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Abstract
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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H with its inner product
〈·, ·〉 and norm ‖ · ‖.

Definition . A mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ C.

We use Fix(T) to denote the set of fixed points of T .

Definition . A mapping T : C → C is said to be strictly pseudo-contractive if there
exists a constant  ≤ λ <  such that

‖Tx – Ty‖ ≤ ‖x – y‖ + λ
∥
∥(I – T)x – (I – T)y

∥
∥

, ∀x, y ∈ C.

Remark . It is well known that the class of strictly pseudo-contractive mappings prop-
erly includes the class of nonexpansive mappings.

Iterative construction of fixed points of nonlinear mappings has a long history and is
still an active field in the nonlinear functional analysis. Let C be a nonempty closed con-
vex subset of a real Hilbert space. Let T : C → C be a nonlinear mapping. Let {αn} be a
real number sequence in (, ). For arbitrarily fixed x ∈ C, define a sequence {xn} in the
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following manner:

xn+ = αnxn + ( – αn)Txn, n ≥ . (.)

Iteration (.) is said to be a Mann iteration []; it has been studied extensively in the
literature. If T is a nonexpansive mapping with Fix(T) 
= ∅ and {αn} satisfies the condi-
tion

∑∞
n= αn( – αn) = ∞, then the sequence {xn} generated by Mann’s algorithm con-

verges weakly to a fixed point of T []. Now, it is well known that Mann’s algorithm fails,
in general, to converge strongly in the setting of infinite-dimensional Hilbert spaces [].
Iterative methods for nonexpansive mappings have been investigated extensively in the
literature; see [–] and the references therein. However, iterative methods for strictly
pseudo-contractive mappings are far less developed than those for nonexpansive map-
pings though Browder and Petryshyn [] initiated their work in . However, strictly
pseudo-contractive mappings have more powerful applications than nonexpansive map-
pings, for example, to solve inverse problems (see Scherzer []). Therefore it is interesting
to develop the algorithms for finding the fixed points of strictly pseudo-contractive map-
pings. Now, we know that Mann’s algorithm is not good enough for approximating fixed
points of (even if Lipschitz continuous) pseudo-contractions. Thus, we have to find other
type of iterative algorithms; see [–]. The first such an attempt was done by Ishikawa
[] who introduced the following Ishikawa algorithm:

yn = ( – βn)xn + βnTxn,

xn+ = ( – αn)xn + αnTyn,
n ≥ ,

where {αn} and {βn} are sequences in the interval [, ], T is a (nonlinear) self-mapping of
C, and the initial guess x ∈ C is selected arbitrarily. (Ishikawa’s algorithm can be viewed
as a double-step (or two-level) Mann’s algorithm.) Ishikawa proved that his algorithm con-
verges in norm to a fixed point of a Lipschitz pseudo-contraction T if {αn} and {βn} satisfy
certain conditions and if T is compact.

On the other hand, iterative methods for approximating the common fixed points of a
finite (or an infinite) family of nonlinear mappings have been considered by many authors.
For the related work, we refer the reader to [–, , ]. Above discussion suggests the
following question.

Question . Could we construct an iterative algorithm such that it converges strongly
to the fixed points of a finite family of strict pseudo-contractions?

It is our purpose in this paper to construct redundant intermixed algorithms for two
strict pseudo-contractions. It is shown that the suggested algorithms converge strongly to
the fixed points of two strict pseudo-contractions, independently. As a special case, we
can find the common fixed points of two strict pseudo-contractions in Hilbert spaces.

2 Preliminaries
Let C be a nonempty closed convex subset of H . The (nearest point or metric) projection
from H onto C is defined as follows: for each point x ∈ H , PCx is the unique point in C
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with the property:

‖x – PCx‖ ≤ ‖x – y‖, y ∈ C.

Note that PC is characterized by the inequality:

PCx ∈ C, 〈x – PCx, y – PCx〉 ≤ , y ∈ C.

Consequently, PC is nonexpansive.
In order to prove our main results, we need the following well-known lemmas.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T : C → C be a λ-strictly pseudo-contractive mapping. Then I – T is demi-closed at , i.e.,
if xn ⇀ x ∈ C and xn – Txn → , then x = Tx.

Lemma . ([]) Let {xn} and {yn} be bounded sequences in a Banach space E and {βn}
be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ = ( –
βn)xn +βnzn for all n ≥  and lim supn→∞(‖zn+ – zn‖–‖xn+ – xn‖) ≤ . Then limn→∞ ‖zn –
xn‖ = .

Lemma . ([]) Assume {an} is a sequence of nonnegative real numbers such that an+ ≤
( – γn)an + γnδn, n ≥  where {γn} is a sequence in (, ) and {δn} is a sequence in R such
that

(i)
∑∞

n= γn = ∞;
(ii) lim supn→∞ δn ≤  or

∑∞
n= |δnγn| < ∞.

Then limn→∞ an = .

3 Main results
Let C be a nonempty closed convex subset of a real Hilbert space H . Let T : C → C be
a λ-strict pseudo-contraction. Let f : C → H be a ρ-contraction and g : C → H be a
ρ-contraction. (A mapping f : C → H is said to be contractive if ‖f (x) – f (y)‖ ≤ ρ‖x – y‖
for some ρ ∈ [, ) and for all x, y ∈ C.) Let k ∈ (,  – λ) be a constant.

Now we propose the following redundant intermixed algorithm for two strict pseudo-
contractions S and T .

Algorithm . For arbitrarily given x ∈ C, y ∈ C, let the sequences {xn} and {yn} be
generated iteratively by

{

xn+ = ( – βn)xn + βnPC[αnf (yn) + ( – k – αn)xn + kTxn], n ≥ ,
yn+ = ( – βn)yn + βnPC[αng(xn) + ( – k – αn)yn + kSyn], n ≥ ,

(.)

where {αn} and {βn} are two real number sequences in (, ).

Remark . Note that the definition of the sequence {xn} is involved in the sequence
{yn} and the definition of the sequence {yn} is also involved in the sequence {xn}. So, this
algorithm is said to be the redundant intermixed algorithm. We can use this algorithm to
find the fixed points of S and T , independently.
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Theorem . Suppose that Fix(S) 
= ∅ and Fix(T) 
= ∅. Assume the following conditions are
satisfied:

(C) limn→∞ αn =  and
∑∞

n= αn = ∞;
(C) βn ∈ [ξ, ξ] ⊂ (, ) for all n ≥ .

Then the sequences {xn} and {yn} generated by (.) converge strongly to the fixed points
PFix(T)f (y∗) and PFix(S)g(x∗) of T and S, respectively, where x∗ ∈ Fix(T) and y∗ ∈ Fix(S).

Proof First, we give the following propositions.

Proposition . The sequences {xn} and {yn} are bounded.

In order to prove this proposition, we need the following result.

Proposition . The mapping PC[αf + ( – k – α)I + kT] is contractive for small enough α.

Proof Let x, y ∈ C. Then we have

∥
∥PC

[

αf (x) + ( – k – α)x + kTx
]

– PC
[

αf (y) + ( – k – α)y + kTy
]∥
∥



≤ ∥
∥α

(

f (x) – f (y)
)

+ ( – k – α)(x – y) + k(Tx – Ty)
∥
∥



=
∥
∥
∥
∥
α
(

f (x) – f (y)
)

+ ( – α)
[

 – k – α

 – α
(x – y) +

k
 – α

(Tx – Ty)
]∥
∥
∥
∥



≤ α
∥
∥f (x) – f (y)

∥
∥

 + ( – α)
∥
∥
∥
∥

 – k – α

 – α
(x – y) +

k
 – α

(Tx – Ty)
∥
∥
∥
∥



≤ αρ‖x – y‖ +
( – k – α)

 – α
‖x – y‖ +

k

 – α
‖Tx – Ty‖

+
( – k – α)k

 – α
〈Tx – Ty, x – y〉

≤ αρ‖x – y‖ +
( – k – α)

 – α
‖x – y‖ +

k

 – α

[‖x – y‖ + λ
∥
∥(I – T)x – (I – T)y

∥
∥

]

+
( – k – α)k

 – α

[

‖x – y‖ –
 – λ


∥
∥(I – T)x – (I – T)y

∥
∥


]

= αρ‖x – y‖ +


 – α

[

λk – ( – λ)( – k – α)k
]∥
∥(I – T)x – (I – T)y

∥
∥



+ ( – α)‖x – y‖

=
k

 – α

[

k – ( – α)( – λ)
]∥
∥(I – T)x – (I – T)y

∥
∥

 +
[

 – ( – ρ)α
]‖x – y‖.

Thus, we get

∥
∥PC

[

αf (x) + ( – k – α)x + kTx
]

– PC
[

αf (y) + ( – k – α)y + kTy
]∥
∥

≤
[

 –
( – ρ)α



]

‖x – y‖

for all x, y ∈ C as k ≤ ( – α)( – λ) (that is, α ≤  – k
–λ

). �

Next, we prove Proposition ..
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Proof Since Fix(S) 
= ∅ and Fix(T) 
= ∅, we can choose x∗ ∈ Fix(T) and y∗ ∈ Fix(S). From
(.), we have

∥
∥xn+ – x∗∥∥ =

∥
∥( – βn)xn + βnPC

[

αnf (yn) + ( – k – αn)xn + kTxn
]

– x∗∥∥

≤ βn
∥
∥PC

[

αnf (yn) + ( – k – αn)xn + kTxn
]

– x∗∥∥

+ ( – βn)
∥
∥xn – x∗∥∥

≤ βnαn
∥
∥f (yn) – x∗∥∥ + βn

∥
∥( – k – αn)

(

xn – x∗) + k
(

Txn – Tx∗)∥∥

+ ( – βn)
∥
∥xn – x∗∥∥

≤ βnαn
∥
∥f (yn) – f

(

y∗)∥∥ + βnαn
∥
∥f

(

y∗) – x∗∥∥ + ( – βn)
∥
∥xn – x∗∥∥

+ βn( – αn)
∥
∥xn – x∗∥∥

≤ ρβnαn
∥
∥yn – y∗∥∥ + βnαn

∥
∥f

(

y∗) – x∗∥∥ + ( – αnβn)
∥
∥xn – x∗∥∥

≤ ρβnαn
∥
∥yn – y∗∥∥ + βnαn

∥
∥f

(

y∗) – x∗∥∥ + ( – αnβn)
∥
∥xn – x∗∥∥,

where ρ = max{ρ,ρ}. Similarly, we have

∥
∥yn+ – y∗∥∥ ≤ ρβnαn

∥
∥xn – x∗∥∥ + βnαn

∥
∥g

(

x∗) – y∗∥∥ + ( – αnβn)
∥
∥yn – y∗∥∥

≤ ρβnαn
∥
∥xn – x∗∥∥ + βnαn

∥
∥g

(

x∗) – y∗∥∥ + ( – αnβn)
∥
∥yn – y∗∥∥.

Hence, we obtain

∥
∥xn+ – x∗∥∥ +

∥
∥yn+ – y∗∥∥

≤ [

 – ( – ρ)αnβn
](∥

∥xn – x∗∥∥ +
∥
∥yn – y∗∥∥)

+ αnβn
(∥
∥f

(

y∗) – x∗∥∥ +
∥
∥g

(

x∗) – y∗∥∥)

≤ max

{
∥
∥xn – x∗∥∥ +

∥
∥yn – y∗∥∥,

‖f (y∗) – x∗‖ + ‖g(x∗) – y∗‖
 – ρ

}

.

By induction, we have

∥
∥xn – x∗∥∥ +

∥
∥yn – y∗∥∥

≤ max

{
∥
∥x – x∗∥∥ +

∥
∥y – y∗∥∥,

‖f (y∗) – x∗‖ + ‖g(x∗) – y∗‖
 – α

}

.

So, {xn} and {yn} are bounded. �

Proposition . ‖xn – Txn‖ →  and ‖yn – Syn‖ → .

Proof We first estimate ‖xn+ – xn‖. Set un = PC[αnf (yn) + ( – k – αn)xn + kTxn], n ≥ . It
follows that

‖un+ – un‖ ≤ ∥
∥αn+f (yn+) + ( – k – αn+)xn+ + kTxn+

– αnf (yn) – ( – k – αn)xn + kTxn
∥
∥

≤ ∥
∥( – k – αn+)(xn+ – xn) + k(Txn+ – Txn)

∥
∥
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+ αn+
(∥
∥f (yn+)

∥
∥ + ‖xn‖

)

+ αn
(∥
∥f (yn)

∥
∥ + ‖xn‖

)

≤ ( – αn+)‖xn+ – xn‖ + αn+
(∥
∥f (yn+)

∥
∥ + ‖xn‖

)

+ αn
(∥
∥f (yn)

∥
∥ + ‖xn‖

)

.

Since αn → , we deduce that

lim sup
n→∞

(‖un+ – un‖ – ‖xn+ – xn‖
) ≤ .

From Lemma ., we get

lim
n→∞‖un – xn‖ =  and lim

n→∞‖xn+ – xn‖ = .

From (.), we derive

‖xn+ – Txn‖ ≤ ( – βn)‖xn – Txn‖ + βnαn
∥
∥f (yn) – Txn

∥
∥

+ βn( – k – αn)‖xn – Txn‖
=

[

 – (k + αn)βn
]‖xn – Txn‖ + βnαn

∥
∥f (yn) – Txn

∥
∥.

Thus,

‖xn – Txn‖ ≤ ‖xn – xn+‖ + ‖xn+ – Txn‖
≤ [

 – (k + αn)βn
]‖xn – Txn‖ + βnαn

∥
∥f (yn) – Txn

∥
∥

+ ‖xn – xn+‖.

It follows that

‖xn – Txn‖ ≤ 
(k + αn)βn

(‖xn – xn+‖ + βnαn
∥
∥f (yn) – Txn

∥
∥
)

→ .

Similarly, we can obtain

lim
n→∞‖yn – Syn‖ = . �

By Proposition ., we know that the mapping PC[αf + ( – k – α)I + kT] is contractive
for small enough α. Thus, the equation x = PC[tf (x) + ( – k – t)x + kTx] has a unique fixed
point, denoted by xt , that is,

xt = PC
[

tf (xt) + ( – k – t)xt + kTxt
]

(.)

for small enough t. In order to prove Theorem ., we need the following lemma.

Lemma . Suppose Fix(T) 
= ∅. Then, as t → , the net {xt} defined by (.) converges
strongly to a fixed point of T .
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Proof Let x∗ ∈ Fix(T). From (.), we have

∥
∥xt – x∗∥∥ =

∥
∥PC

[

tf (xt) + ( – k – t)xt + kTxt
]

– x∗∥∥

≤ t
∥
∥f (xt) – x∗∥∥ +

∥
∥( – k – t)

(

xt – x∗) + k
(

Txt – x∗)∥∥

≤ tρ
∥
∥xt – x∗∥∥ + t

∥
∥f

(

x∗) – x∗∥∥ + ( – t)
∥
∥xt – x∗∥∥,

hence,

∥
∥xt – x∗∥∥ ≤ 

 – ρ

∥
∥f

(

x∗) – x∗∥∥.

Thus, {xt} is bounded. Again, from (.), we get

‖xt – Txt‖ ≤ t
∥
∥f (xt) – Txt

∥
∥ + ( – k – t)‖xt – Txt‖.

It follows that

‖xt – Txt‖ ≤ t
k + t

∥
∥f (xt) – Txt

∥
∥ → .

Let {tn} ⊂ (, ). Assume that tn →  as n → ∞. Put xn := xtn . We have limn→∞ ‖xn –
Txn‖ = . Set yt = tf (xt) + ( – k – t)xt + kTxt , for all t. Then we have xt = PCyt , and for any
x∗ ∈ Fix(T),

xt – x∗ = xt – yt + yt – x∗

= xt – yt + t
(

f (xt) – x∗) + ( – k – t)
(

xt – x∗) + k
(

Txt – x∗).

From the property of the metric projection, we deduce

〈

xt – yt , xt – x∗〉 ≤ .

So,

∥
∥xt – x∗∥∥ =

〈

xt – yt , xt – x∗〉 +
〈

( – k – t)
(

xt – x∗) + k
(

Txt – x∗), xt – x∗〉

+ t
〈

f (xt) – x∗, xt – x∗〉

≤ ∥
∥( – k – t)

(

xt – x∗) + k
(

Txt – x∗)∥∥∥
∥xt – x∗∥∥

+ t
〈

f (xt) – f
(

x∗), xt – x∗〉 + t
〈

f
(

x∗) – x∗, xt – x∗〉

≤ [

 – ( – ρ)t
]∥
∥xt – x∗∥∥ + t

〈

f
(

x∗) – x∗, xt – x∗〉.

Hence,

∥
∥xt – x∗∥∥ ≤ 

( – ρ)
〈

f
(

x∗) – x∗, xt – x∗〉, ∀x∗ ∈ Fix(T).

By similar arguments to [], we find that the net {xt} converges strongly to x∗ ∈ Fix(T).
This completes the proof. �
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Remark . From Lemma ., we know that the net {xt} defined by xt = PC[tu + ( – k –
t)xt + kTxt] where u ∈ H , converges to PFix(T)u. Let x∗ ∈ Fix(T) and y∗ ∈ Fix(S). If we take
u = f (y∗), then the net {xt} defined by xt = PC[tf (y∗) + ( – k – t)xt + kTxt], converges to
PFix(T)f (y∗).

Finally, we prove that xn → PFix(T)f (y∗) and yn → PFix(S)g(x∗), where x∗ ∈ Fix(T) and y∗ ∈
Fix(S). We note the following fact. If the sequence {wn} is bounded and ‖wn – Twn‖ → ,
we easily deduce that

lim sup
n→∞

〈

f
(

PFix(S)g
(

x∗)) – PFix(T)f
(

y∗), wn – PFix(T)f
(

y∗)〉 ≤ .

Set vn = PC[αng(xn)+(–k –αn)yn +kSyn] for all n ≥ . Thus, we deduce that the sequences
{un} and {vn} satisfy: () {un} and {vn} are bounded; () ‖un –Tun‖ →  and ‖vn –Svn‖ → .
Therefore,

lim sup
n→∞

〈

f
(

PFix(S)g
(

x∗)) – PFix(T)f
(

y∗), un – PFix(T)f
(

y∗)〉 ≤ 

and

lim sup
n→∞

〈

g
(

PFix(T)f
(

y∗)) – PFix(S)g
(

x∗), vn – PFix(S)g
(

x∗)〉 ≤ .

Next, we estimate ‖un – PFix(T)f (y∗)‖. Set ũn = αnf (yn) + ( – k – αn)xn + kTxn and ṽn =
αng(xn) + ( – k – αn)yn + kSyn for all n. We have

∥
∥un – PFix(T)f

(

y∗)∥∥

=
∥
∥PC[ũn] – PFix(T)f

(

y∗)∥∥

≤ 〈

ũn – PFix(T)f
(

y∗), un – PFix(T)f
(

y∗)〉

=
〈

αnf (yn) + ( – k – αn)xn + kTxn – PFix(T)f
(

y∗), un – PFix(T)f
(

y∗)〉

≤ αn
〈

f (yn) – PFix(T)f
(

y∗), un – PFix(T)f
(

y∗)〉

+ ( – αn)
∥
∥xn – PFix(T)f

(

y∗)∥∥∥
∥un – PFix(T)f

(

y∗)∥∥

≤  – αn


∥
∥xn – PFix(T)f

(

y∗)∥∥ +


∥
∥un – PFix(T)f

(

y∗)∥∥

+ αn
〈

f (yn) – f
(

PFix(S)g
(

x∗)), un – PFix(T)f
(

y∗)〉

+ αn
〈

f
(

PFix(S)g
(

x∗)) – PFix(T)f
(

y∗), un – PFix(T)f
(

y∗)〉

≤  – αn


∥
∥xn – PFix(T)f

(

y∗)∥∥ +


∥
∥un – PFix(T)f

(

y∗)∥∥

+ αnρ
∥
∥yn – PFix(S)g

(

x∗)∥∥∥
∥un – PFix(T)f

(

y∗)∥∥

+ αn
〈

f
(

PFix(S)g
(

x∗)) – PFix(T)f
(

y∗), un – PFix(T)f
(

y∗)〉

≤  – αn


∥
∥xn – PFix(T)f

(

y∗)∥∥ +


∥
∥un – PFix(T)f

(

y∗)∥∥

+
αnρ


(∥
∥yn – PFix(S)g

(

x∗)∥∥ +
∥
∥un – PFix(T)f

(

y∗)∥∥)

+ αn
〈

f
(

PFix(S)g
(

x∗)) – PFix(T)f
(

y∗), un – PFix(T)f
(

y∗)〉.
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It follows that

∥
∥un – PFix(T)f

(

y∗)∥∥

≤  – αn

 – αnρ

∥
∥xn – PFix(T)f

(

y∗)∥∥ +
αnρ

 – αnρ

∥
∥yn – PFix(S)g

(

x∗)∥∥

+
αn

 – αnρ

〈

f
(

PFix(S)g
(

x∗)) – PFix(T)f
(

y∗), un – PFix(T)f
(

y∗)〉.

Thus,

∥
∥xn+ – PFix(T)f

(

y∗)∥∥

≤ ( – βn)
∥
∥xn – PFix(T)f

(

y∗)∥∥ + βn
∥
∥un – PFix(T)f

(

y∗)∥∥

≤
(

 –
 – ρ

 – αnρ
αnβn

)
∥
∥xn – PFix(T)f

(

y∗)∥∥ +
αnβnρ

 – αnρ

∥
∥yn – PFix(S)g

(

x∗)∥∥

+
αnβn

 – αnρ

〈

f
(

PFix(S)g
(

x∗)) – PFix(T)f
(

y∗), un – PFix(T)f
(

y∗)〉.

Similarly, we also have

∥
∥yn+ – PFix(S)g

(

x∗)∥∥

≤
(

 –
 – ρ

 – αnρ
αnβn

)
∥
∥yn – PFix(S)g

(

x∗)∥∥ +
αnβnρ

 – αnρ

∥
∥xn – PFix(T)f

(

y∗)∥∥

+
αnβn

 – αnρ

〈

g
(

PFix(T)f
(

y∗)) – PFix(S)g
(

x∗), vn – PFix(S)g
(

x∗)〉.

Therefore,

∥
∥xn+ – PFix(T)f

(

y∗)∥∥ +
∥
∥yn+ – PFix(S)g

(

x∗)∥∥

≤
(

 –
 – ρ

 – αnρ
αnβn

)
(∥
∥xn – PFix(T)f

(

y∗)∥∥ +
∥
∥yn – PFix(S)g

(

x∗)∥∥)

+
αnβn

 – αnρ

〈

f
(

PFix(S)g
(

x∗)) – PFix(T)f
(

y∗), un – PFix(T)f
(

y∗)〉

+
αnβn

 – αnρ

〈

g
(

PFix(T)f
(

y∗)) – PFix(S)g
(

x∗), vn – PFix(S)g
(

x∗)〉.

We can check that all assumptions of Lemma . are satisfied. Therefore, xn →
PFix(T)f (y∗) and yn → PFix(S)g(x∗). This completes the proof. �

Algorithm . For arbitrarily given x ∈ C, let the sequence {xn} be generated iteratively
by

xn+ = ( – βn)xn + βnPC
[

( – k – αn)xn + kTxn
]

, n ≥ , (.)

where {αn} and {βn} are two real number sequences in (, ).

Theorem . Suppose Fix(T) 
= ∅. Assume the following conditions are satisfied:
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(C) limn→∞ αn =  and
∑∞

n= αn = ∞;
(C) βn ∈ [ξ, ξ] ⊂ (, ) for all n ≥ .

Then the sequence {xn} generated by (.) converge strongly to the fixed points PFix(T)(),
which is the minimum norm element in Fix(T).
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