 0.8360 0.0301 3.2312 3.1640 3.9699
4 1.0254 1.0771 0.4256 2.9746 3.9229 3.5744
5 1.2188 1.2595 0.7306 2.7812 2.7405 3.2694
...

...
...

...
...

...
...

150 1.9837 1.9845 1.9728 2.0163 2.0155 2.0272
...

...
...

...
...

...
...

296 1.9918 1.9922 1.9863 2.0082 2.0078 2.0137
297 1.9918 1.9922 1.9864 2.0082 2.0078 2.0136
298 1.9918 1.9922 1.9864 2.0082 2.0078 2.0136
299 1.9919 1.9923 1.9865 2.0081 2.0077 2.0135
300 1.9919 1.9923 1.9865 2.0081 2.0077 2.0135

(a) u = p = – (b) u = p = 

Figure 1 The convergence comparison of the sequences {pn}, {φn}, and {ψn} with different initial
values u and p1.
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