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Abstract
In this paper, we consider a split equality fixed point problem for
quasi-pseudo-contractive mappings which includes split feasibility problem, split
equality problem, split fixed point problem etc., as special cases. A unified framework
for the study of this kind of problems and operators is provided. The results presented
in the paper extend and improve many recent results.
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1 Introduction
Let C and Q be nonempty closed and convex subsets of the real Hilbert spaces H and H,
respectively. The split feasibility problem (SFP) is formulated as:

to find x∗ ∈ C such that Ax∗ ∈ Q, (.)

where A : H → H is a bounded linear operator. In , Censor and Elfving [] first intro-
duced the SFP in finite-dimensional Hilbert spaces for modeling inverse problems which
arise from phase retrievals and in medical image reconstruction []. It has been found that
the SFP can also be used in various disciplines such as image restoration, computer tomog-
raphy, and radiation therapy treatment planning [–]. The SFP in an infinite-dimensional
real Hilbert space can be found in [, , –].

Recently, Moudafi [–] introduced the following split equality feasibility problem
(SEFP):

to find x ∈ C, y ∈ Q such that Ax = By, (.)

where A : H → H and B : H → H are two bounded linear operators. Obviously, if B = I
(identity mapping on H) and H = H, then (.) reduces to (.). The kind of split equality
feasibility problems (.) allows asymmetric and partial relations between the variables x
and y. The interest is to cover many situations, such as decomposition methods for PDEs,
applications in game theory and intensity-modulated radiation therapy.
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In order to solve split equality feasibility problem (.), Moudafi [] introduced the fol-
lowing simultaneous iterative method:

{
xk+ = PC(xk – γ A∗(Axk – Byk)),
yk+ = PQ(yk + βB∗(Axk+ – Byk)),

(.)

and under suitable conditions he proved the weak convergence of the sequence {(xn, yn)}
to a solution of (.) in Hilbert spaces.

In order to avoid using the projection, recently, Moudafi [] introduced and studied
the following problem: Let T : H → H and S : H → H be nonlinear operators such that
Fix(T) �= ∅ and Fix(S) �= ∅, where Fix(T) and Fix(S) denote the sets of fixed points of T and
S, respectively. If C = Fix(T) and Q = Fix(S), then split equality problem (.) reduces to

find x ∈ Fix(T) and y ∈ Fix(S) such that Ax = By, (.)

which is called a split equality fixed point problem (in short, SEFPP).
Denote by � the solution set of split equality fixed point problem (.).
Recently Moudafi [] proposed the following iterative algorithm for finding a solution

of SEFPP (.):

{
xn+ = T(xn – γnA∗(Axn – Byn)),
yn+ = S(yn + βnB∗(Axn+ – Byn)).

(.)

He also studied the weak convergence of the sequences generated by scheme (.) under
the condition that T and S are firmly quasi-nonexpansive mappings. Very recently, Che
and Li [] proposed the following iterative algorithm for finding a solution of SEFPP (.):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un = xn – γnA∗(Axn – Byn),
xn+ = αnxn + ( – αn)Tun,
vn = yn + γnB∗(Axn – Byn),
yn+ = αnyn + ( – αn)Svn.

(.)

They also established the weak convergence of the scheme (.) under the condition that
the operators T and S are quasi-nonexpansive mappings.

The purpose of this paper is two-fold. First, we will consider split equality fixed point
problem (.) for the class of quasi-pseudo-contractive mappings which is more general
than the classes of quasi-nonexpansive mappings, directed mappings, and demicontrac-
tive mappings. Second, we modify the iterative scheme (.) and propose the following
iterative algorithms with weak convergence without using the projection:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un = xn – γnA∗(Axn – Byn),
xn+ = αnxn + ( – αn)(( – ξ )I + ξT(( – η)I + ηT))un,
vn = yn + γnB∗(Axn – Byn),
yn+ = αnyn + ( – αn)(( – ξ )I + ξS(( – η)I + ηS))vn.

(.)

Our results provide a unified framework for the study of this kind of problems and this
class of operators.
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2 Preliminaries
In this section, we collect some definitions, notations, and conclusions, which will be
needed in proving our main results.

Let H be a real Hilbert space, C be a nonempty closed convex subset of H , and T : C → C
be a nonlinear mapping.

Definition . T : C → C is said to be:
(i) Nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ ∀x, y ∈ C.

(ii) Quasi-nonexpansive if Fix(T) �= ∅ and

∥∥Tx – x∗∥∥ ≤ ∥∥x – x∗∥∥ ∀x ∈ C and x∗ ∈ Fix(T).

(iii) Firmly nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖ –
∥∥(I – T)x – (I – T)y

∥∥ ∀x, y ∈ C.

(iv) Firmly quasi-nonexpansive if Fix(T) �= ∅ and

∥∥Tx – x∗∥∥ ≤ ∥∥x – x∗∥∥ –
∥∥(I – T)x

∥∥ ∀x ∈ C and x∗ ∈ Fix(T).

(v) Strictly pseudo-contractive if there exists k ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥ ∀x, y ∈ C.

(vi) Directed if Fix(T) �= ∅ and 〈Tx – x∗, Tx – x〉 ≤  ∀x ∈ C and x∗ ∈ Fix(T).
(vii) Demicontractive if Fix(T) �= ∅ and there exists k ∈ [, ) such that

∥∥Tx – x∗∥∥ ≤ ∥∥x – x∗∥∥ + k‖Tx – x‖ ∀x ∈ C and x∗ ∈ Fix(T).

Remark . As pointed out by Bauschke and Combettes [], T : C → C is directed if
and only if

∥∥Tx – x∗∥∥ ≤ ∥∥x – x∗∥∥ – ‖Tx – x‖ ∀x ∈ C and x∗ ∈ F(T).

That is to say that the class of directed mappings coincides with that of firmly quasi-
nonexpansive mappings.

Remark . From the above definitions, we note that the class of demicontractive map-
pings is fundamental; it includes many kinds of nonlinear mappings such as the directed
mappings, the quasi-nonexpansive mappings, and the strictly pseudo-contractive map-
pings with fixed points as special cases.

Definition . An operator T : C → C is said to be pseudo-contractive if

〈Tx – Ty, x – y〉 ≤ ‖x – y‖ ∀x, y ∈ C.
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The interest of pseudo-contractive operators lies in their connection with monotone map-
pings, namely, T is a pseudo-contraction if and only if I – T is a monotone mapping. It is
well known that T is pseudo-contractive if and only if

‖Tx – Ty‖ ≤ ‖x – y‖ +
∥∥(I – T)x – (I – T)y

∥∥ ∀x, y ∈ C.

Definition . An operator T : C → C is said to be quasi-pseudo-contractive if Fix(T) �= ∅
and

∥∥Tx – x∗∥∥ ≤ ∥∥x – x∗∥∥ + ‖Tx – x‖ ∀x ∈ C and x∗ ∈ F(T).

It is obvious that the class of quasi-pseudo-contractive mappings includes the class of
demicontractive mappings.

Definition . () A mapping T : C → C is said to be demiclosed at  if, for any sequence
{xn} ⊂ C which converges weakly to x and with ‖xn – T(xn)‖ → , T(x) = x.

() A mapping T : H → H is said to be semi-compact if, for any bounded sequence
{xn} ⊂ H with ‖xn – Txn‖ → , there exists a subsequence {xni} ⊂ {xn} such that {xni}
converges strongly to some point x ∈ H .

Lemma . Let H be a real Hilbert space. For any x, y ∈ H , the following conclusions hold:

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖, t ∈ [; ]; (.)

‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉. (.)

Recall that a Banach space X is said to satisfy Opial’s condition, if for any sequence {xn}
in X which converges weakly to x∗,

lim sup
n→∞

∥∥xn – x∗∥∥ < lim sup
n→∞

‖xn – y‖ ∀y ∈ X with y �= x∗.

It is well known that every Hilbert space satisfies the Opial condition.

Lemma . Let {an} be a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn ∀n ≥ ,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
()

∑∞
n= γn = ∞;

() lim supn→∞
δn
γn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

Lemma . Let H be a real Hilbert space and T : H → H be a L-Lipschitzian mapping
with L ≥ . Denote

K := ( – ξ )I + ξT
(
( – η)I + ηT

)
. (.)

If  < ξ < η < 
+

√
+L , then the following conclusions hold:
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() Fix(T) = Fix(T(( – η)I + ηT)) = Fix(K).
() If T is demiclosed at , then K is also demiclosed at .
() In addition, if T : H → H is quasi-pseudo-contractive, then the mapping K is

quasi-nonexpansive, that is,

∥∥Kx – u∗∥∥ ≤ ∥∥x – u∗∥∥ ∀x ∈ H and u∗ ∈ Fix(T) = Fix(K).

Proof () If x∗ ∈ Fix(T), it is obvious that x∗ ∈ Fix(T(( – η)I + ηT)).
Conversely, if x∗ ∈ Fix(T(( – η)I + ηT)), i.e., x∗ = T(( – η)x∗ + ηTx∗), letting U = ( –

η)I + ηT , then TUx∗ = x∗. Put Ux∗ = y∗. Then Ty∗ = x∗. Now we prove that x∗ = y∗. In fact,
we have

∥∥x∗ – y∗∥∥ =
∥∥x∗ – Ux∗∥∥ =

∥∥x∗ –
(
( – η)I + ηT

)
x∗∥∥

= η
∥∥x∗ – Tx∗∥∥ = η

∥∥Ty∗ – Tx∗∥∥ ≤ Lη
∥∥y∗ – x∗∥∥.

Since  < Lη < , we have x∗ = y∗, i.e., x∗ ∈ Fix(T). This shows that Fix(T) = Fix(T(( –η)I +
ηT)).

It is obvious that x ∈ Fix(K) if and only if x ∈ Fix(T(( – η)I + ηT)).
The conclusion () is proved.
() For any sequence {xn} ⊂ H satisfying xn ⇀ x∗ and ‖xn – Kxn‖ → . Next we show

that x∗ ∈ Fix(K). From conclusion (), we only need to prove that x∗ ∈ Fix(T). In fact, since
T is L-Lipschizian, we have

‖xn – Txn‖ ≤ ∥∥xn – T
(
( – η)I + ηT

)
xn

∥∥ +
∥∥T

(
( – η)I + ηT

)
xn – Txn

∥∥
≤ 

ξ

∥∥xn – ( – ξ )xn – ξT
(
( – η)I + ηT

)
xn

∥∥ + Lη‖xn – Txn‖

=

ξ
‖xn – Kxn‖ + Lη‖xn – Txn‖.

Simplifying it, we have

‖xn – Txn‖ ≤ 
ξ ( – Lη)

‖xn – Kxn‖ → . (.)

Since T is demiclosed at , we have x∗ ∈ F(T) = F(K). The conclusion () is proved.
The conclusion () is obvious (see also []). �

3 Main results
Throughout this section, we assume that:

() H, H, and H are three real Hilbert spaces. A : H → H and B : H → H are two
bounded linear operators with their adjoints A∗ and B∗, respectively;

() T : H → H and S : H → H are two L-Lipschitzian and quasi-pseudo-contractive
mappings with L ≥ , Fix(T) �= ∅, and Fix(S) �= ∅.

In the sequel, we denote the strong convergence and weak convergence of a sequence
{xn} to a point x ∈ H by xn → x and xn ⇀ x, respectively.
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Our object is to solve the following split equality fixed point problem:

to find x∗ ∈ Fix(T), y∗ ∈ F(S) such that Ax∗ = By∗. (.)

In the sequel we use � to denote the set of solutions of (.), that is,

� =
{(

x∗, y∗) ∈ Fix(T) × Fix(S) such that Ax∗ = By∗}, (.)

and we assume that � �= ∅.
Now, we present our algorithm for finding (x∗, y∗) ∈ �.

Algorithm . Initialization: Choose {αn} ⊂ (, ). Take arbitrary x ∈ H, y ∈ H.
Iterative steps: For a given current xn ∈ H, yn ∈ H compute

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a) un = xn – γnA∗(Axn – Byn),
(b) xn+ = αnxn + ( – αn)(( – ξn)I + ξnT(( – ηn)I + ηnT))un,
(c) vn = yn + γnB∗(Axn – Byn),
(d) yn+ = αnyn + ( – αn)(( – ξn)I + ξnS(( – ηn)I + ηnS))vn.

(.)

Theorem . Let H, H, H, A, B, S, T , �, {xn} and {yn} be the same as above. If T and S
are demiclosed at  and the following conditions are satisfied:

(i) γn ∈ (, min( 
‖A‖ , 

‖B‖ )) ∀n ≥ ;
(ii)  < a < ξn < ηn < b < 

+
√

+L ∀n ≥ .
Then the following conclusions hold:

(I) the sequence ({xn, yn}) generated by (.) converges weakly to a solution of problem
(.);

(II) In addition, if S, T are also semi-compact, then ({xn, yn}) converges strongly to a
solution of problem (.).

Proof First we prove the conclusion (I).
For any given (p, q) ∈ �, then p ∈ Fix(T), q ∈ Fix(S) and Ap = Bq. From (.)(a), we have

‖un – p‖ =
∥∥xn – γnA∗(Axn – Byn) – p

∥∥

= ‖xn – p‖ + γ 
n
∥∥A∗(Axn – Byn)

∥∥ – γn
〈
xn – p, A∗(Axn – Byn)

〉
≤ ‖xn – p‖ + γ 

n ‖A‖‖Axn – Byn‖ – γn〈Axn – Ap, Axn – Byn〉. (.)

Similarly, from (.)(c), we have

‖vn – q‖ ≤ ‖yn – q‖ + γ 
n ‖B‖‖Axn – Byn‖ + γn〈Byn – Bq, Axn – Byn〉. (.)

Put

K := ( – ξn)I + ξnT
(
( – ηn)I + ηnT

)
,

G := ( – ξn)I + ξnS
(
( – ηn)I + ηnS

)
.

By the assumptions of Theorem ., condition (ii) and Lemma ., we know that the map-
pings K and G have the following properties:
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() Both K and G are quasi-nonexpansive;
() Fix(K) = Fix(T) and Fix(G) = Fix(S);
() K and G demiclosed at .
Hence from (.)(b) and (.) we have

‖xn+ – p‖ =
∥∥αnxn + ( – αn)

(
( – ξn)I + ξnT

(
( – ηn)I + ηnT

))
un – p)

∥∥

=
∥∥αn(xn – p) + ( – αn)(Kun – p)

∥∥

= αn‖xn – p‖ + ( – αn)‖Kun – p‖ – αn( – αn)‖Kun – xn‖

≤ αn‖xn – p‖ + ( – αn)‖un – p‖ – αn( – αn)‖Kun – xn‖. (.)

Similarly from (.)(c) and (.) we have

‖yn+ – q‖ ≤ αn‖yn – q‖ + ( – αn)‖vn – q‖ – αn( – αn)‖Gvn – yn‖. (.)

Adding (.) and (.) and by virtue of (.) and (.), we have

‖xn+ – p‖ + ‖yn+ – q‖

≤ αn‖xn – p‖ + αn‖yn – q‖ + ( – αn)‖un – p‖ + ( – αn)‖vn – q‖

– αn( – αn)‖Kun – xn‖ – αn( – αn)‖Gvn – yn‖

≤ αn‖xn – p‖ + ( – αn)
{‖xn – p‖ + γ 

n ‖A‖‖Axn – Byn‖

– γn〈Axn – Ap, Axn – Byn〉
}

+ αn‖yn – q‖ + ( – αn)
{‖yn – p‖ + γ 

n ‖B‖‖Axn – Byn‖

+ γn〈Byn – Bq, Axn – Byn〉
}

– αn( – αn)‖Kun – xn‖ – αn( – αn)‖Gvn – yn‖

= ‖xn – p‖ + ‖yn – q‖ + γ 
n ( – αn)

{‖A‖ + ‖B‖}‖Axn – Byn‖

– ( – αn)γn
{〈Axn – Ap, Axn – Byn〉 – 〈Byn – Bq, Axn – Byn〉

}
– αn( – αn)

{‖Kun – xn‖ + ‖Gvn – yn‖}
= ‖xn – p‖ + ‖yn – q‖ + γ 

n ( – αn)
{‖A‖ + ‖B‖}‖Axn – Byn‖

– ( – αn)γn‖Axn – Byn‖ – αn( – αn)
{‖Kun – xn‖ + ‖Gvn – yn‖}

(since Ap = Bq)

= ‖xn – p‖ + ‖yn – q‖ – ( – αn)γn
(
 – γn

(‖A‖ + ‖B‖))‖Axn – Byn‖

– αn( – αn)
{‖Kun – xn‖ + ‖Gvn – yn‖}. (.)

Since γn ∈ (, min{ 
‖A‖ , 

‖A‖ }), γn‖A‖ <  and γn‖B‖ < . So  < γn(‖A‖ +‖B‖) < . This
implies that γn( – γn(‖A‖ + ‖B‖)) > .

Putting

Xn(p, q) = ‖xn – p‖ + ‖yn – q‖, (.)
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hence (.) can be written as

Xn+(p, q) ≤ Xn(p, q) – ( – αn)γn
(
 – γn

(‖A‖ + ‖B‖))‖Axn – Byn‖

– αn( – αn)
{‖Kun – xn‖ + ‖Gvn – yn‖}

≤ Xn(p, q). (.)

This implies that {Xn(p, q)} is a non-increasing sequence, hence the limit limn→∞ Xn(p, q)
exists. Therefore the following limits exist:

lim
n→∞‖xn – p‖ and lim

n→∞‖yn – q‖ ∀(p, q) ∈ �. (.)

Rewritten (.) as

( – αn)γn
(
 – γn

(‖A‖ + ‖B‖))‖Axn – Byn‖

+ αn( – αn)
{‖Kun – xn‖ + ‖Gvn – yn‖} ≤ Xn(p, q) – Xn+(p, q). (.)

Letting n → ∞ and taking the limit in (.), we have

‖Axn – Byn‖ → ; ‖Kun – xn‖ → ; ‖Gvn – yn‖ → . (.)

From (.) and (.) we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

limn→∞ ‖un – xn‖ →  and limn→∞ ‖vn – yn‖ → ,
limn→∞ ‖xn+ – xn‖

= limn→∞( – αn)‖(( – ξn)I + ξnT(( – ηn)I + ηnT))un – xn‖
= limn→∞( – αn)‖Kun – xn‖ = ,

limn→∞ ‖yn+ – yn‖
= limn→∞( – βn)‖(( – ξn)S + ξnS(( – ηn)I + ηnS))yn – yn‖
= limn→∞( – αn)‖Gvn – yn‖ = .

(.)

This together with (.) shows that{
‖Kun – un‖ ≤ ‖Kun – xn‖ + ‖xn – un‖ → ;
‖Gvn – vn‖ ≤ ‖Gvn – yn‖ + ‖yn – vn‖ → .

(.)

Since {xn} and {yn} are bounded sequences, there exist some weakly convergent subse-
quences, say {xni} ⊂ {xn} and {yni} ⊂ {yn} such that xni ⇀ x∗ and yni ⇀ y∗. Since every
Hilbert space has the Opial property. The Opial property guarantees that the weakly sub-
sequential limit of {(xn, yn)} is unique. Therefore we have xn ⇀ x∗ and yn ⇀ y∗.

On the other hand, from (.), one gets un ⇀ x∗ and vn ⇀ y∗. By (.) and the demi-
closed property of K and G, we have Kx∗ = x∗ and Gy∗ = y∗. This implies that x∗ ∈ Fix(T)
and y∗ ∈ Fix(S).

Now we are left to show that Ax∗ = By∗. In fact, since Axn – Byn ⇀ Ax∗ – By∗, by using
the weakly lower semi-continuity of squared norm, we have

∥∥Ax∗ – By∗∥∥ = lim inf
n→∞ ‖Axn – Byn‖ = lim

n→∞‖Axn – Byn‖ = .

Thus Ax∗ = By∗. This completes the proof of the conclusion (I).
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Now we prove the conclusion (II). In fact, by virtue of (.), (.), and (.), we have

{
‖xn – Txn‖ ≤ 

ξn(–Lηn)‖xn – Kxn‖ → ;
‖yn – Syn‖ ≤ 

ξn(–Lηn)‖yn – Gyn‖ → .
(.)

Since S, T are semi-compact, it follows from (.) that there exist subsequences {xni} ⊂
{xn} and {ynj} ⊂ {yn} such that xni → x (some point in F(T)) and ynj → y (some point in
F(S)). It follows from (.), xn ⇀ x∗, and yn ⇀ y∗ that xn → x∗ and yn → y∗ and Ax∗ =
By∗. �

4 Applications
4.1 Application to the split equality variational inequality problem
Throughout this section, we assume that H, H, and H are three real Hilbert spaces.
C and Q both are nonempty and closed convex subsets of H and H, respectively and
assume that A : H → H and B : H → H are two bounded linear operator with its adjoint
A∗ and B∗, respectively.

Let M : C → H be a mapping. The variational inequality problem for mapping M is to
find a point x∗ ∈ C such that

〈
Mx∗, z – x∗〉 ≥  ∀z ∈ C. (.)

We will denote the solution set of (.) by VI(M, C).
A mapping M : C → H is said to be α-inverse-strongly monotone if there exists a con-

stant α >  such that

〈Mx – My, x – y〉 ≥ α‖Mx – My‖ ∀x, y ∈ C. (.)

It is easy to see that if M is α-inverse-strongly monotone, then M is 
α

-Lipschitzian.
Setting h(x, y) = 〈Mx, y – x〉 : C × C → R, it is easy to show that h is an equilibrium

function, i.e., it satisfies the following conditions, (A)-(A):
(A) h(x, x) = , for all x ∈ C;
(A) h is monotone, i.e., h(x, y) + h(y, x) ≤  for all x, y ∈ C;
(A) lim supt↓ h(tz + ( – t)x, y) ≤ h(x, y) for all x, y, z ∈ C;
(A) for each x ∈ C, y �→ h(x, y) is convex and lower semi-continuous.
For given λ >  and x ∈ H , the resolvent of the equilibrium function h is the operator

Rλ,h : H → C defined by

Rλ,h(x) :=
{

z ∈ C : h(z, y) +

λ

〈y – z, z – x〉 ≥ ,∀y ∈ C
}

. (.)

Proposition . [] The resolvent operator Rλ,h of the equilibrium function h has the fol-
lowing properties :

() Rλ,h is single-valued;
() Fix(Rλ,h) = VI(M, C), where VI(M, C) is the solution set of variational inequality

(.) which is a nonempty closed and convex subset of C;
() Rλ,h is a firmly nonexpansive mapping. Therefore Rλ,h is demiclosed at .
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Let T : C → H and S : Q → H be two α-inverse-strongly monotone mappings. The
so-called split equality variational inequality problem with respect to T and S is to find
x∗ ∈ C and y∗ ∈ Q such that

⎧⎪⎨
⎪⎩

(a) 〈Tx∗, u – x∗〉 ≥  ∀u ∈ C,
(b) 〈Sy∗, v – y∗〉 ≥  ∀v ∈ Q,
(c) Ax∗ = By∗.

(.)

In the sequel we use � to denote the solution set of split equality variational inequality
problem (.), i.e.,

� =
{(

x∗, y∗) ∈ VI(T , C) × VI(S, Q) : Ax∗ = By∗}, (.)

where VI(T , C) (resp. VI(S, Q)) is the solution set of variational inequality (.)(a) (resp.
(.)(b)).

Denote by f (x, y) = 〈Tx, y – x〉 : C × C → R and g(u, v) = 〈Su, v – u〉 : Q × Q → R. For
given λ > , x ∈ H, and u ∈ H, let Rλ,f (x) and Rλ,g(u) be the resolvent operator of the
equilibrium function f and g , respectively, which are defined by

Rλ,f (x) :=
{

z ∈ C : f (z, y) +

λ

〈y – z, z – x〉 ≥ ,∀y ∈ C
}

and

Rλ,g(u) :=
{

z ∈ Q : g(z, v) +

λ

〈v – z, z – u〉 ≥ ,∀v ∈ Q
}

.

It follows from Proposition . that

Fix(Rλ,f ) = VI(T , C) �= ∅; Fix(Rλ,g) = VI(S, Q) �= ∅, (.)

and so Rλ,f and Rλ,g both are quasi-pseudo-contractive and -Lipschitzian. Therefore the
split equality variational inequality problem with respect to T and S (.) is equivalent to
the following split equality fixed point problem:

to find x∗ ∈ Fix(Rλ,f ), y∗ ∈ Fix(Rλ,g) such that Ax∗ = By∗. (.)

Since Rλ,f and Rλ,g are firmly nonexpansive with Fix(Rλ,f ) �= ∅ and Fix(Rλ,g) �= ∅, the fol-
lowing theorem can be obtained from Theorem . immediately.

Theorem . Let H, H, H, C, Q, A, B, T , S, Rλ,f , Rλ,g , � be the same as above and
assume that � �= ∅. For given x ∈ C, y ∈ Q, let ({xn}, {xn}) be the sequence generated by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un = xn – γnA∗(Axn – Byn),
xn+ = Rλ,f (un),
vn = yn + γnB∗(Axn – Byn),
yn+ = Rλ,g(vn).

(.)

If γn ∈ (, min( 
‖A‖ , 

‖B‖ )) ∀n ≥ , then the sequence ({xn, yn}) generated by (.) converges
weakly to a solution of split equality variational inequality problem (.).
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4.2 Application to the split equality convex minimization problem
Let C be a nonempty closed convex subset of H and Q be a nonempty closed convex
subset of H. Let φ : C → R and ψ : Q → R be two proper and convex and lower semi-
continuous functions and A : H → H and B : H → H be two bounded linear operator
with its adjoint A∗ and B∗, respectively.

The so-called split equality convex minimization problem for φ and ψ is to find x∗ ∈ C,
y∗ ∈ Q such that

φ
(
x∗) = min

x∈C
φ(x), ψ

(
y∗) = min

x∈Q
ψ(y), and Ax∗ = By∗. (.)

In the sequel, we denote by � the solution set of split equality convex minimization prob-
lem (.), i.e.,

� =
{

(p, q) ∈ C × Q such that φ
(
x∗) = min

x∈C
φ(x),

ψ
(
y∗) = min

x∈Q
ψ(y) and Ax∗ = By∗

}
(.)

Let j(x, y) := φ(y) – ψ(x) : C × C → R and k(u, v) := φ(v) – ψ(u) : Q × Q → R. It is easy to
see that j and k both are equilibrium functions satisfying the conditions (A)-(A).

For given λ > , x ∈ H and u ∈ H, we define the resolvent operators of j and k as follows:

Rλ,j(x) :=
{

z ∈ C : j(z, y) +

λ

〈y – z, z – x〉 ≥ ,∀y ∈ C
}

and

Rλ,k(u) :=
{

z ∈ Q : k(z, v) +

λ

〈v – z, z – u〉 ≥ ,∀v ∈ Q
}

.

By the same argument as given in Section ., we know that

Fix(Rλ,j) =
{

x∗ ∈ C : φ
(
x∗) = min

x∈C
φ(x)

}
, Fix(Rλ,k) =

{
y∗ ∈ Q : ψ

(
y∗) = min

x∈Q
ψ(y)

}
.

Therefore the split equality convex minimization problem for φ and ψ is equivalent to the
following split equality fixed point problem:

to find x∗ ∈ Fix(Rλ,j), y∗ ∈ Fix(Rλ,k) such that Ax∗ = By∗. (.)

Since Rλ,j and Rλ,k both are firmly nonexpansive with Fix(Rλ,f ) �= ∅ and Fix(Rλ,g) �= ∅, the
following theorem can be obtained from Theorem . immediately.

Theorem . Let H, H, H, C, Q, A, B, φ, ψ , Rλ,j, Rλ,k , � be the same as above and
assume that � �= ∅. For given x ∈ C, y ∈ Q, let ({xn}, {xn}) be the sequence generated by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un = xn – γnA∗(Axn – Byn),
xn+ = Rλ,j(un),
vn = yn + γnB∗(Axn – Byn),
yn+ = Rλ,k(vn).

(.)
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If γn ∈ (, min( 
‖A‖ , 

‖B‖ )) ∀n ≥ , then the sequence ({xn, yn}) generated by (.) converges
weakly to a solution of split equality convex minimization problem (.).
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