# RESEARCH

**Open Acc<u>ess</u>** 



# Split equality fixed point problem for quasi-pseudo-contractive mappings with applications

Shih-sen Chang<sup>1\*</sup>, Lin Wang<sup>2</sup> and Li-Juan Qin<sup>3</sup>

\*Correspondence: changss2013@163.com <sup>1</sup>Center for General Education, China Medical University, Taichung, 40402, Taiwan Full list of author information is available at the end of the article

# Abstract

In this paper, we consider a split equality fixed point problem for quasi-pseudo-contractive mappings which includes split feasibility problem, split equality problem, split fixed point problem *etc.*, as special cases. A unified framework for the study of this kind of problems and operators is provided. The results presented in the paper extend and improve many recent results.

MSC: 49J40; 49J52; 47J20

**Keywords:** split equality fixed point problem; quasi-pseudo-contractive mapping; quasi-nonexpansive mapping; directed mapping; demicontractive mapping

# 1 Introduction

Let *C* and *Q* be nonempty closed and convex subsets of the real Hilbert spaces  $H_1$  and  $H_2$ , respectively. The *split feasibility problem* (*SFP*) is formulated as:

to find 
$$x^* \in C$$
 such that  $Ax^* \in Q$ , (1.1)

where  $A: H_1 \rightarrow H_2$  is a bounded linear operator. In 1994, Censor and Elfving [1] first introduced the SFP in finite-dimensional Hilbert spaces for modeling inverse problems which arise from phase retrievals and in medical image reconstruction [2]. It has been found that the SFP can also be used in various disciplines such as image restoration, computer tomography, and radiation therapy treatment planning [3–5]. The SFP in an infinite-dimensional real Hilbert space can be found in [2, 4, 6–10].

Recently, Moudafi [11–13] introduced the following *split equality feasibility problem* (SEFP):

to find 
$$x \in C$$
,  $y \in Q$  such that  $Ax = By$ , (1.2)

where  $A : H_1 \rightarrow H_3$  and  $B : H_2 \rightarrow H_3$  are two bounded linear operators. Obviously, if B = I (identity mapping on  $H_2$ ) and  $H_3 = H_2$ , then (1.2) reduces to (1.1). The kind of split equality feasibility problems (1.2) allows asymmetric and partial relations between the variables x and y. The interest is to cover many situations, such as decomposition methods for PDEs, applications in game theory and intensity-modulated radiation therapy.

© 2015 Chang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.



In order to solve split equality feasibility problem (1.2), Moudafi [11] introduced the following simultaneous iterative method:

$$\begin{cases} x_{k+1} = P_C(x_k - \gamma A^*(Ax_k - By_k)), \\ y_{k+1} = P_Q(y_k + \beta B^*(Ax_{k+1} - By_k)), \end{cases}$$
(1.3)

and under suitable conditions he proved the weak convergence of the sequence  $\{(x_n, y_n)\}$  to a solution of (1.2) in Hilbert spaces.

In order to avoid using the projection, recently, Moudafi [13] introduced and studied the following problem: Let  $T : H_1 \to H_1$  and  $S : H_2 \to H_2$  be nonlinear operators such that  $Fix(T) \neq \emptyset$  and  $Fix(S) \neq \emptyset$ , where Fix(T) and Fix(S) denote the sets of fixed points of T and S, respectively. If C = Fix(T) and Q = Fix(S), then split equality problem (1.2) reduces to

find 
$$x \in Fix(T)$$
 and  $y \in Fix(S)$  such that  $Ax = By$ , (1.4)

which is called a split equality fixed point problem (in short, SEFPP).

Denote by  $\Gamma$  the solution set of split equality fixed point problem (1.4).

Recently Moudafi [13] proposed the following iterative algorithm for finding a solution of SEFPP (1.4):

$$\begin{cases} x_{n+1} = T(x_n - \gamma_n A^* (Ax_n - By_n)), \\ y_{n+1} = S(y_n + \beta_n B^* (Ax_{n+1} - By_n)). \end{cases}$$
(1.5)

He also studied the weak convergence of the sequences generated by scheme (1.5) under the condition that T and S are firmly quasi-nonexpansive mappings. Very recently, Che and Li [14] proposed the following iterative algorithm for finding a solution of SEFPP (1.4):

$$\begin{cases}
 u_n = x_n - \gamma_n A^* (Ax_n - By_n), \\
 x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T u_n, \\
 v_n = y_n + \gamma_n B^* (Ax_n - By_n), \\
 y_{n+1} = \alpha_n y_n + (1 - \alpha_n) S v_n.
 \end{cases}$$
(1.6)

They also established the weak convergence of the scheme (1.6) under the condition that the operators T and S are quasi-nonexpansive mappings.

The purpose of this paper is two-fold. First, we will consider split equality fixed point problem (1.4) for the class of quasi-pseudo-contractive mappings which is more general than the classes of quasi-nonexpansive mappings, directed mappings, and demicontractive mappings. Second, we modify the iterative scheme (1.6) and propose the following iterative algorithms with weak convergence without using the projection:

$$\begin{cases} u_n = x_n - \gamma_n A^* (Ax_n - By_n), \\ x_{n+1} = \alpha_n x_n + (1 - \alpha_n)((1 - \xi)I + \xi T((1 - \eta)I + \eta T))u_n, \\ v_n = y_n + \gamma_n B^* (Ax_n - By_n), \\ y_{n+1} = \alpha_n y_n + (1 - \alpha_n)((1 - \xi)I + \xi S((1 - \eta)I + \eta S))v_n. \end{cases}$$
(1.7)

Our results provide a unified framework for the study of this kind of problems and this class of operators.

## 2 Preliminaries

In this section, we collect some definitions, notations, and conclusions, which will be needed in proving our main results.

Let *H* be a real Hilbert space, *C* be a nonempty closed convex subset of *H*, and  $T : C \to C$  be a nonlinear mapping.

**Definition 2.1**  $T: C \rightarrow C$  is said to be:

- (i) Nonexpansive if  $||Tx Ty|| \le ||x y|| \quad \forall x, y \in C$ .
- (ii) Quasi-nonexpansive if  $Fix(T) \neq \emptyset$  and

$$||Tx - x^*|| \le ||x - x^*|| \quad \forall x \in C \text{ and } x^* \in \operatorname{Fix}(T).$$

(iii) Firmly nonexpansive if

$$||Tx - Ty||^2 \le ||x - y||^2 - ||(I - T)x - (I - T)y||^2 \quad \forall x, y \in C.$$

(iv) Firmly quasi-nonexpansive if  $Fix(T) \neq \emptyset$  and

$$||Tx - x^*||^2 \le ||x - x^*||^2 - ||(I - T)x||^2 \quad \forall x \in C \text{ and } x^* \in Fix(T).$$

(v) Strictly pseudo-contractive if there exists  $k \in [0, 1)$  such that

$$||Tx - Ty||^2 \le ||x - y||^2 + k ||(I - T)x - (I - T)y||^2 \quad \forall x, y \in C.$$

- (vi) Directed if  $Fix(T) \neq \emptyset$  and  $\langle Tx x^*, Tx x \rangle \leq 0 \ \forall x \in C$  and  $x^* \in Fix(T)$ .
- (vii) Demicontractive if  $Fix(T) \neq \emptyset$  and there exists  $k \in [0, 1)$  such that

$$||Tx - x^*||^2 \le ||x - x^*||^2 + k||Tx - x||^2 \quad \forall x \in C \text{ and } x^* \in Fix(T).$$

**Remark 2.2** As pointed out by Bauschke and Combettes [15],  $T : C \to C$  is directed if and only if

$$||Tx - x^*||^2 \le ||x - x^*||^2 - ||Tx - x||^2 \quad \forall x \in C \text{ and } x^* \in F(T).$$

That is to say that the class of directed mappings coincides with that of firmly quasinonexpansive mappings.

**Remark 2.3** From the above definitions, we note that the class of demicontractive mappings is fundamental; it includes many kinds of nonlinear mappings such as the directed mappings, the quasi-nonexpansive mappings, and the strictly pseudo-contractive mappings with fixed points as special cases.

**Definition 2.4** An operator  $T: C \rightarrow C$  is said to be *pseudo-contractive* if

$$\langle Tx - Ty, x - y \rangle \le ||x - y||^2 \quad \forall x, y \in C.$$

The interest of pseudo-contractive operators lies in their connection with monotone mappings, namely, T is a pseudo-contraction if and only if I - T is a monotone mapping. It is well known that T is pseudo-contractive if and only if

$$||Tx - Ty||^2 \le ||x - y||^2 + ||(I - T)x - (I - T)y||^2 \quad \forall x, y \in C.$$

**Definition 2.5** An operator  $T : C \to C$  is said to be *quasi-pseudo-contractive* if  $Fix(T) \neq \emptyset$  and

$$||Tx - x^*||^2 \le ||x - x^*||^2 + ||Tx - x||^2 \quad \forall x \in C \text{ and } x^* \in F(T).$$

It is obvious that the class of quasi-pseudo-contractive mappings includes the class of demicontractive mappings.

**Definition 2.6** (1) A mapping  $T : C \to C$  is said to be *demiclosed at 0* if, for any sequence  $\{x_n\} \subset C$  which converges weakly to x and with  $||x_n - T(x_n)|| \to 0$ , T(x) = x.

(2) A mapping  $T : H \to H$  is said to be semi-compact if, for any bounded sequence  $\{x_n\} \subset H$  with  $||x_n - Tx_n|| \to 0$ , there exists a subsequence  $\{x_{n_i}\} \subset \{x_n\}$  such that  $\{x_{n_i}\}$  converges strongly to some point  $x \in H$ .

**Lemma 2.7** Let *H* be a real Hilbert space. For any  $x, y \in H$ , the following conclusions hold:

$$\left\| tx + (1-t)y \right\|^2 = t \|x\|^2 + (1-t)\|y\|^2 - t(1-t)\|x - y\|^2, \quad t \in [0;1];$$
(2.1)

$$\|x+y\|^{2} \le \|x\|^{2} + 2\langle y, x+y \rangle.$$
(2.2)

Recall that a Banach space X is said to satisfy Opial's condition, if for any sequence  $\{x_n\}$  in X which converges weakly to  $x^*$ ,

$$\limsup_{n \to \infty} \|x_n - x^*\| < \limsup_{n \to \infty} \|x_n - y\| \quad \forall y \in X \text{ with } y \neq x^*.$$

It is well known that every Hilbert space satisfies the Opial condition.

**Lemma 2.8** Let  $\{a_n\}$  be a sequence of nonnegative real numbers such that

$$a_{n+1} \leq (1-\gamma_n)a_n + \delta_n \quad \forall n \geq 1$$

where  $\{\gamma_n\}$  is a sequence in (0,1) and  $\{\delta_n\}$  is a sequence such that

(1)  $\sum_{n=1}^{\infty} \gamma_n = \infty;$ (2)  $\limsup_{n \to \infty} \frac{\delta_n}{\gamma_n} \le 0 \text{ or } \sum_{n=1}^{\infty} |\delta_n| < \infty.$ Then  $\lim_{n \to \infty} a_n = 0.$ 

**Lemma 2.9** Let *H* be a real Hilbert space and  $T : H \rightarrow H$  be a *L*-Lipschitzian mapping with  $L \ge 1$ . Denote

$$K := (1 - \xi)I + \xi T ((1 - \eta)I + \eta T).$$
(2.3)

If  $0 < \xi < \eta < \frac{1}{1+\sqrt{1+L^2}}$ , then the following conclusions hold:

- (1)  $Fix(T) = Fix(T((1 \eta)I + \eta T)) = Fix(K).$
- (2) If T is demiclosed at 0, then K is also demiclosed at 0.
- (3) In addition, if  $T: H \to H$  is quasi-pseudo-contractive, then the mapping K is quasi-nonexpansive, that is,

$$||Kx - u^*|| \le ||x - u^*|| \quad \forall x \in H \text{ and } u^* \in \operatorname{Fix}(T) = \operatorname{Fix}(K).$$

*Proof* (1) If  $x^* \in Fix(T)$ , it is obvious that  $x^* \in Fix(T((1 - \eta)I + \eta T))$ .

Conversely, if  $x^* \in Fix(T((1 - \eta)I + \eta T))$ , *i.e.*,  $x^* = T((1 - \eta)x^* + \eta Tx^*)$ , letting  $U = (1 - \eta)I + \eta T$ , then  $TUx^* = x^*$ . Put  $Ux^* = y^*$ . Then  $Ty^* = x^*$ . Now we prove that  $x^* = y^*$ . In fact, we have

$$\begin{aligned} \|x^* - y^*\| &= \|x^* - \mathcal{U}x^*\| = \|x^* - ((1 - \eta)I + \eta T)x^*\| \\ &= \eta \|x^* - Tx^*\| = \eta \|Ty^* - Tx^*\| \le L\eta \|y^* - x^*\|. \end{aligned}$$

Since  $0 < L\eta < 1$ , we have  $x^* = y^*$ , *i.e.*,  $x^* \in Fix(T)$ . This shows that  $Fix(T) = Fix(T((1 - \eta)I + \eta T))$ .

It is obvious that  $x \in Fix(K)$  if and only if  $x \in Fix(T((1 - \eta)I + \eta T))$ .

The conclusion (1) is proved.

(2) For any sequence  $\{x_n\} \subset H$  satisfying  $x_n \rightarrow x^*$  and  $||x_n - Kx_n|| \rightarrow 0$ . Next we show that  $x^* \in Fix(K)$ . From conclusion (1), we only need to prove that  $x^* \in Fix(T)$ . In fact, since *T* is *L*-Lipschizian, we have

$$\|x_n - Tx_n\| \le \|x_n - T((1 - \eta)I + \eta T)x_n\| + \|T((1 - \eta)I + \eta T)x_n - Tx_n\|$$
  
$$\le \frac{1}{\xi} \|x_n - (1 - \xi)x_n - \xi T((1 - \eta)I + \eta T)x_n\| + L\eta \|x_n - Tx_n\|$$
  
$$= \frac{1}{\xi} \|x_n - Kx_n\| + L\eta \|x_n - Tx_n\|.$$

Simplifying it, we have

$$\|x_n - Tx_n\| \le \frac{1}{\xi(1 - L\eta)} \|x_n - Kx_n\| \to 0.$$
(2.4)

Since *T* is demiclosed at 0, we have  $x^* \in F(T) = F(K)$ . The conclusion (2) is proved.

The conclusion (3) is obvious (see also [16]).

# 3 Main results

Throughout this section, we assume that:

- (1)  $H_1$ ,  $H_2$ , and  $H_3$  are three real Hilbert spaces.  $A : H_1 \to H_3$  and  $B : H_2 \to H_3$  are two bounded linear operators with their adjoints  $A^*$  and  $B^*$ , respectively;
- (2)  $T: H_1 \to H_1$  and  $S: H_2 \to H_2$  are two *L*-Lipschitzian and quasi-pseudo-contractive mappings with  $L \ge 1$ , Fix $(T) \neq \emptyset$ , and Fix $(S) \neq \emptyset$ .

In the sequel, we denote the strong convergence and weak convergence of a sequence  $\{x_n\}$  to a point  $x \in H$  by  $x_n \to x$  and  $x_n \to x$ , respectively.

Our object is to solve the following split equality fixed point problem:

to find 
$$x^* \in \operatorname{Fix}(T), y^* \in F(S)$$
 such that  $Ax^* = By^*$ . (3.1)

In the sequel we use  $\Gamma$  to denote the set of solutions of (3.1), that is,

$$\Gamma = \left\{ \left( x^*, y^* \right) \in \operatorname{Fix}(T) \times \operatorname{Fix}(S) \text{ such that } Ax^* = By^* \right\},\tag{3.2}$$

and we assume that  $\Gamma \neq \emptyset$ .

Now, we present our algorithm for finding  $(x^*, y^*) \in \Gamma$ .

**Algorithm 3.1 Initialization**: Choose  $\{\alpha_n\} \subset (0, 1)$ . Take arbitrary  $x_0 \in H_1$ ,  $y_0 \in H_2$ . **Iterative steps**: For a given current  $x_n \in H_1$ ,  $y_n \in H_2$  compute

$$\begin{cases} (a) & u_n = x_n - \gamma_n A^* (Ax_n - By_n), \\ (b) & x_{n+1} = \alpha_n x_n + (1 - \alpha_n)((1 - \xi_n)I + \xi_n T((1 - \eta_n)I + \eta_n T))u_n, \\ (c) & v_n = y_n + \gamma_n B^* (Ax_n - By_n), \\ (d) & y_{n+1} = \alpha_n y_n + (1 - \alpha_n)((1 - \xi_n)I + \xi_n S((1 - \eta_n)I + \eta_n S))v_n. \end{cases}$$
(3.3)

**Theorem 3.2** Let  $H_1$ ,  $H_2$ ,  $H_3$ , A, B, S, T,  $\Gamma$ ,  $\{x_n\}$  and  $\{y_n\}$  be the same as above. If T and S are demiclosed at 0 and the following conditions are satisfied:

(i)  $\gamma_n \in (0, \min(\frac{1}{\|A\|^2}, \frac{1}{\|B\|^2})) \quad \forall n \ge 1;$ 

(ii)  $0 < a < \xi_n < \eta_n < b < \frac{1}{1 + \sqrt{1 + L^2}} \forall n \ge 1.$ 

Then the following conclusions hold:

- (I) the sequence ({x<sub>n</sub>, y<sub>n</sub>}) generated by (3.3) converges weakly to a solution of problem (3.1);
- (II) In addition, if S, T are also semi-compact, then  $(\{x_n, y_n\})$  converges strongly to a solution of problem (3.1).

*Proof* First we prove the conclusion (I).

For any given  $(p,q) \in \Gamma$ , then  $p \in Fix(T)$ ,  $q \in Fix(S)$  and Ap = Bq. From (3.3)(a), we have

$$\|u_{n} - p\|^{2} = \|x_{n} - \gamma_{n}A^{*}(Ax_{n} - By_{n}) - p\|^{2}$$
  
$$= \|x_{n} - p\|^{2} + \gamma_{n}^{2} \|A^{*}(Ax_{n} - By_{n})\|^{2} - 2\gamma_{n} \langle x_{n} - p, A^{*}(Ax_{n} - By_{n}) \rangle$$
  
$$\leq \|x_{n} - p\|^{2} + \gamma_{n}^{2} \|A\|^{2} \|Ax_{n} - By_{n}\|^{2} - 2\gamma_{n} \langle Ax_{n} - Ap, Ax_{n} - By_{n} \rangle.$$
(3.4)

Similarly, from (3.3)(c), we have

$$\|v_n - q\|^2 \le \|y_n - q\|^2 + \gamma_n^2 \|B\|^2 \|Ax_n - By_n\|^2 + 2\gamma_n \langle By_n - Bq, Ax_n - By_n \rangle.$$
(3.5)

Put

$$\begin{split} &K := (1 - \xi_n)I + \xi_n T \big( (1 - \eta_n)I + \eta_n T \big), \\ &G := (1 - \xi_n)I + \xi_n S \big( (1 - \eta_n)I + \eta_n S \big). \end{split}$$

By the assumptions of Theorem 3.2, condition (ii) and Lemma 2.9, we know that the mappings *K* and *G* have the following properties:

- (1) Both *K* and *G* are quasi-nonexpansive;
- (2)  $\operatorname{Fix}(K) = \operatorname{Fix}(T)$  and  $\operatorname{Fix}(G) = \operatorname{Fix}(S)$ ;
- (3) K and G demiclosed at 0.

Hence from (3.3)(b) and (2.1) we have

$$\|x_{n+1} - p\|^{2} = \|\alpha_{n}x_{n} + (1 - \alpha_{n})((1 - \xi_{n})I + \xi_{n}T((1 - \eta_{n})I + \eta_{n}T))u_{n} - p)\|^{2}$$
  

$$= \|\alpha_{n}(x_{n} - p) + (1 - \alpha_{n})(Ku_{n} - p)\|^{2}$$
  

$$= \alpha_{n}\|x_{n} - p\|^{2} + (1 - \alpha_{n})\|Ku_{n} - p\|^{2} - \alpha_{n}(1 - \alpha_{n})\|Ku_{n} - x_{n}\|^{2}$$
  

$$\leq \alpha_{n}\|x_{n} - p\|^{2} + (1 - \alpha_{n})\|u_{n} - p\|^{2} - \alpha_{n}(1 - \alpha_{n})\|Ku_{n} - x_{n}\|^{2}.$$
 (3.6)

Similarly from (3.3)(c) and (2.1) we have

$$\|y_{n+1} - q\|^2 \le \alpha_n \|y_n - q\|^2 + (1 - \alpha_n) \|v_n - q\|^2 - \alpha_n (1 - \alpha_n) \|Gv_n - y_n\|^2.$$
(3.7)

Adding (3.6) and (3.7) and by virtue of (3.4) and (3.5), we have

$$\begin{aligned} \|x_{n+1} - p\|^{2} + \|y_{n+1} - q\|^{2} \\ &\leq \alpha_{n} \|x_{n} - p\|^{2} + \alpha_{n} \|y_{n} - q\|^{2} + (1 - \alpha_{n}) \|u_{n} - p\|^{2} + (1 - \alpha_{n}) \|v_{n} - q\|^{2} \\ &- \alpha_{n} (1 - \alpha_{n}) \|Ku_{n} - x_{n}\|^{2} - \alpha_{n} (1 - \alpha_{n}) \|Gv_{n} - y_{n}\|^{2} \\ &\leq \alpha_{n} \|x_{n} - p\|^{2} + (1 - \alpha_{n}) \{\|x_{n} - p\|^{2} + \gamma_{n}^{2} \|A\|^{2} \|Ax_{n} - By_{n}\|^{2} \\ &- 2\gamma_{n} \langle Ax_{n} - Ap, Ax_{n} - By_{n} \rangle \} \\ &+ \alpha_{n} \|y_{n} - q\|^{2} + (1 - \alpha_{n}) \{\|y_{n} - p\|^{2} + \gamma_{n}^{2} \|B\|^{2} \|Ax_{n} - By_{n}\|^{2} \\ &+ 2\gamma_{n} \langle By_{n} - Bq, Ax_{n} - By_{n} \rangle \} \\ &- \alpha_{n} (1 - \alpha_{n}) \|Ku_{n} - x_{n}\|^{2} - \alpha_{n} (1 - \alpha_{n}) \|Gv_{n} - y_{n}\|^{2} \\ &= \|x_{n} - p\|^{2} + \|y_{n} - q\|^{2} + \gamma_{n}^{2} (1 - \alpha_{n}) \{\|A\|^{2} + \|B\|^{2} \} \|Ax_{n} - By_{n}\|^{2} \\ &- (1 - \alpha_{n}) 2\gamma_{n} \{\langle Ax_{n} - Ap, Ax_{n} - By_{n} \rangle - \langle By_{n} - Bq, Ax_{n} - By_{n} \rangle \} \\ &- \alpha_{n} (1 - \alpha_{n}) \{\|Ku_{n} - x_{n}\|^{2} + \|Gv_{n} - y_{n}\|^{2} \} \\ &= \|x_{n} - p\|^{2} + \|y_{n} - q\|^{2} + \gamma_{n}^{2} (1 - \alpha_{n}) \{\|A\|^{2} + \|B\|^{2} \} \|Ax_{n} - By_{n}\|^{2} \\ &- (1 - \alpha_{n}) 2\gamma_{n} \|Ax_{n} - By_{n}\|^{2} - \alpha_{n} (1 - \alpha_{n}) \{\|Ku_{n} - x_{n}\|^{2} + \|Gv_{n} - y_{n}\|^{2} \} \\ &(\text{since } Ap = Bq) \\ &= \|x_{n} - p\|^{2} + \|y_{n} - q\|^{2} - (1 - \alpha_{n})\gamma_{n} (2 - \gamma_{n} (\|A\|^{2} + \|B\|^{2})) \|Ax_{n} - By_{n}\|^{2} \\ &- \alpha_{n} (1 - \alpha_{n}) \{\|Ku_{n} - x_{n}\|^{2} + \|Gv_{n} - y_{n}\|^{2} \}. \end{aligned}$$
(3.8)

Since  $\gamma_n \in (0, \min\{\frac{1}{\|A\|^2}, \frac{1}{\|A\|^2}\})$ ,  $\gamma_n \|A\|^2 < 1$  and  $\gamma_n \|B\|^2 < 1$ . So  $0 < \gamma_n (\|A\|^2 + \|B\|^2) < 2$ . This implies that  $\gamma_n (2 - \gamma_n (\|A\|^2 + \|B\|^2)) > 0$ . Putting

$$X_n(p,q) = \|x_n - p\|^2 + \|y_n - q\|^2,$$
(3.9)

hence (3.8) can be written as

$$X_{n+1}(p,q) \leq X_n(p,q) - (1-\alpha_n)\gamma_n \left(2 - \gamma_n \left(\|A\|^2 + \|B\|^2\right)\right) \|Ax_n - By_n\|^2$$
  
-  $\alpha_n (1-\alpha_n) \left\{ \|Ku_n - x_n\|^2 + \|Gv_n - y_n\|^2 \right\}$   
 $\leq X_n(p,q).$  (3.10)

This implies that  $\{X_n(p,q)\}$  is a non-increasing sequence, hence the limit  $\lim_{n\to\infty} X_n(p,q)$  exists. Therefore the following limits exist:

$$\lim_{n \to \infty} \|x_n - p\| \quad \text{and} \quad \lim_{n \to \infty} \|y_n - q\| \quad \forall (p, q) \in \Gamma.$$
(3.11)

Rewritten (3.10) as

$$(1 - \alpha_n)\gamma_n \left(2 - \gamma_n \left(\|A\|^2 + \|B\|^2\right)\right) \|Ax_n - By_n\|^2 + \alpha_n (1 - \alpha_n) \left\{\|Ku_n - x_n\|^2 + \|Gv_n - y_n\|^2\right\} \le X_n(p, q) - X_{n+1}(p, q).$$
(3.12)

Letting  $n \to \infty$  and taking the limit in (3.12), we have

$$||Ax_n - By_n|| \to 0; \qquad ||Ku_n - x_n|| \to 0; \qquad ||Gv_n - y_n|| \to 0.$$
 (3.13)

From (3.13) and (3.3) we have

$$\begin{cases} \lim_{n \to \infty} \|u_n - x_n\| \to 0 \text{ and } \lim_{n \to \infty} \|v_n - y_n\| \to 0, \\ \lim_{n \to \infty} \|x_{n+1} - x_n\| \\ = \lim_{n \to \infty} (1 - \alpha_n) \| ((1 - \xi_n)I + \xi_n T((1 - \eta_n)I + \eta_n T))u_n - x_n\| \\ = \lim_{n \to \infty} (1 - \alpha_n) \|Ku_n - x_n\| = 0, \\ \lim_{n \to \infty} \|y_{n+1} - y_n\| \\ = \lim_{n \to \infty} (1 - \beta_n) \| ((1 - \xi_n)S + \xi_n S((1 - \eta_n)I + \eta_n S))y_n - y_n\| \\ = \lim_{n \to \infty} (1 - \alpha_n) \|Gv_n - y_n\| = 0. \end{cases}$$
(3.14)

This together with (3.13) shows that

,

$$\begin{cases} \|Ku_n - u_n\| \le \|Ku_n - x_n\| + \|x_n - u_n\| \to 0; \\ \|Gv_n - v_n\| \le \|Gv_n - y_n\| + \|y_n - v_n\| \to 0. \end{cases}$$
(3.15)

Since  $\{x_n\}$  and  $\{y_n\}$  are bounded sequences, there exist some weakly convergent subsequences, say  $\{x_{n_i}\} \subset \{x_n\}$  and  $\{y_{n_i}\} \subset \{y_n\}$  such that  $x_{n_i} \rightharpoonup x^*$  and  $y_{n_i} \rightharpoonup y^*$ . Since every Hilbert space has the Opial property. The Opial property guarantees that the weakly subsequential limit of  $\{(x_n, y_n)\}$  is unique. Therefore we have  $x_n \rightharpoonup x^*$  and  $y_n \rightharpoonup y^*$ .

On the other hand, from (3.14), one gets  $u_n \rightarrow x^*$  and  $v_n \rightarrow y^*$ . By (3.15) and the demiclosed property of *K* and *G*, we have  $Kx^* = x^*$  and  $Gy^* = y^*$ . This implies that  $x^* \in Fix(T)$ and  $y^* \in Fix(S)$ .

Now we are left to show that  $Ax^* = By^*$ . In fact, since  $Ax_n - By_n \rightarrow Ax^* - By^*$ , by using the weakly lower semi-continuity of squared norm, we have

$$||Ax^* - By^*||^2 = \liminf_{n \to \infty} ||Ax_n - By_n||^2 = \lim_{n \to \infty} ||Ax_n - By_n||^2 = 0.$$

Thus  $Ax^* = By^*$ . This completes the proof of the conclusion (I).

Now we prove the conclusion (II). In fact, by virtue of (2.4), (3.13), and (3.14), we have

$$\begin{cases} \|x_n - Tx_n\| \le \frac{1}{\xi_n (1 - L\eta_n)} \|x_n - Kx_n\| \to 0; \\ \|y_n - Sy_n\| \le \frac{1}{\xi_n (1 - L\eta_n)} \|y_n - Gy_n\| \to 0. \end{cases}$$
(3.16)

Since *S*, *T* are semi-compact, it follows from (3.16) that there exist subsequences  $\{x_{n_i}\} \subset \{x_n\}$  and  $\{y_{n_j}\} \subset \{y_n\}$  such that  $x_{n_i} \to x$  (some point in *F*(*T*)) and  $y_{n_j} \to y$  (some point in *F*(*S*)). It follows from (3.11),  $x_n \to x^*$ , and  $y_n \to y^*$  that  $x_n \to x^*$  and  $y_n \to y^*$  and  $Ax^* = By^*$ .

# **4** Applications

## 4.1 Application to the split equality variational inequality problem

Throughout this section, we assume that  $H_1$ ,  $H_2$ , and  $H_3$  are three real Hilbert spaces. *C* and *Q* both are nonempty and closed convex subsets of  $H_1$  and  $H_2$ , respectively and assume that  $A : H_1 \rightarrow H_3$  and  $B : H_2 \rightarrow H_3$  are two bounded linear operator with its adjoint  $A^*$  and  $B^*$ , respectively.

Let  $M : C \to H_1$  be a mapping. *The variational inequality problem for mapping* M is to find a point  $x^* \in C$  such that

$$\langle Mx^*, z - x^* \rangle \ge 0 \quad \forall z \in C.$$

$$\tag{4.1}$$

We will denote the solution set of (4.1) by VI(M, C).

A mapping  $M : C \to H_1$  is said to be  $\alpha$ -*inverse-strongly monotone* if there exists a constant  $\alpha > 0$  such that

$$\langle Mx - My, x - y \rangle \ge \alpha \|Mx - My\|^2 \quad \forall x, y \in C.$$
 (4.2)

It is easy to see that if *M* is  $\alpha$ -inverse-strongly monotone, then *M* is  $\frac{1}{\alpha}$ -Lipschitzian.

Setting  $h(x, y) = \langle Mx, y - x \rangle : C \times C \to \mathbb{R}$ , it is easy to show that *h* is an *equilibrium function, i.e.,* it satisfies the following conditions, (A1)-(A4):

(A1) h(x,x) = 0, for all  $x \in C$ ;

- (A2) *h* is monotone, *i.e.*,  $h(x, y) + h(y, x) \le 0$  for all  $x, y \in C$ ;
- (A3)  $\limsup_{t\downarrow 0} h(tz + (1 t)x, y) \le h(x, y) \text{ for all } x, y, z \in C;$
- (A4) for each  $x \in C$ ,  $y \mapsto h(x, y)$  is convex and lower semi-continuous.

For given  $\lambda > 0$  and  $x \in H$ , the *resolvent of the equilibrium function* h is the operator  $R_{\lambda,h}: H \to C$  defined by

$$R_{\lambda,h}(x) := \left\{ z \in C : h(z,y) + \frac{1}{\lambda} \langle y - z, z - x \rangle \ge 0, \forall y \in C \right\}.$$

$$(4.3)$$

**Proposition 4.1** [17] *The resolvent operator*  $R_{\lambda,h}$  *of the equilibrium function* h *has the following properties* :

- (1)  $R_{\lambda,h}$  is single-valued;
- (2) Fix $(R_{\lambda,h}) = VI(M, C)$ , where VI(M, C) is the solution set of variational inequality (4.1) which is a nonempty closed and convex subset of *C*;
- (3)  $R_{\lambda,h}$  is a firmly nonexpansive mapping. Therefore  $R_{\lambda,h}$  is demiclosed at 0.

Let  $T: C \to H_1$  and  $S: Q \to H_2$  be two  $\alpha$ -inverse-strongly monotone mappings. The so-called *split equality variational inequality problem with respect to T and S* is to find  $x^* \in C$  and  $y^* \in Q$  such that

$$\begin{cases} (a) \quad \langle Tx^*, u - x^* \rangle \ge 0 \quad \forall u \in C, \\ (b) \quad \langle Sy^*, v - y^* \rangle \ge 0 \quad \forall v \in Q, \\ (c) \quad Ax^* = By^*. \end{cases}$$

$$(4.4)$$

In the sequel we use  $\Omega$  to denote the solution set of split equality variational inequality problem (4.4), *i.e.*,

$$\Theta = \left\{ \left( x^*, y^* \right) \in VI(T, C) \times VI(S, Q) : Ax^* = By^* \right\},\tag{4.5}$$

where VI(T, C) (resp. VI(S, Q)) is the solution set of variational inequality (4.4)(a) (resp. (4.4)(b)).

Denote by  $f(x, y) = \langle Tx, y - x \rangle : C \times C \to \mathbb{R}$  and  $g(u, v) = \langle Su, v - u \rangle : Q \times Q \to \mathbb{R}$ . For given  $\lambda > 0$ ,  $x \in H_1$ , and  $u \in H_2$ , let  $R_{\lambda,f}(x)$  and  $R_{\lambda,g}(u)$  be the resolvent operator of the equilibrium function f and g, respectively, which are defined by

$$R_{\lambda,f}(x) := \left\{ z \in C : f(z,y) + \frac{1}{\lambda} \langle y - z, z - x \rangle \ge 0, \forall y \in C \right\}$$

and

$$R_{\lambda,g}(u) := \left\{ z \in Q : g(z, \nu) + \frac{1}{\lambda} \langle \nu - z, z - u \rangle \ge 0, \forall \nu \in Q \right\}.$$

It follows from Proposition 4.1 that

$$\operatorname{Fix}(R_{\lambda,f}) = VI(T,C) \neq \emptyset; \qquad \operatorname{Fix}(R_{\lambda,g}) = VI(S,Q) \neq \emptyset, \tag{4.6}$$

and so  $R_{\lambda,f}$  and  $R_{\lambda,g}$  both are quasi-pseudo-contractive and 1-Lipschitzian. Therefore the split equality variational inequality problem with respect to *T* and *S* (4.4) is equivalent to the following split equality fixed point problem:

to find 
$$x^* \in \operatorname{Fix}(R_{\lambda,f}), y^* \in \operatorname{Fix}(R_{\lambda,g})$$
 such that  $Ax^* = By^*$ . (4.7)

Since  $R_{\lambda,f}$  and  $R_{\lambda,g}$  are firmly nonexpansive with  $Fix(R_{\lambda,f}) \neq \emptyset$  and  $Fix(R_{\lambda,g}) \neq \emptyset$ , the following theorem can be obtained from Theorem 3.2 immediately.

**Theorem 4.2** Let  $H_1$ ,  $H_2$ ,  $H_3$ , C, Q, A, B, T, S,  $R_{\lambda,f}$ ,  $R_{\lambda,g}$ ,  $\Theta$  be the same as above and assume that  $\Theta \neq \emptyset$ . For given  $x_0 \in C$ ,  $y_0 \in Q$ , let  $(\{x_n\}, \{x_n\})$  be the sequence generated by

$$\begin{cases}
 u_n = x_n - \gamma_n A^* (Ax_n - By_n), \\
 x_{n+1} = R_{\lambda, f}(u_n), \\
 v_n = y_n + \gamma_n B^* (Ax_n - By_n), \\
 y_{n+1} = R_{\lambda, g}(v_n).
 \end{cases}$$
(4.8)

If  $\gamma_n \in (0, \min(\frac{1}{\|A\|^2}, \frac{1}{\|B\|^2})) \forall n \ge 1$ , then the sequence  $(\{x_n, y_n\})$  generated by (4.8) converges weakly to a solution of split equality variational inequality problem (4.4).

## 4.2 Application to the split equality convex minimization problem

Let *C* be a nonempty closed convex subset of  $H_1$  and *Q* be a nonempty closed convex subset of  $H_2$ . Let  $\phi : C \to \mathbb{R}$  and  $\psi : Q \to \mathbb{R}$  be two proper and convex and lower semicontinuous functions and  $A : H_1 \to H_3$  and  $B : H_2 \to H_3$  be two bounded linear operator with its adjoint  $A^*$  and  $B^*$ , respectively.

The so-called *split equality convex minimization problem for*  $\phi$  *and*  $\psi$  is to find  $x^* \in C$ ,  $y^* \in Q$  such that

$$\phi(x^*) = \min_{x \in C} \phi(x), \qquad \psi(y^*) = \min_{x \in Q} \psi(y), \text{ and } Ax^* = By^*.$$
 (4.9)

In the sequel, we denote by  $\Omega$  the solution set of split equality convex minimization problem (4.9), *i.e.*,

$$\Omega = \left\{ (p,q) \in C \times Q \text{ such that } \phi(x^*) = \min_{x \in C} \phi(x), \\ \psi(y^*) = \min_{x \in Q} \psi(y) \text{ and } Ax^* = By^* \right\}$$
(4.10)

Let  $j(x, y) := \phi(y) - \psi(x) : C \times C \to \mathbb{R}$  and  $k(u, v) := \phi(v) - \psi(u) : Q \times Q \to \mathbb{R}$ . It is easy to see that *j* and *k* both are equilibrium functions satisfying the conditions (A1)-(A4).

For given  $\lambda > 0$ ,  $x \in H_1$  and  $u \in H_2$ , we define the resolvent operators of *j* and *k* as follows:

$$R_{\lambda,j}(x) \coloneqq \left\{ z \in C : j(z,y) + rac{1}{\lambda} \langle y - z, z - x \rangle \ge 0, \forall y \in C 
ight\}$$

and

$$R_{\lambda,k}(u) := \left\{ z \in Q : k(z,v) + \frac{1}{\lambda} \langle v - z, z - u \rangle \ge 0, \forall v \in Q \right\}.$$

By the same argument as given in Section 4.1, we know that

$$\operatorname{Fix}(R_{\lambda,j}) = \left\{ x^* \in C : \phi(x^*) = \min_{x \in C} \phi(x) \right\}, \qquad \operatorname{Fix}(R_{\lambda,k}) = \left\{ y^* \in Q : \psi(y^*) = \min_{x \in Q} \psi(y) \right\}.$$

Therefore the split equality convex minimization problem for  $\phi$  and  $\psi$  is equivalent to the following split equality fixed point problem:

to find 
$$x^* \in \operatorname{Fix}(R_{\lambda,j}), y^* \in \operatorname{Fix}(R_{\lambda,k})$$
 such that  $Ax^* = By^*$ . (4.11)

Since  $R_{\lambda,j}$  and  $R_{\lambda,k}$  both are firmly nonexpansive with  $Fix(R_{\lambda,f}) \neq \emptyset$  and  $Fix(R_{\lambda,g}) \neq \emptyset$ , the following theorem can be obtained from Theorem 3.2 immediately.

**Theorem 4.3** Let  $H_1$ ,  $H_2$ ,  $H_3$ , C, Q, A, B,  $\phi$ ,  $\psi$ ,  $R_{\lambda,j}$ ,  $R_{\lambda,k}$ ,  $\Omega$  be the same as above and assume that  $\Omega \neq \emptyset$ . For given  $x_0 \in C$ ,  $y_0 \in Q$ , let  $(\{x_n\}, \{x_n\})$  be the sequence generated by

$$\begin{cases}
 u_n = x_n - \gamma_n A^* (A x_n - B y_n), \\
 x_{n+1} = R_{\lambda,j}(u_n), \\
 v_n = y_n + \gamma_n B^* (A x_n - B y_n), \\
 y_{n+1} = R_{\lambda,k}(v_n).
 \end{cases}$$
(4.12)

If  $\gamma_n \in (0, \min(\frac{1}{\|A\|^2}, \frac{1}{\|B\|^2})) \forall n \ge 1$ , then the sequence  $(\{x_n, y_n\})$  generated by (4.12) converges weakly to a solution of split equality convex minimization problem (4.9).

#### **Competing interests**

The authors declare that they have no competing interests.

#### Authors' contributions

All authors read and approved the final manuscript.

#### Author details

<sup>1</sup>Center for General Education, China Medical University, Taichung, 40402, Taiwan. <sup>2</sup>College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, P.R. China. <sup>3</sup>Department of Mathematics, Kunming University, Kunming, Yunnan 650214, China.

#### Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11361070).

#### Received: 1 September 2015 Accepted: 5 November 2015 Published online: 17 November 2015

#### References

- 1. Censor, Y, Elfving, T: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221-239 (1994)
- 2. Byrne, C: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 18, 441-453 (2002)
- 3. Censor, Y, Bortfeld, T, Martin, N, Trofimov, A: A unified approach for inversion problem in intensity-modulated radiation therapy. Phys. Med. Biol. **51**, 2353-2365 (2006)
- Censor, Y, Elfving, T, Kopf, N, Bortfeld, T: The multiple-sets split feasibility problem and its applications. Inverse Probl. 21, 2071-2084 (2005)
- Censor, Y, Motova, A, Segal, A: Perturbed projections and subgradient projections for the multiple-sets split feasibility problem. J. Math. Anal. Appl. 327, 1244-1256 (2007)
- Xu, HK: A variable Krasnosel'skii-Mann algorithm and the multiple-sets split feasibility problem. Inverse Probl. 22, 2021-2034 (2006)
- 7. Yang, Q: The relaxed CQ algorithm for solving the split feasibility problem. Inverse Probl. 20, 1261-1266 (2004)
- 8. Zhao, J, Yang, Q: Several solution methods for the split feasibility problem. Inverse Probl. 21, 1791-1799 (2005)
- 9. Chang, S-s, Agarwal, RP: Strong convergence theorems of general split equality problems for quasi-nonexpansive mappings. J. Inequal. Appl. 2014, Article ID 367 (2014)
- Chang, S-s, Wang, L, Tang, YK, Wang, G: Moudafi's open question and simultaneous iterative algorithm for general split equality variational inclusion problems and general split equality optimization problems. Fixed Point Theory Appl. 2014, Article ID 215 (2014)
- 11. Moudafi, A: A relaxed alternating CQ algorithm for convex feasibility problems. Nonlinear Anal. 79, 117-121 (2013)
- 12. Moudafi, A, Al-Shemas, E: Simultaneous iterative methods forsplit equality problem. Trans. Math. Program. Appl. 1, 1-11 (2013)
- 13. Moudafi, A: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275-283 (2011)
- Che, H, Li, M: A simultaneous iterative method for split equality problems of two finite families of strictly pseudononspreading mappings without prior knowledge of operator norms. Fixed Point Theory Appl. 2015, Article ID 1 (2015)
- Bauschke, HH, Combettes, PL: A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248-264 (2001)
- Yao, Y, Liou, Y-C, Yao, J-C: Split common fixed point problem for two quasi-pseudo-contractive operators and its algorithm construction. Fixed Point Theory Appl. 2015, Article ID 127 (2015)
- Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63(1-4), 123-145 (1994)