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Abstract
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1 Introduction and preliminaries
Ekeland formulated a variational principle that is the foundation of modern variational
calculus, having applications in many branches of mathematics, including optimization
and fixed point theory [] and applications in nonlinear analysis, since it entails the ex-
istence of approximate solutions of minimization problems for a lower semi-continuous
function that is bounded from below on complete metric spaces. Also, Ekeland’s varia-
tional principle is a fruitful tool in simplifying and unifying the proofs of already known
theorems and has many generalizations; see Borwein and Zhu [].

Matthews in  [] introduced a partial metric space and proved the contraction prin-
ciple of Banach in this new framework. Afterward, by several mathematicians many fixed
point theorems were founded in partial metric spaces. Recently Haghi et al. [] published
a paper which stated that we should ‘be careful on partial metric fixed point results’ along
with very some results therein. They showed that fixed point generalizations to partial
metric spaces can be obtained from the corresponding results in metric spaces.

In , Asadi et al. [] introduced the M-metric space, which extends the p-metric
space and certain fixed point theorems obtained therein.

In this paper, we establish some of the fixed point theorem for a Meir-Keeler type con-
traction in M-metric spaces via a Gupta-Saxena type contraction. Also, we extend and
improve very recent results in fixed point theory.

Definition . ([], [], Definition .) A partial metric on a nonempty set X is a function
p : X × X → R

+ such that for all x, y, z ∈ X:
(p) p(x, x) = p(y, y) = p(x, y) ⇐⇒ x = y,
(p) p(x, x) ≤ p(x, y),
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(p) p(x, y) = p(y, x),
(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric
on X.

Notation The following notations are useful in the sequel:
(i) mxy := min{m(x, x), m(y, y)} = m(x, x) ∨ m(y, y),

(ii) Mxy := max{m(x, x), m(y, y)} = m(x, x) ∧ m(y, y).

Now we want to extend Definition . as follows.

Definition . Let X be a non-empty set. A function m : X ×X →R
+ is called a m-metric

if the following conditions are satisfied:
(m) m(x, x) = m(y, y) = m(x, y) ⇐⇒ x = y,
(m) mxy ≤ m(x, y),
(m) m(x, y) = m(y, x),
(m) (m(x, y) – mxy) ≤ (m(x, z) – mxz) + (m(z, y) – mzy).

Then the pair (X, m) is called an M-metric space.

According to the above, our definition of the condition (p) in the definition [] changes
to (m) and (p) for p(x, x) is expressed by just p(y, y) = ; we may have p(y, y) 	= , so
we improved that condition by replacing it by min{p(x, x), p(y, y)} ≤ p(x, y), and also we
improved the condition (p) to the form (m). In the sequel we present an example that
holds for the m-metric, but not for the p-metric.

Remark . For every x, y ∈ X:
(i)  ≤ Mxy + mxy = m(x, x) + m(y, y),

(ii)  ≤ Mxy – mxy = |m(x, x) – m(y, y)|,
(iii) Mxy – mxy ≤ (Mxz – mxz) + (Mzy – mzy).

The next examples state that ms and mw are ordinary metrics.

Example . Let m be a m-metric. Put:
(i) mw(x, y) = m(x, y) – mxy + Mxy,

(ii) ms(x, y) = m(x, y) – mxy when x 	= y and ms(x, y) =  if x = y.
Then mw and ms are ordinary metrics.

Proof If mw(x, y) = , then

m(x, y) = mxy – Mxy. ()

But from () and mxy ≤ m(x, y) we get mxy = Mxy = m(x, x) = m(y, y), so by () we obtain
m(x, y) = m(x, x) = m(y, y), and therefore x = y. For the triangle inequality it is enough that
we consider Remark . and (m). �

In the following example, we present an example of a m-metric which is not a p-metric.
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Remark . For every x, y ∈ X:
(i) m(x, y) – Mxy ≤ mw(x, y) ≤ m(x, y) + Mxy,

(ii) (m(x, y) – Mxy) ≤ ms(x, y) ≤ m(x, y).

Example . Let X = {, , }. Define

m(, ) = m(, ) = m(, ) = ,

m(, ) = m(, ) = m(, ) = m(, ) = , m(, ) = , and m(, ) = ,

so m is an m-metric but m is not a p-metric. Since m(, ) � m(, ), m is not a p-metric.
If D(x, y) = m(x, y) – mx,y then m(, ) = m, =  but it means D(, ) = , while  	=  means
D is not a metric.

Example . ([]) Let (X, d) be a metric space, φ : [,∞) → [φ(),∞) be a one to one and
nondecreasing or strictly increasing mapping with φ(), defined such that

φ(x + y) ≤ φ(x) + φ(y) – φ() ∀x, y ≥ .

Then m(x, y) = φ(d(x, y)) is an m-metric.

Example . Let (X, d) be a metric space. Then m(x, y) = ad(x, y) + b where a, b >  is an
m-metric, because we can put φ(t) = at + b.

Remark . According to the Example ., by the Banach contraction

∃k ∈ [, ), m(Tx, Ty) ≤ km(x, y), for all x, y ∈ X,

we have

m(Tx, Ty) = ad(Tx, Ty) + b ≤ kad(x, y) + kb ⇒ d(Tx, Ty) ≤ kd(x, y) +
b(k – )

a
,

which does not imply that we have the ordinary Banach contraction

∃k ∈ [, ), d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X,

for all self-maps T on X. So this states that if the m-metric m and the ordinary metric d
even have the same topology, but the Banach contraction of an m-metric, this does not
imply the Banach contraction of the ordinary metric d.

Lemma . ([]) Every p-metric is an m-metric.

2 Topology for M-metric space
It is clear that each m-metric p on X generates a T topology τm on X. The set

{
Bm(x, ε) : x ∈ X, ε > 

}
,
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where

Bm(x, ε) =
{

y ∈ X : m(x, y) < mx,y + ε
}

,

for all x ∈ X and ε > , forms the base of τm.

Definition . Let (X, m) be an M-metric space. Then:
() A sequence {xn} in an M-metric space (X, m) converges to a point x ∈ X if and only if

lim
n→∞

(
m(xn, x) – mxn ,x

)
= . ()

() A sequence {xn} in an M-metric space (X, m) is called an m-Cauchy sequence if

lim
n,m→∞

(
m(xn, xm) – mxn ,xm

)
and lim

n,m→∞(Mxn ,xm – mxn ,xm ) ()

in this space exist (and are finite).
() An M-metric space (X, m) is said to be complete if every m-Cauchy sequence {xn}

in X converges, with respect to τm, to a point x ∈ X such that

(
lim

n→∞
(
m(xn, x) – mxn ,x

)
=  and lim

n→∞(Mxn ,x – mxn ,x) = 
)

.

Lemma . Let (X, m) be an M-metric space. Then:
() {xn} is a m-Cauchy sequence in (X, m) if and only if it is a Cauchy sequence in the

metric space (X, mw).
() An M-metric space (X, m) is complete if and only if the metric space (X, mw) is

complete. Furthermore,

lim
n→∞ mw(xn, x) =  ⇐⇒

(
lim

n→∞
(
m(xn, x) – mxn ,x

)
=  and lim

n→∞(Mxn ,x – mxn ,x) = 
)

.

Likewise the above definition holds also for ms.

Lemma . Assume that xn → x and yn → y as n → ∞ in an M-metric space (X, m). Then

lim
n→∞

(
m(xn, yn) – mxn ,yn

)
= m(x, y) – mxy.

Proof We have

∣∣(m(xn, yn) – mxn ,yn

)
–

(
m(x, y) – mx,y

)∣∣ ≤ (
m(xn, x) – mxn ,x

)
+

(
m(y, yn) – my,yn

)
. �

From Lemma . we can deduce the following lemma.

Lemma . Assume that xn → x as n → ∞ in an M-metric space (X, m). Then

lim
n→∞

(
m(xn, y) – mxn ,y

)
= m(x, y) – mx,y,

for all y ∈ X.
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Lemma . Assume that xn → x and xn → y as n → ∞ in an M-metric space (X, m).
Then m(x, y) = mxy. Further if m(x, x) = m(y, y), then x = y.

Proof By Lemma . we have

 = lim
n→∞

(
m(xn, xn) – mxn ,xn

)
= m(x, y) – mxy. �

Lemma . Let {xn} be a sequence in an M-metric space (X, m), such that

∃r ∈ [, ) such that m(xn+, xn) ≤ rm(xn, xn–) ∀n ∈N. ()

Then
(A) limn→∞ m(xn, xn–) = ,
(B) limn→∞ m(xn, xn) = ,
(C) limm,n→∞ mxmxn = ,
(D) {xn} is an m-Cauchy sequence.

Proof From () we have,

m(xn, xn–) ≤ rm(xn–, xn–) ≤ rm(xn–, xn–) ≤ · · · ≤ rnm(x, x),

thus

lim
n→∞ m(xn, xn–) = ,

which implies (A).
To prove (B), from (m) and (A) we have

lim
n→∞ min

{
m(xn, xn), m(xn–, xn–)

}
= lim

n→∞ mxnxn– ≤ lim
n→∞ m(xn, xn–) = .

That is, (B) holds.
Clearly, (C) holds, since limn→∞ m(xn, xn) = . �

Theorem . The topology τm is not Hausdorff.

Theorem . Let (X, m) be a complete M-metric space and T : X → X be mapping satis-
fying the following condition:

∃k ∈ [, ) such that m(Tx, Ty) ≤ km(x, y) ∀x, y ∈ X. ()

Then T has a unique fixed point.

Theorem . Let (X, m) be a complete M-metric space and T : X → X be mapping satis-
fying the following condition:

∃k ∈
[

,



)
such that m(Tx, Ty) ≤ k

(
m(x, Tx) + m(y, Ty)

) ∀x, y ∈ X. ()

Then T has a unique fixed point.



Asadi Fixed Point Theory and Applications  (2015) 2015:210 Page 6 of 10

3 Main result and fixed point theorems
The following definition is new version of the definition in [] for an M-metric space.

Definition . A Meir-Keeler mapping is a mapping T : M → M on an M-metric space
(X, M) such that

∀ε >  ∃δ >  such that ∀x, y ∈ X and ε ≤ m(x, y) < ε + δ ⇒ m(Tx, Ty) < ε. ()

Theorem . Let (X, m) be a complete M-metric space and let T be a mapping from X
into itself satisfying the following condition:

∀ε >  ∃δ >  ∀x, y ∈ X ε ≤ m(x, y) < ε + δ ⇒ m(Tx, Ty) < ε.

Then T has a unique fixed point u ∈ X. Moreover, for all x ∈ X, the sequence {Tn(x)} con-
verges to u.

Proof We first observe that () trivially implies that T is a strict contraction, i.e.,

x 	= y ⇒ m(Tx, Ty) < m(x, y). ()

Let x ∈ X and xn := Txn–, so we have

m(xn, xn–) = m(Txn–, Txn–) ≤ m(xn–, xn–). ()

So the sequence {m(xn, xn–)} is bounded below and decreasing; thus m(xn, xn–) → m for
some m ∈ R

+. Let m > , therefore m(xn, xn–) ≥ m. On the other hand for m >  there
exists δ(m) >  such that

m ≤ m(xn–, xn–) < m + δ(m) ⇒ m(Txn–, Txn–) = m(xn, xn–) < m,

which implies that it is contradiction; so m = , i.e.,

lim
n→∞ m(xn, xn+) = , ()

lim
n→∞ min

{
m(xn, xn), m(xn–, xn–)

}
= lim

n→∞ mxnxn– ≤ lim
n→∞ m(xn, xn–) = ,

and

lim
m,n→∞ mxmxn =  and lim

m,n→∞ Mxmxn = , ()

since, limn→∞ m(xn, xn) = . Now we want to show that limm,n→∞ m(xm, xn) = . Let it be
untrue. So for some ε >  we have lim supm,n→∞ m(xm, xn) > ε. Also, by hypothesis, there
exists a δ > , such that

ε ≤ m(x, y) < ε + δ ⇒ m(Tx, Ty) < ε,
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which remains true with δ replaced by δ′ = min{δ, ε}. Now by ()

∃N >  ∀n
(

n > N ⇒ m(xn, xn+) <
δ′



)
,

and for m, n > N , m(xm, xn) > ε. This implies, since

m(xn, xn+) < ε and ε + δ′ < ε < m(xm, xn),

that there exists i with m < i < n with

ε +
δ′


< m(xm, xi) – mxm ,xi < ε + δ′. ()

However, for all m and i,

m(xm, xi) – mxm ,xi ≤ m(xm, xm+) – mxm+,xi+ + m(xm+, xi+) – mxm+,xi+

+ m(xi+, xi) – mxi+,xi

≤ m(xm, xm+) + m(xm+, xi+) + m(xi+, xi)

≤ δ′


+ ε +

δ′


,

which contradicts (). So by () and limm,n→∞ m(xm, xn) =  we see that the sequence
{xn} is a Cauchy sequence and by completeness of X, xn → x∗ in m for some x∗ ∈ X, i.e.,

lim
n→∞

(
m

(
xn, x∗) – mxn ,x∗

)
= . ()

But mxn ,x∗ →  because m(xn, xn) →  so m(xn, x∗) → . Thus, by hypothesis, m(Txn,
Tx∗) ≤ m(xn, x∗) → . Hence by (m) mTxn ,Tx∗ ≤ m(Txn, Tx∗) → , so by () Txn → Tx∗.

Equation () implies that m(xn, Txn) → . Since mxn ,Txn → , by Lemma ., we get
m(x∗, Tx∗) = mx∗ ,Tx∗ .

On the other hand, by Lemma . and

Txn– = xn → x∗ and also xn+ = Txn → Tx∗,

we have

 = lim
n→∞

(
m(xn, Txn) – mxn ,Txn

)

= lim
n→∞

(
m(xn, xn–) – mxn ,Txn

)

= m
(
x∗, x∗) – mx∗ ,Tx∗

= m
(
Tx∗, Tx∗) – mx∗ ,Tx∗

thus m(x∗, x∗) = mx∗ ,Tx∗ = m(Tx∗, Tx∗) and since

m
(
x∗, Tx∗) = mx∗ ,Tx∗ = m

(
Tx∗, Tx∗) = m

(
x∗, x∗),

now by (m) x∗ = Tx∗. Uniqueness by the contraction () is clear. �
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Put

C(x, y) = m(x, y) +
( + m(x, Tx))m(y, Ty)

 + m(x, y)
+

m(x, Tx)m(y, Ty)
m(x, y)

.

Theorem . Let (X, m) be a complete M-metric space and let T be a continuous mapping
from X into itself satisfying the following condition:

∀ε >  ∃δ >  ∀x, y ∈ X ε ≤ kC(x, y) < ε + δ ⇒ m(Tx, Ty) < ε, ()

for some  < k < 
 . Then T has a unique fixed point u ∈ X. Moreover, for all x ∈ X, the

sequence {Tn(x)} converges to u.

Proof We first observe that () trivially implies that T is a strict contraction, i.e.,

x 	= y ⇒ m(Tx, Ty) < kC(x, y). ()

Let x ∈ X and xn := Txn– so we have

C(xn–, xn) = m(xn–, xn) +
( + m(xn–, xn))m(xn, xn+)

 + m(xn–, xn)
+

m(xn–, xn)m(xn, xn+)
m(xn–, xn)

≤ k
(
m(xn–, xn) + m(xn, xn+)

)
,

m(xn, xn+) = m(Txn–, Txn)

≤ kC(xn–, xn)

≤ k
(
m(xn–, xn) + m(xn, xn+)

)
,

therefore

m(xn, xn+) ≤ rm(xn–, xn), ()

where r = k
–k < . Now by Lemma ., {xn} is a Cauchy sequence, and by completeness

of X, Txn– = xn → x∗ in m for some x∗ ∈ X. Since T is a continuous mapping, so xn =
Txn– → Tx∗, in m now by Lemma . we find

m
(
x∗, Tx∗) = mx∗ ,Tx∗ ,

 = lim
n→∞

(
m(xn, Txn) – mxn ,Txn

)
= m

(
x∗, x∗) – mx∗ ,Tx∗ = m

(
Tx∗, Tx∗) – mx∗ ,Tx∗ ,

by Lemma . and

m
(
x∗, Tx∗) = mx∗ ,Tx∗ = m

(
Tx∗, Tx∗) = m

(
x∗, x∗).

So x∗ = Tx∗. Uniqueness by the contraction () is clear. �

Corollary . (Gupta and Saxena []) Let (X, d) be a complete metric space and T be a
continuous mapping from X into itself. Assume that T satisfies

∀x, y ∈ X x 	= y d(Tx, Ty) ≤ kC(x, y),
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where k ∈ (, 
 ) is a constant. Then T has a unique fixed point u ∈ X. Moreover, for all

x ∈ X, the sequence {Tn(x)} converges to u.

4 Applications
In this section, after an idea of Samet et al. [], we shall state an integral version of the
Gupta-Saxena result.

Theorem . Let (X, m) be an M-metric space and let T be a self-mapping defined on X.
Assume that there exists a function ϕ : [,∞) → [,∞) satisfying the following:

() ϕ() =  and t >  ⇒ ϕ(t) > ;
() ϕ is nondecreasing and right continuous;
() for every ε > , there exists δ >  such that

ε ≤ ϕ
(
kC(x, y)

)
< ε + δ ⇒ ϕ

(
m(Tx, Ty)

)
< ε, ()

for some  < k < 
 and for all x, y ∈ X with x 	= y.

Then () is satisfied.

Proof Fix ε > , so ϕ(ε) > . Hence by () there exists δ >  such that

∀x, y ∈ X x 	= y ϕ(ε) ≤ ϕ
(
kC(x, y)

)
< ϕ(ε) + δ ⇒ ϕ

(
m(Tx, Ty)

)
< ϕ(ε). ()

According to the right continuity of ϕ

∃δ >  ϕ(ε + δ) < ϕ(ε) + δ.

Now for x, y ∈ X with x 	= y and fixed

ε ≤ kC(x, y) < ε + δ, ()

since ϕ is a nondecreasing mapping, we have

ϕ(ε) ≤ ϕ
(
kC(x, y)

)
< ϕ(ε + δ) < ϕ(ε) + δ.

So we get

ϕ
(
m(Tx, Ty)

)
< ϕ(ε),

which implies that m(Tx, Ty) < ε. �

Corollary . Let (X, m) be an M-metric space and let T be a self-mapping defined on X.
Let h : [,∞) → [,∞) be a locally integrable function such that

() t >  ⇒ ∫ t
 h(s) ds > ;

() for every ε > , there exists δ >  such that


k
ε ≤

∫ C(x,y)


h(s) ds <


k
ε + δ ⇒

∫ 
k m(Tx,Ty)


h(s) ds <


k
ε, ()

for some  < k < 
 and for all x, y ∈ X with x 	= y.

Then () is satisfied.



Asadi Fixed Point Theory and Applications  (2015) 2015:210 Page 10 of 10

Competing interests
The author declares to have no competing interests.

Acknowledgements
This research was supported by the Zanjan Branch, Islamic Azad University, Zanjan, Iran. The author would like to
acknowledge this support. The author expresses deep gratitude to the referee for his/her valuable comments and
suggestions.

Received: 7 July 2015 Accepted: 5 November 2015

References
1. Aydi, E, Karapınar, E, Vetro, C: On Ekeland’s variational principle in partial metric spaces. Appl. Math. Inf. Sci. 9(1),

257-262 (2015)
2. Borwein, JM, Zhu, QJ: Techniques of Variational Analysis. Springer, New York (2005)
3. Matthews, SG: Partial metric topology. Ann. N.Y. Acad. Sci. 728, 183-197 (1994)
4. Haghi, RH, Rezapour, S, Shahzad, N: Be careful on partial metric fixed point results. Topol. Appl. 160(3), 450-454 (2013)
5. Asadi, A, Karapınar, E, Salimi, P: New extension of p-metric spaces with some fixed point results on M-metric spaces.

J. Inequal. Appl. 2014, 18 (2014)
6. Shatanawi, W, Postolache, M: Coincidence and fixed point results for generalized weak contractions in the sense of

Berinde on partial metric spaces. Fixed Point Theory Appl. 2013, 54 (2013)
7. Meir, A, Keeler, E: A theorem on contraction mappings. J. Math. Anal. Appl. 28(1-3), 326-329 (1969)
8. Gupta, AN, Saxena, A: A unique fixed point theorem in metric spaces. Math. Stud. 52, 156-158 (1984)
9. Samet, B, Vetro, C, Yazidi, H: A fixed point theorem for a Meir-Keeler type contraction through rational expression.

J. Nonlinear Sci. Appl. 6, 162-169 (2013)


	Fixed point theorems for Meir-Keeler type mappings in M-metric spaces with applications
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Topology for M-metric space
	Main result and ﬁxed point theorems
	Applications
	Competing interests
	Acknowledgements
	References


