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1 Introduction
Fixed point theory has been developed for more than a century and has become an impor-
tant branch in mathematics. It has been widely applied to many branches in pure math-
ematics and applied mathematics, such as: differential equations; integral equations; op-
timization theory; game theory; economics theory (see [, ]). Fixed point theorems have
played important roles to prove the solvability of equations, the existence of solutions for
some optimization problems and the existence of Pareto and Nash equilibriums in game
theory.

Under similar circumstances, fixed point theorems on posets have become very signifi-
cant tools in solving some problems with partially ordered underlying spaces. For example,
they have been applied to solve equilibrium problems for strategic games with incomplete
preferences (see []), ordered optimization problems and ordered variational inequality
problems (see []), nonlinear Hammerstein integral equations (see []) and ordinal differ-
ential equations (see [] and []).

In the ordinary fixed point theory, the underlying spaces are topological spaces. The
considered mappings are required to hold some continuity properties, with respect to the
given topologies. In the real world, there are many problems in economics, military af-
fairs, ecology, etc. for which the utilities cannot be totally ordered. The underlying spaces
may not be equipped with a topological structure or an algebraic structure. In these cases,
the traditional techniques used in totally ordered spaces endowed with topology structure
cannot be appropriately applied. It leads many authors to develop some new analysis tech-
niques in non-totally ordered spaces (see [, –]). So the first important task is to develop
some fixed point theorem on ordered spaces without using topological properties.
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In , Tarski proved a fixed point theorem on chain-complete lattices for single-valued
mappings.

Tarski fixed point theorem [] Let (P,�) be a chain-complete lattice and let F : P → P
be an order-increasing single-valued mapping. If there is an x∗ in P with F(x∗) � x∗, then F
has a fixed point.

It was extended to chain-complete posets in .

Abian-Brown fixed point theorem [] Let (P,�) be a chain-complete poset and let F :
P → P be an order-increasing single-valued mapping. If there is an x∗ in P with F(x∗) � x∗,
then F has an �-maximum fixed point.

In , Fujimoto extended Tarski fixed point theorem from single-valued mappings to
set-valued mappings:

Fujimoto fixed point theorem [] Let (P,�) be a complete lattice and let F : P → P\{∅}
be a set-valued map. If F satisfies the following two conditions:

A. F is isotone (F is order-increasing upward).
A. The set {z ∈ P : z � u for some u ∈ F(x)} is an inductively ordered set for each x ∈ P.

Then F has a fixed point, that is, there exists x∗ ∈ P such that x∗ ∈ F(x∗).

The present author generalized the Fujimoto fixed point theorem to chain-complete
posets in .

Theorem . ([], Theorems .) Let (P,�) be a chain-complete poset and let F : P →
P\{∅} be a set-valued mapping satisfying the following three conditions:

A. F is order-increasing upward.
A. (F(x),�) is inductive with a finite number of maximal elements, for every x ∈ P.
A. There is an element y in P with y � v, for some v ∈ F(y).

Then F has a fixed point.

In [] and [], several fixed point theorems are proved for set-valued mappings on china-
complete posets and some applications have been provided. In the theorems in [] and [],
the condition A requires that the values of the considered mapping must be inductive
with a finite number of maximal elements. In this paper, we first show that this condition
is necessary for the considered mappings to have a fixed point. Then we will show that
the set of fixed points of some order-preserving set-valued mappings is inductive, which
provides some useful properties for applications. We will also develop more fixed point
theorems on both partially ordered sets and partially ordered topological spaces. More-
over, we will investigate some conditions for the considered mappings to substitute the
chain-completeness of the underlying spaces.

2 Preliminaries
In this section, we recall some concepts and properties of posets. The notations in order
theory used in this paper closely follow that from [, , , –], and [].

Let (X,�X), (U ,�U ) be posets and F : X → U\{∅} a set-valued mapping. F is said to be
isotone, or to be order-increasing upward, if x �X y in X, then for any z ∈ F(x), there is a
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w ∈ F(y) such that z �U w. F is said to be order-increasing downward, if x �X y in X, then
for any w ∈ F(y), there is a z ∈ F(x) such that z �U w. If F is both order-increasing upward
and order-increasing downward, then F is said to be order-increasing.

As a special case, a single-valued mapping F from a poset (X,�X) to a poset (U ,�U ) is
said to be order-increasing whenever x �X y implies F(x) �U F(y). An increasing mapping
F : X → U is said to be strictly order-increasing whenever x ≺X y implies F(x) ≺U F(y).

A nonempty subset A of a poset (P,�) is said to be inductive whenever any given chain
{xα} ⊆ A has an upper cover in A. A is said to be re-inductive whenever any given chain
{xα} ⊆ A has a lower bound in A. A is said to be bi-inductive if and only if A is both induc-
tive and re-inductive. From Zorn’s lemma and its dual version, every bi-inductive subset
of a poset (P,�) contains an �-minimal element and an �-maximal element (in A). The
following concept was introduced in [] (Definition . therein).

A nonempty subset A of a poset (P,�) is said to be universally inductive in P if, for any
given chain {xα} ⊆ P satisfying the requirement that if every element xβ ∈ {xα} has an
upper cover in A, then the chain {xα} has an upper bound in A. By applying the concept
of universally inductive posets, a fixed point theorem is proved in [].

Theorem . ([], Theorem .) Let (P,�) be a chain-complete poset and let F : P →
P\{∅} be a set-valued mapping satisfying the following three conditions:

A. F is order-increasing upward.
A. (F(x),�) is universally inductive, for every x ∈ P.
A. There is an element y∗ in P and v∗ ∈ F(y∗) with y∗ � v∗.

Then F has a fixed point.

The concept of universally inductive posets is more general than the concept of inductive
posets with a finite number of maximal elements. It has been proved in [].

Lemma . ([], Lemma .) Every inductive subset A in a chain-complete poset with a
finite number of maximal elements is universally inductive.

From Lemma . in [], Theorems . in [] can be immediately obtained as a corollary
of Theorem . in []. In Theorems . in [] listed above, the conditions A and A for
the given mapping F look very natural; and the condition that the poset (P,�) is chain-
complete and condition A for F seem to be very strong and ‘superfluous’. In fact, these
conditions cannot be deleted in this theorem. We provide some counter examples below
to show that in condition A of Theorems . [], the condition that, for every x ∈ P, the
set of the maximal elements of the inductive set (F(x),�) is finite is necessary for ensuring
F to have a fixed point.

Example . Let S be the closed set in R = {(u, v) : u, v ∈ R} enclosed by the triangle
with vertices (, ), (, ) and (, ); and let L be the closed segment in R with ending
points (, ) and (, ). Take P to be the union of S and L and let P be equipped with the
component-wise ordering in R, which is denoted by �.

One can show that (P,�) is not a lattice. But it is a chain-complete poset! For any given
nonnegative number a ∈ [, ), let Sa be the intersection of S and the line v = –u +  + a,
that is,

Sa = S ∩ {
(u, –u +  + a) : u ∈ R

}
.
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We have
⋃

≤a< Sa = S\{(, )}. It can be shown that every two distinct points in Sa are not
�-comparable. Then Sa is inductive and every point in Sa is a �-maximal point of Sa.

For any two distinct points (u, v), (u, v) ∈ R, let ((u, v), (u, v)) denote the open
interval in R with (not included) ending points (u, v) and (u, v); and let ((u, v), (u, v)]
denote the half open interval in R not including the ending point (u, v) but including
(u, v).

We define a set-valued mapping F : P → P\{∅} as below:
() For any point (u, –u +  + a) ∈ Sa, with a given number a ∈ [, ), let

F(u, –u +  + a) = ( + a/,  + a/).

() For any point (u, –u + ) on the interval ((, ), (, )], define

F(u, –u + ) = (, ), for all  < u ≤ .

() F(, ) = ((, ), (, )).
In this example, F has single value at all points except point (, ). One can check that F
satisfies all conditions in Theorems . [], except the condition that the set of the maximal
elements of the unique inductive set (F(, ),�) is not finite. It is clear that F (F) = ∅.

Furthermore, by modifying the above Example ., we provide counterexamples for
Theorems . [] below with chain-complete lattices.

Example . Let S, L be defined as in Example .; and let T be the closed triangle in R

with vertices (, ), (, ) and (, ) (note that L is the hypotenuse of the right triangle T ).
Take P to be the union of S and T and let P be equipped with the component-wise ordering
� on R. One can show that (P,�) is a chain-complete lattice!

For any given number b ∈ [, ], let Tb be the intersection of T and the line u = b, that
is,

Tb = T ∩ {
(b, v) : v ∈ R

}
=

{
(b, v) : –b +  ≤ v ≤ 

}
.

We define a set-valued mapping F : P → P\{∅} as below:
. For any point (u, –u +  + a) ∈ Sa, with a given number a ∈ [, ), let

F(u, –u +  + a) = ( + a/,  + a/).

. For any point (u, –u + ) on the open interval ((, ), (, )) (where we must have
 < u < ), define

F(u, –u + ) = (, ).

. F(, ) = ((, ), (, )).
. For any point (b, v) ∈ T\L, with a number b ∈ (, ], let

F(b, v) = ( + b/, ), for any –b +  ≤ v ≤ .
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In this example, F has a single value at all points except the point (, ), at which the set
of the maximal elements of the inductive set (F(, ),�) is not finite. One can check that,
except for condition A, F satisfies all other conditions in Theorems . []. It is clear that
F (F) = ∅.

Furthermore, we will next provide a counterexample to demonstrate that if the poset
(P,�) is not chain-complete, then a mapping F satisfying conditions A, A, and A in
Theorem . [] may not have a fixed point.

Example . Take P = [, ) ∪ (, ] equipped with the ordinary order ≥ of real numbers.
Then (P,≥) is a lattice that is not chain-complete. We define a mapping F : P → P as below:

F(x) = ( + x)/, for all x ∈ P.

It can be checked that F satisfies all conditions A, A, and A in Theorem . []. But F
does not have a fixed point.

3 Inductive properties of fixed point sets
In this section, we apply fixed point Theorem . in [] to go one step further to study the
inductive properties of fixed point sets of some mappings on chain-complete posets. For
a set-valued mapping F on a poset, let F (F) denote the set of fixed points of F .

Theorem . Let (P,�) be a chain-complete poset and let F : P → P\{∅} be a set-valued
mapping satisfying the following three conditions:

A. F is order-increasing upward.
A. (F(x),�) is universally inductive, for every x ∈ P.
A. There is an element y∗ in P and v∗ ∈ F(y∗) with y∗ � v∗.

Then:
(i) (F (F),�) is a nonempty inductive poset.

(ii) (F (F) ∩ [y∗),�) is a nonempty inductive poset; and F has an �-maximal fixed point
x∗ with x∗ � y∗.

Proof At first, we prove part (i). Let

A =
{

z ∈ P : there is v ∈ F(z) with z � v
}

.

It is clear that F (F) ⊆ A. From Theorem . [], F (F) �= ∅, and, therefore, A �= ∅ (In fact,
from another point of view, the element y∗ given in condition A is in A, which also implies
that A �= ∅.). It will next be shown that (F (F),�) is an inductive poset. To this end, tak-
ing any arbitrary chain {xα} ⊆ F (F), since (P,�) is chain-complete, the supremum

∨{xα}
exists in P. We write x =

∨{xα}. Then we need to show that {xα} has an upper bound in
(F (F),�).

We claim x ∈ A. Since F is order-increasing upward, for any xα , from xα � x, and
xα ∈ F(xα), there is an element vα ∈ F(x) such that xα � vα . By condition A, (F(x),�)
is universally inductive. Similarly to the proof of Theorem . in [], we can show that
there is an �-maximal point v ∈ F(x) such that

xα � v, for all xα in the chain {xα}.
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Since x =
∨{xα}, it implies x � v ∈ F(x); and therefore x ∈ A. It follows that [x) ∩ A �= ∅,

where [x) = {y ∈ P : y � x}. Then we divide the rest of the proof into two parts:
. Suppose [x) ∩ A = {x}. From the above proof, the �-maximal point v ∈ F(x) satisfies

x � v. From the order-increasing upward property of F , for the given v ∈ F(x) with x � v,
there is w ∈ F(v) such that v � w. It implies that v ∈ A. From the assumption [x)∩A = {x} (x
is an �-maximal element in (A,�)) and x � v, it follows that x = v ∈ F(x). Hence x ∈ F (F),
and, therefore, x is an upper bound of the chain {xα} in F (F).

. Suppose [x) ∩ A is not a singleton. Then ([x) ∩ A,�) is also a poset. From the Haus-
dorff maximality theorem, ([x) ∩ A,�) contains a maximal chain {xβ} in ([x) ∩ A,�) (with
respect to the sets inclusion partial order ⊇). Since x is the smallest element in [x) ∩ A,
it implies that {xβ} contains x as its smallest element. So {xα} ∪ {xβ} is a chain in (P,�).
Then

∨
({xα}∪{xβ}) exists in P, which is denoted by y =

∨
({xα}∪{xβ}). Since {xα} ⊆ F (F),

for every index α, by condition A, as showed in the above proof, there is vα ∈ F(y) such
that xα � vα . From {xβ} ⊆ A, for every β , there is uβ ∈ F(xβ) such that xβ � uβ . From the
order-increasing upward property of F , there is vβ ∈ F(y) such that xβ � uβ � vβ . By con-
dition A, (F(y),�) is universally inductive, and, therefore, there is an �-maximal point
u ∈ F(y) such that

xα � u, and xβ � u, for all xα in the chain {xα} and for all xβ in the chain {xβ}.

Since y =
∨

({xα} ∪ {xβ}), it implies y � u ∈ F(y), which implies that y ∈ A. From x � y, it
follows that y ∈ [x) ∩ A. Since {xβ} is a maximal chain {xβ} in ([x) ∩ A,�), we must have
y ∈ {xβ}.

On the other hand, from the order-increasing upward property of F , from y � u ∈ F(y),
there is w ∈ F(u) such that u � w. So we have u ∈ A. From x � y � u � w, it implies that
u ∈ [x) ∩ A. Since {xβ} is a maximal chain in ([x) ∩ A,�) and y =

∨
({xα} ∪ {xβ}) ∈ {xβ}, by

y � u ∈ [x) ∩ A, it follows that u = y. It implies that y ∈ F (F). From y =
∨

({xα} ∪ {xβ}), it
shows that y is an upper bound of the chain {xα} in F (F).

Hence in either case, we proved that the arbitrary chain {xα} ⊆ F (F) has an upper bound
in (F (F),�). It follows that (F (F),�) is inductive.

Then we prove part (ii). From condition A, v∗ ∈ [y∗), and, therefore, [y∗) �= ∅. It is clear
that y∗ ∈ [y∗) ∩ A. By the increasing upward property of F , we can show that v∗ ∈ [y∗) ∩
A. From the Hausdorff maximality theorem, ([y∗) ∩ A,�) contains a maximal chain {xγ }
containing y∗ as its smallest element. Since (P,�) is chain complete, there exists z =

∨{xγ }.
Similarly to the proof of step  above, we can show that z ∈ F (F). From z =

∨{xγ } � y∗,
it follows that z ∈ F (F) ∩ [y∗). Hence F (F) ∩ [y∗) �= ∅. From part (i), F (F) is inductive
and as an order-interval of a chain-complete poset, [y∗) is also inductive. It implies that
F (F) ∩ [y∗) is a nonempty inductive subset of (P,�). �

By Lemma . in [], as a consequence of Theorem ., we have the following result.
Since it is important for application, we state it with full details as a corollary.

Corollary . Let (P,�) be a chain-complete poset and let F : P → P\{∅} be a set-valued
mapping satisfying the following three conditions:

A. F is order-increasing upward.
A. (F(x),�) is inductive with a finite number of maximal elements, for every x ∈ P.
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A. There is an element y∗ in P and v∗ ∈ F(y∗) with y∗ � v∗.
Then:

(i) (F (F),�) is a nonempty inductive poset.
(ii) (F (F) ∩ [y∗),�) is a nonempty inductive poset, and F has an �-maximal fixed point

x∗ with x∗ � y∗.

In the applications of fixed point theory, there are many cases that the considered un-
derlying spaces are not chain-complete. So it is worthy to find some other conditions to
substitute the chain-completeness in Theorem .. In the following theorem, the chain-
completeness condition for the underlying space is replaced by the chain-completeness
property of the range of the considered mapping, where the range of a set-valued map-
ping F : P → P\{∅} is defined as

F(P) =
⋃{

F(x) : x ∈ P
}

.

Theorem . Let (P,�) be a poset and let F : P → P\{∅} be a set-valued mapping satis-
fying the following four conditions:

A. F is �-increasing upward.
A. (F(x),�) is universally inductive, for every x ∈ P.
A. There is an element y∗ in P and v∗ ∈ F(y∗) with y∗ � v∗.
A. The range (F(P),�) is a chain-complete poset.

Then:
(i) (F (F),�) is a nonempty inductive poset.

(ii) (F (F) ∩ [y∗),�) is a nonempty inductive poset, and F has an �-maximal fixed point
x∗ with x∗ � y∗.

Proof For the given mapping F , let FR denote the restriction mapping of F on the range
F(P). It is clear to see that FR : F(P) → F(P)\{∅} is a well-defined set-valued mapping. We
have

F (F) ⊆ F(P). ()

Notice that, for every x ∈ F(P), FR(x) = F(x). It implies

F (FR) = F (F). ()

From the conditions A and A for the mapping F in this theorem, it immediately follows
that FR satisfies the conditions A and A of Theorem . on (F(P),�).

For the elements y∗, v∗ given in condition A in this theorem, since v∗ ∈ F(y∗) and y∗ �
v∗, from the �-increasing upward property of F , there is u∗ ∈ F(v∗) with v∗ � u∗. From
v∗ ∈ F(P), it implies that u∗ ∈ FR(v∗) satisfying v∗ � u∗. Hence FR satisfies condition A in
Theorem . on (F(P),�) with the elements v∗, u∗ ∈ F(P) such that u∗ ∈ FR(v∗) and v∗ � u∗.
From condition A, (F(P),�) is a chain-complete poset. Hence by applying Theorem .,
we obtain:

. (F (FR),�) is a nonempty inductive poset, and, therefore, F has an �-maximal fixed
point.



Li Fixed Point Theory and Applications  (2015) 2015:211 Page 8 of 14

. (F (FR) ∩ [y∗) ∩ F(P),�) is a nonempty inductive poset, and, therefore, F has an
�-maximal fixed point x∗ with x∗ � y∗.

By (), we have (F (F),�) = (F (FR),�). By () and (), we get

(
F (FR) ∩ [y∗) ∩ F(P),�)

=
(
F (F) ∩ [y∗),�)

.

Then this theorem immediately follows from the above results  and . �

Similarly to Corollary ., we can apply Lemma . in [] to get the following corollary
of Theorem ..

Corollary . Let (P,�) be a poset and let F : P → P\{∅} be a set-valued mapping satis-
fying the following four conditions:

A. F is �-increasing upward.
A. (F(x),�) is inductive with a finite number of maximal elements, for every x ∈ P.
A. There is an element y∗ in P and v∗ ∈ F(y∗) with y∗ � v∗.
A. The range (F(P),�) is a chain-complete poset.

Then:
(i) (F (F),�) is a nonempty inductive poset.

(ii) (F (F) ∩ [y∗),�) is a nonempty inductive poset, and F has an �-maximal fixed point
x∗ with x∗ � y∗.

Let (P,�) be a chain-complete poset and let F : P → P\{∅} be a set-valued mapping.
We provide a counter example below to show that the two conditions A and A for F
given in Theorem . does not guarantee the range (F(P),�) to be a chain-complete poset
contained in (P,�).

Example . Let ([, ],≥) be the (chain) complete poset (lattice) with respect to the or-
dinary order of real numbers. Define a set-valued mapping F : [, ] → [,]\{∅} by

F(x) = [, x], if x ∈ [, );

F(x) = (, ], if x ∈ [, ].

It is clear to see that F satisfies the conditions A and A given in Theorem .. But the
range of F , (F([, ]),≥) = ([, ) ∪ (, ],≥) is not a chain-complete poset contained in
([, ],≥).

4 The reversed orders of partial orders
Let (P,�) be a poset. Define the reversed ordering relation �– of the partial order � on P
by, for x, y ∈ P,

x �– y if and only if x � y.

Then �– is also a partial order on P and it is called the reversed order of �. A poset (P,�)
is said to be reversed chain complete, simply denoted by re-chain complete, if every chain
in P has an infimum (with respect to the order �). There are some connections between
the original partial order � and its reversed order �–:
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. (P,�) is re-inductive, if and only if (P,�–) is inductive.
. (P,�) is re-chain complete if and only if (P,�–) is chain complete.
. A mapping F : P → P\{∅} is �-increasing downward, if and only if it is

�–-increasing upward.
The reversal version of Definition . in [] is that a nonempty subset A of a poset (P,�)

is said to be universally re-inductive in P if, for any given chain {xα} ⊆ P satisfying the
requirement that every element xβ ∈ {xα} has a lower bound in A, the chain {xα} has a
lower bound in A.

The dual version of Lemma . in [] is that every inductive subset A in a poset satisfying
that A has a finite number of minimal elements is universally re-inductive. Under the above
definitions, the results in the previous section can easily be adapted to the cases of the
reversed order with some suitable modifications. We list the dual versions of Theorem .
as theorems below.

Theorem . Let (P,�) be a re-chain-complete poset and let F : P → P\{∅} be a set-
valued mapping satisfying the following three conditions:

A. F is order-increasing downward.
A. (F(x),�) is universally re-inductive, for every x ∈ P.
A. There is an element y∗ in P and v∗ ∈ F(y∗) with v∗ � y∗.

Then:
(i) (F (F),�) is a nonempty re-inductive poset.

(ii) (F (F) ∩ (y∗],�) is nonempty and re-inductive, and F has an �-minimal fixed point
x∗ with x∗ � y∗.

The inductive property and the order-maximal of the set of fixed points are studied in
Theorem .. By applying the reversed order, the re-inductive property and the order-
minimal points of the set of fixed points are studied in Theorem .. By combining these
two theorems, we can derive the following result dealing with bi-inductive properties of
the set of fixed points.

Theorem . Let (P,�) be a chain-complete and re-chain-complete poset. Let F : P →
P\{∅} be a set-valued mapping satisfying the following three conditions:

A. F is �-increasing.
A. (F(x),�) is both universally inductive and universally re-inductive, for every x ∈ P.
A. There are elements y∗, z∗ in P with y∗ � z∗ satisfying F(y∗) ∩ [y∗) �= ∅ and

F(z∗) ∩ (z∗] �= ∅.
Then:

(i) (F (F),�) is a nonempty bi-inductive poset.
(ii) (F (F) ∩ [y∗),�) is a nonempty inductive poset.

(iii) (F (F) ∩ (z∗],�) is a nonempty re-inductive poset.
Moreover, if, in addition to conditions A and A given above, F satisfies

A′. There are elements y∗, z∗ in P with y∗ � z∗ satisfying F(y∗) ⊆ [y∗, z∗] and F(z∗) ⊆
[y∗, z∗].

Then we have
(iv) (F (F) ∩ [y∗, z∗],�) is a nonempty bi-inductive poset; and F has a fixed point x∗ with

y∗ � x∗ � z∗.
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Proof We only need to prove part (iv). It is clear that ([y∗, z∗],�) is also a chain-complete
and re-chain-complete poset. First, we show that, for any x ∈ [y∗, z∗], F(x) ⊆ [y∗, z∗]. To this
end, take an arbitrary w ∈ F(x), y∗ � x and x � z∗, the �-increasing property of F implies
that there are elements v ∈ F(y∗) and u ∈ F(z∗) such that v � w � u. Since u, v ∈ [y∗, z∗],
it follows that w ∈ [y∗, z∗]. It implies that the restriction of F : [y∗, z∗] → [y∗ ,z∗]\{∅} is well
defined. Then this theorem immediately follows from Theorems . and .. �

Theorems . and . still hold if condition A is modified as given in the following
theorem.

Theorem . Let (P,�) be a chain-complete and re-chain-complete poset. Let F : P →
P\{∅} be a set-valued mapping satisfying the following three conditions:

A. F is �-increasing.
A. (F(x),�) is bi-inductive with a finite number of maximal elements and a finite

number of minimal elements, for every x ∈ P.
A. There are elements y∗, z∗ in P with y∗ � z∗ satisfying F(y∗) ∩ [y∗) �= ∅ and

F(z∗) ∩ (z∗] �= ∅.
Then:

(i) (F (F),�) is a nonempty bi-inductive poset.
(ii) (F (F) ∩ [y∗),�) is a nonempty inductive poset.

(iii) (F (F) ∩ (z∗],�) is a nonempty re-inductive poset.

5 Several fixed point theorems on partially ordered topological spaces
In many application problems, the underlying spaces are partially ordered topological
spaces, which are equipped with both topology structures and ordering relations, such
as Banach lattices, Riesz spaces (see [, , ]). In this section, we particularly examine
the inductive properties of mappings on partially ordered topological spaces and partially
ordered topological vector spaces.

Let (X,�) be a poset. For any u, w ∈ X, we recall the following �-intervals:

[u) = {x ∈ X : x � u}, (w] = {x ∈ X : x � w} and

[u, w] = [u) ∩ (w] = {x ∈ X : u � x � w}.

Let (X,�) be a poset equipped with a topology τ (it is also a topological space). The topol-
ogy τ is called a natural topology on (X,�) with respect to the partial order �, whenever,
for every u ∈ P, the �-intervals [u) and (u] are all τ -closed. A poset (X,�) equipped with
a natural topology τ with respect to � on X is called a partially ordered topological space;
and it is denoted by (X, τ ,�).

A real vector space X endowed with a partial order � is called a partially ordered vector
space, which is written as (X,�) (it is a poset), if the following (order-linearity) properties
hold:

. x � y implies x + z � y + z, for all x, y, z ∈ X,

. x � y implies αx � αy, for all x, y ∈ X and α ≥ .
()

A partially ordered topological vector space is both a partially ordered topological space
and a partially ordered vector space.
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Remark . In this paper, a topological space equipped with a partial order is called a
partially ordered topological space, if the topology on this space is natural with respect to
the given partial order. Particularly, a Banach space equipped with a partial order is called
a partially ordered Banach space if the norm of this space induces a natural topology with
respect to the given partial order, which satisfies the order-linearity properties (). For
example, it is well known that the norm topology of a Banach lattice is always natural with
respect to the given lattice order. Hence any Banach lattice can be considered as a special
case of partially ordered Banach spaces.

Notice that the topology τ on a topology space X is natural with respect to a partial
order � on X if and only if τ is natural with respect to the reversed order �– on X. Then
Theorem . in [] can be immediately extended as follows.

Lemma . Let (X, τ ,�) be a partially ordered Hausdorff topological space. Then every
nonempty compact subset of X is both chain complete and re-chain complete.

In the proof of Theorem ., the condition that the values of the considered mapping
are universally inductive is important for the existence of fixed point. As examples, we
showed that every nonempty inductive subset with a finite number of maximal elements
in a poset is universally inductive. Similarly to Lemma ., we extend Lemma . in []
to provide more examples of universally inductive, which are useful in order theory with
partially ordered Hausdorff topological spaces.

Lemma . Every nonempty compact subset of a partially ordered Hausdorff topological
space is both universally inductive and universally re-inductive.

As a consequence of Lemma ., we have the result below, which is more practical in
partially ordered reflexive Banach spaces.

Lemma . Every nonempty bounded closed and convex subset of a partially ordered re-
flexive Banach space is both universally inductive and universally re-inductive.

Proof Since every nonempty bounded closed and convex subset of a reflexive Banach
space is weakly compact, and in a partially ordered Banach space, the norm topology is
natural with respect to the given partial order if and only if the weak topology is natural
with respect to the same partial order, this corollary follows from Lemma . immedi-
ately. �

We provide the following example to demonstrate that the concept of universally in-
ductive is indeed broader than the concept of inductive with a finite number of maximal
elements.

Example . Let (R,�) denote the -d Hilbert lattice equipped with the component
partial (lattice) order �. That is, for any (x, y), (x, y) ∈ R,

(x, y) � (x, y) if and only if x ≥ x and y ≥ y.



Li Fixed Point Theory and Applications  (2015) 2015:211 Page 12 of 14

Then (R,�) is a partially ordered topological vector spaces and the topology of induced
by the Hilbert norm on R is natural with respect to the partial order �. Take K to be
the closed right triangle in (R,�) with vertices (, ), (, ) and (, ). As a compact sub-
poset of (R,�), from Lemma ., K is universally inductive. Since K is chain complete, it
is inductive. But K has infinitely many �-maximal points (every point on the hypotenuse
is an �-maximal point).

From Remark . and Lemma ., as a consequence of Theorem ., we have the follow-
ing result on a partially ordered compact Hausdorff topological space.

Theorem . Let (X, τ ,�) be a partially ordered compact Hausdorff topological space.
Let F : X → X\{∅} be a set-valued mapping satisfying the following three conditions:

A. F is �-increasing upward.
A. F(x) is a τ -compact subset, for every x ∈ X .
A. There is an element y∗ in X and v∗ ∈ F(y∗) with y∗ � v∗.

Then:
(i) (F (F),�) is a nonempty inductive poset.

(ii) (F (F) ∩ [y∗),�) is a nonempty inductive poset, and F has an �-maximal fixed point
x∗ with x∗ � y∗.

Remark . The compactness of the partially ordered Hausdorff topological space
(X, τ ,�) given in Theorem . can be replaced by

The range
(
F(X),�)

is a τ -compact subset contained in (X,�).

By Theorem ., we can obtain the useful dual versions of Theorem ..

Theorem . Let (X, τ ,�) be a partially ordered compact Hausdorff topological space. Let
F : X → X\{∅} be a set-valued mapping satisfying the following three conditions:

A. F is �-increasing.
A. F(x) is a τ -compact subset, for every x ∈ X .
A. There are element y∗, z∗ in X and v∗ ∈ F(y∗), u∗ ∈ F(z∗) with y∗ � v∗ and z∗ � u∗.

Then:
(i) (F (F),�) is a nonempty bi-inductive poset.

(ii) (F (F) ∩ [y∗),�) is a nonempty inductive poset.
(iii) (F (F) ∩ (z∗],�) is a nonempty re-inductive poset.

Moreover, if, in addition to conditions A and A given above, F satisfies

A′. There are elements y∗, z∗ in X with y∗ � z∗ satisfying F(y∗) ⊆ [y∗, z∗] and F(z∗) ⊆
[y∗, z∗].

Then we have
(iv) (F (F) ∩ [y∗, z∗],�) is a nonempty bi-inductive poset; and F has a fixed point x∗ with

y∗ � x∗ � z∗.

Similarly to Example ., we provide a counterexample below to show that, for the given
mapping F , neither the conditions in Theorem ., nor the conditions in Theorem .,
guarantee the set of fixed points of F to be chain complete.
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Example . Let ([, ],≥) be the (chain) complete poset (lattice) with respect to the or-
dinary order of real numbers. Define a set-valued mapping F : [, ] → [,]\{∅} by

F(x) = [x, x + /], if x ∈ [, );

F(x) = [ + x/, ], if x ∈ [, );

F() = [., ];

F(x) = [x, ], if x ∈ (, ].

It is clear to see that F([, ]) = [, ] and F satisfies all conditions A, A, A and A given
in Theorem ., and F also satisfies all conditions A, A, A given in Corollary .. One
can check that F (F) = [, ) ∪ (, ]. It is inductive, but not chain complete.

From Lemmas . and ., as a consequence of Theorem ., we have the following fixed
point theorem on partially ordered reflexive Banach spaces.

Theorem . Let (B,�) be a partially ordered reflexive Banach space and X a bounded
closed convex subset of B. Let F : X → X\{∅} be a set-valued mapping satisfying the fol-
lowing three conditions:

A. F is �-increasing.
A. F(x) is a closed and convex subset of X , for every x ∈ X .
A. There are elements y∗, z∗ in X and v∗ ∈ F(y∗), u∗ ∈ F(z∗) with y∗ � v∗ and z∗ � u∗.

Then:
(i) (F (F),�) is a nonempty bi-inductive poset.

(ii) (F (F) ∩ [y∗),�) is a nonempty inductive poset.
(iii) (F (F) ∩ (z∗],�) is a nonempty re-inductive poset.

Moreover, if, in addition to conditions A and A given above, F satisfies

A′. There are elements y∗, z∗ in X with y∗ � z∗ satisfying F(y∗) ⊆ [y∗, z∗] and F(z∗) ⊆
[y∗, z∗].

Then we have
(iv) (F (F) ∩ [y∗, z∗],�) is a nonempty bi-inductive poset; and F has a fixed point x∗ with

y∗ � x∗ � z∗.

Recall that, in every Banach lattice, the topology (norm) is always natural with respect
to the given lattice order. Hence, in Theorem ., the partially ordered reflexive Banach
space (B,�) can be substituted by a reflexive Banach lattice, as it is a special case.
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