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1 Introduction
The split feasibility problem has received much attention due to its applications in signal
processing and image reconstruction [] with particular progress in intensity modulated
therapy []. Recently, the split feasibility problem (.) has been studied extensively by
many authors (see, for instance, [–]).

Our purpose of the present manuscript is to study the more general case of the proxi-
mal split minimization problems by introducing new algorithms with the regularization
technique.

In the sequel, we assume that H and H are two real Hilbert spaces, f : H →R∪ {+∞}
and g : H →R∪ {+∞} are two proper and lower semi-continuous convex functions and
A : H → H is a bounded linear operator.

Now, we focus on the following minimization problem:

min
x†∈H

{
f
(
x†

)
+ gλ

(
Ax†

)}
, (.)

where gλ stands for the Moreau-Yosida approximate of the function g of parameter λ, that
is,

gλ(x) = min
y∈H

{
g(y) +


λ

‖x – y‖
}

.

Remark . () The problem (.) includes the split feasibility problem as a special case.
In fact, we choose f and g as the indicator functions of two nonempty closed convex sets
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C ⊂ H and Q ∈ H, that is,

f
(
x†

)
= δC

(
x†

)
=

⎧
⎨

⎩
, if x† ∈ C,

+∞, otherwise

and

g
(
x†

)
= δQ

(
x†

)
=

⎧
⎨

⎩
, if x† ∈ Q,

+∞, otherwise.

Then the problem (.) reduces to

min
x†∈H

{
δC

(
x†

)
+ (δQ)λ

(
Ax†

)}
,

which equals

min
x†∈C

{


λ

∥∥(I – projQ)
(
Ax†

)∥∥
}

. (.)

() Now, we know that to solve (.) is exactly to solve the split feasibility problem of
finding x‡ such that

x‡ ∈ C and Ax‡ ∈ Q (.)

provided C ∩ A–(Q) 	= ∅.

In order to solve (.), one of key ideas is to use fixed point technique, that is, x† solves
(.) if and only if

x† = projC
(
I – γ A∗(I – projQ)A

)
x†,

where γ >  is a constant and projC and projQ stand for the orthogonal projections on the
closed convex sets C and Q, respectively.

According to the above fixed point equation, a popular algorithm to solve the split fea-
sibility problems is the CQ method ([]):

xn+ = projC
(
xn – τnA∗(I – projQ)Axn

)
,

where the step size τn ∈ (, /‖A‖).
However, the determination of the step size τn depends on the operator norm ‖A‖ (or the

largest eigenvalue of A∗A) which is in general not an easy work in practice. To overcome
the above difficulty, the so-called self-adaptive method which permits step size τn being
selected self-adaptively was developed.

Self-adaptive algorithm ([]) Let x ∈ H be an initial arbitrarily point. Assume that a
sequence {xn} in C has been constructed with ∇h̄(xn) 	=  as follows: Compute xn+ via the
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rule

xn+ = projC
(
xn – τnA∗(I – projQ)Axn

)
, (.)

where τn = ρn
h̄(xn)

‖∇h̄(xn)‖ with  < ρn <  and h̄(x) = 
‖(I – PQ)Ax‖.

If ∇h̄(xn) = , then xn+ = xn is a solution of the problem (.) and the iterative process
stops. Otherwise, we set n := n +  and go to the sequence (.).

In the present manuscript, our main purpose is to solve the problem (.) by using the
fixed point technique and the self-adaptive methods. First, by the differentiability of the
Yosida approximate gλ, we have

∂
(
f
(
x†

)
+ gλ

(
Ax†

))
= ∂f

(
x†

)
+ A∗∇gλ

(
Ax†

)

= ∂f
(
x†

)
+ A∗

( I – proxλg

λ

)(
Ax†

)
, (.)

where ∂f (x†) denotes the subdifferential of f at x† and proxλg(x†) is the proximal mapping
of g , that is,

∂f
(
x†

)
=

{
x∗ ∈ H : f

(
x‡

) ≥ f
(
x†

)
+

〈
x∗, x‡ – x†

〉
,∀x‡ ∈ H

}

and

proxλg
(
x†

)
= arg min

x‡∈H

{
g
(
x‡

)
+


λ

∥∥x‡ – x†
∥∥

}
.

Note that the optimality condition of (.) is as follows:

 ∈ ∂f
(
x†

)
+ A∗

( I – proxλg

λ

)(
Ax†

)
,

which can be rewritten as

 ∈ μλ∂f
(
x†

)
+ μA∗(I – proxλg)

(
Ax†

)
, (.)

which is equivalent to the fixed point equation:

x† = proxμλf
(
x† – μA∗(I – proxλg)

(
Ax†

))
(.)

for all μ > .
If arg min f ∩ A–(arg min g) 	= ∅, then (.) is reduced to the following proximal split fea-

sibility problem.
Find x† such that

x† ∈ arg min f and Ax† ∈ arg min g, (.)

where

arg min f =
{

x∗ ∈ H : f
(
x∗) ≤ f

(
x†

)
,∀x† ∈ H

}
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and

arg min g =
{

x† ∈ H : g
(
x†

) ≤ g(x),∀x ∈ H
}

.

In the sequel, we use � to denote the solution set of the problem (.).
Recently, in order to solve the problem (.), Moudafi and Thakur [] presented the

following split proximal algorithm with a way of selecting the step sizes such that its im-
plementation does not need any prior information as regards the operator norm.

Self-adaptive split proximal algorithm For an initialization x ∈ H, assume that a se-
quence {xn} in H has been constructed and θ (xn) 	= ∅ as follows: Compute xn+ via

xn+ = proxμnλf
(
xn – μnA∗(I – proxλg)Axn

)
(.)

for all n ≥ , where the step size μn = ρn
h(xn)+l(xn)

θ(xn) in which  < ρn < ,

h(xn) =


∥∥(I – proxλg)Axn

∥∥, l(xn) =


∥∥(I – proxμnλf )xn

∥∥

and

θ (xn) =
√∥∥∇h(xn)

∥∥ +
∥∥∇l(xn)

∥∥.

If θ (xn) = , then xn+ = xn is a solution of the problem (.) and the iterative process
stops. Otherwise, we set n := n +  and go to the sequence (.).

Consequently, they demonstrated the following weak convergence of the above split
proximal algorithm.

Theorem . Suppose that � 	= ∅. Assume that the parameters satisfy the condition:

ε ≤ ρn ≤ h(xn)
h(xn) + l(xn)

– ε

for some ε >  small enough. Then the sequence {xn} generated by (.) weakly converges to
a solution of the problem (.).

Note that Theorem . has only the weak convergence. So, a natural problem arises:

Could we design a new algorithm such that the strong convergence is obtained?

In this paper, our main purpose is to adapt the algorithm (.) by using the regularization
means such that the strong convergence is guaranteed.

2 Preliminaries
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, respectively
and C be a nonempty closed convex subset of H .

Recall that a mapping T : C → C is said to be:
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() L-Lipschitz if there exists L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖

for all x, y ∈ C. If L ∈ (, ), then we call T the L-contraction. If L = , we call T a
nonexpansive mapping.

() Firmly nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖ –
∥∥(I – T)x – (I – T)y

∥∥

for all x, y ∈ C, where I denotes the identity, which is equivalent to

‖Tx – Ty‖ ≤ 〈Tx – Ty, x – y〉

for all x, y ∈ C. Also, the mapping I – T is firmly nonexpansive.
() Strongly positive if there exists a constant ζ >  such that

〈Tx, x〉 ≥ ζ‖x‖

for all x ∈ C.
Note that the proximal mapping of g is firmly nonexpansive, namely,

〈proxλg x – proxλg y, x – y〉 ≥ ‖proxλg x – proxλg y‖

for all x, y ∈ H and it is also the case for the complement I –proxλg . Thus A∗(I –proxλg)A is
cocoercive with coefficient 

‖A‖ , where we recall that a mapping B : H → H is cocoercive
if there exists α >  such that

〈Bx – By, x – y〉 ≥ α‖Bx – By‖

for all x, y ∈ H. If μ ∈ (, 
‖A‖ ), then I – μA∗(I – proxλg)A is nonexpansive.

Let C be a nonempty closed convex subset of H . For all x ∈ H , there exists a unique
nearest point in C, denoted by projC x, such that

‖x – projC x‖ ≤ ‖x – y‖

for all y ∈ C. The mapping projC is called the metric projection of H onto C. It is well known
that projC is a nonexpansive mapping and is characterized by the following property:

〈x – projC x, y – projC x〉 ≤  (.)

for all x ∈ H and y ∈ C.
Now, we introduce two lemmas for our main results in this paper.

Lemma . ([]) Let {an} be a sequence of nonnegative real numbers satisfying the fol-
lowing relation:

an+ ≤ ( – αn)an + αnσn + δn
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for all n ≥ , where
(a) {αn}n∈N ⊂ [, ] and

∑∞
n= αn = ∞;

(b) lim supn→∞ σn ≤ ;
(c)

∑∞
n= δn < ∞.

Then limn→∞ an = .

Lemma . ([]) Let {γn} be a sequence of real numbers such that there exists a subse-
quence {γni} of {γn} such that γni < γni+ for all i ≥ . Then there exists a nondecreasing
sequence {mk} of positive integers such that limk→∞ mk = ∞ and the following properties
are satisfied by all (sufficiently large) positive integers k:

γmk ≤ γmk +, γk ≤ γmk +.

In fact, mk is the largest number n in the set {, . . . , k} such that the condition γn < γn+ holds.

3 Main results
Now, we first introduce our self-adaptive algorithm. Let H and H be two real Hilbert
spaces. Let f : H → R ∪ {+∞} and g : H → R ∪ {+∞} be two proper and lower semi-
continuous convex functions and A : H → H be a bounded linear operator. Let ψ : H →
H be a κ-contraction and B : H → H be a strongly positive bounded linear operator with
coefficient ζ > κ .

Algorithm . Set

h(x) =


∥∥(I – proxλg)Ax

∥∥, l(x) =


∥∥(I – proxλf )x

∥∥

and

θ (x) =
√∥∥∇h(x)

∥∥ +
∥∥∇l(x)

∥∥

for all x ∈ H. For an initialization x ∈ H, assume that a sequence {xn} has been con-
structed in H with θ (xn) 	= ∅ as follows.

Compute xn+ via

xn+ = αnψ(xn) + (I – αnB) proxλf
(
xn – μnA∗(I – proxλg)Axn

)
(.)

for all n ≥ , where {αn} ⊂ [, ] is a real number sequence and μn is the step size satisfying
μn = ρn

h(xn)+l(xn)
θ(xn) with  < ρn < .

If θ (xn) = , then xn is a solution of the problem (.) and the iterative process stops.
Otherwise, we set n := n +  and go to the sequence (.).

Theorem . Suppose that � 	= ∅. Assume the parameters {αn} and {ρn} satisfy the condi-
tions:

(C) limn→∞ αn = ;
(C)

∑∞
n= αn = ∞;

(C) ε ≤ ρn ≤ h(xn)
h(xn)+l(xn) – ε for some ε >  small enough.
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Then the sequence {xn} generated by (.) converges strongly to a point z = proj�(ψ + I –
B)(z).

Proof From (.), we deduce that z = proj�(ψ + I – B)(z) implies

〈
(ψ + I – B)(z) – z, x – z

〉 ≤ 

for all x ∈ �, which has a unique solution. Let x∗ ∈ �. Since minimizers of any function are
exactly fixed points of its proximal mappings, we have x∗ = proxλf x∗ and Ax∗ = proxλg Ax∗.
Since proxλf is nonexpansive, by (.), we can derive

∥∥xn+ – x∗∥∥

=
∥∥αnψ(xn) + (I – αnB) proxλf

(
xn – μnA∗(I – proxλg)Axn

)
– x∗∥∥

=
∥∥(I – αnB)

(
proxλf

(
xn – μnA∗(I – proxλg)Axn

)
– x∗) + αn

(
ψ(xn) – Bx∗)∥∥

= ‖I – αnB‖∥∥proxλf
(
xn – μnA∗(I – proxλg)Axn

)
– proxλf x∗∥∥

+ αn
∥∥ψ(xn) – ψ

(
x∗)∥∥ + αn

∥∥ψ
(
x∗) – Bx∗∥∥

≤ αnκ
∥∥xn – x∗∥∥ + αn

∥∥ψ
(
x∗) – Bx∗∥∥

+ ( – ζαn)
∥∥proxλf

(
xn – μnA∗(I – proxλg)Axn

)
– proxλf x∗∥∥

≤ αnκ
∥∥xn – x∗∥∥ + αn

∥∥ψ
(
x∗) – Bx∗∥∥

+ ( – ζαn)
∥∥xn – μnA∗(I – proxλg)Axn – x∗∥∥.

Thus we have

∥∥xn+ – x∗∥∥ ≤ αnκ
∥∥xn – x∗∥∥ + (ζ – κ)αn

‖ψ(x∗) – Bx∗‖

(ζ – κ)

+ ( – ζαn)
∥∥xn – μnA∗(I – proxλg)Axn – x∗∥∥. (.)

Since proxλg is firmly nonexpansive, we deduce that I – proxλg is also firmly nonexpansive.
Hence we have

〈
A∗(I – proxλg)Axn, xn – x∗〉

=
〈
(I – proxλg)Axn, Axn – Ax∗〉

=
〈
(I – proxλg)Axn – (I – proxλg)Ax∗, Axn – Ax∗〉

≥ ∥∥(I – proxλg)Axn
∥∥

= h(xn). (.)

Note that ∇h(xn) = A∗(I –proxλg)Axn and ∇l(xn) = (I –proxλf )xn. Thus it follows from (.)
that

∥∥xn – μnA∗(I – proxλg)Axn – x∗∥∥

=
∥∥xn – x∗∥∥ + μ

n
∥∥A∗(I – proxλg)Axn

∥∥ – μn
〈
A∗(I – proxλg)Axn, xn – x∗〉
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=
∥∥xn – x∗∥∥ + μ

n
∥∥∇h(xn)

∥∥ – μn
〈∇h(xn), xn – x∗〉

≤ ∥∥xn – x∗∥∥ + μ
n
∥∥∇h(xn)

∥∥ – μnh(xn)

=
∥∥xn – x∗∥∥ + ρ

n
(h(xn) + l(xn))

θ(xn)
∥∥∇h(xn)

∥∥ – ρn
h(xn) + l(xn)

θ(xn)
h(xn)

≤ ∥∥xn – x∗∥∥ + ρ
n

(h(xn) + l(xn))

θ(xn)
– ρn

(h(xn) + l(xn))

θ(xn)
h(xn)

h(xn) + l(xn)

=
∥∥xn – x∗∥∥ – ρn

(
h(xn)

h(xn) + l(xn)
– ρn

)
(h(xn) + l(xn))

θ(xn)
. (.)

By the condition (C), without loss of generality, we can assume that

h(xn)
h(xn) + l(xn)

–
ρn

 – αn
≥ 

for all n ≥ . Thus, from (.) and (.), we obtain
∥∥xn+ – x∗∥∥

≤ αnκ
∥∥xn – x∗∥∥ + (ζ – κ)αn

‖ψ(x∗) – Bx∗‖

(ζ – κ)

+ ( – ζαn)
[∥∥xn – x∗∥∥ – ρn

(
h(xn)

h(xn) + l(xn)
– ρn

)
(h(xn) + l(xn))

θ(xn)

]

= (ζ – κ)αn
‖ψ(x∗) – Bx∗‖

(ζ – κ) +
[
 – (ζ – κ)αn

]∥∥xn – x∗∥∥

– ( – ζαn)ρn

(
h(xn)

h(xn) + l(xn)
– ρn

)
(h(xn) + l(xn))

θ(xn)

≤ (ζ – κ)αn
‖ψ(x∗) – Bx∗‖

(ζ – κ) +
[
 – (ζ – κ)αn

]∥∥xn – x∗∥∥

≤ max

{‖ψ(x∗) – Bx∗‖

(ζ – κ) ,
∥∥xn – x∗∥∥

}
. (.)

Hence {xn} is bounded.
Let z = P�(ψ + I – B)z. From (.), we deduce

 ≤ ( – ζαn)ρn

(
h(xn)

h(xn) + l(xn)
– ρn

)
(h(xn) + l(xn))

θ(xn)

≤ (ζ – κ)αn
‖ψ(z) – Bz‖

(ζ – κ) +
[
 – (ζ – κ)αn

]‖xn – z‖ – ‖xn+ – z‖. (.)

We consider the following two cases.
Case . ‖xn+ – z‖ ≤ ‖xn – z‖ for all n ≥ n large enough.
In this case, limn→∞ ‖xn – z‖ exists and is finite, and hence

lim
n→∞

(‖xn+ – z‖ – ‖xn – z‖) = .

This together with (.) implies that

ρn

(
h(xn)

h(xn) + l(xn)
– ρn

)
(h(xn) + l(xn))

θ(xn)
→ .
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Since ρn( h(xn)
h(xn)+l(xn) – ρn) ≥ ε by the condition (C), we have

(h(xn) + l(xn))

θ(xn)
→ .

Noting that θ(xn) = ‖∇h(xn)‖ + ‖∇l(xn)‖ is bounded, we deduce immediately that

lim
n→∞

(
h(xn) + l(xn)

)
= .

Therefore, we have

lim
n→∞ h(xn) = lim

n→∞ l(xn) = . (.)

Next, we prove that

lim sup
n→∞

〈
(ψ + I – B)z – z, xn – z

〉 ≤ .

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ z† and

lim sup
n→∞

〈
(ψ + I – B)z – z, xn – z

〉
= lim

i→∞
〈
(ψ + I – B)z – z, xni – z

〉
.

By the lower semi-continuity of h, we have

 ≤ h
(
z†

) ≤ lim inf
i→∞ h(xni ) = lim

n→∞ h(xn) = .

So, we have

h
(
z†

)
=



∥∥(I – proxλg)Az†

∥∥ = ,

that is, Az† is a fixed point of the proximal mapping of g or, equivalently,  ∈ ∂g(Az†). In
other words, Az† is a minimizer of g .

Similarly, from the lower semi-continuity of l, we have

 ≤ l
(
z†

) ≤ lim inf
i→∞ l(xni ) = lim

n→∞ l(xn) = .

Therefore, we have

l
(
z†

)
=



∥∥(I – proxλf )z†

∥∥ = ,

that is, z† is a fixed point of the proximal mapping of f or, equivalently,  ∈ ∂f (z†). In other
words, z† is a minimizer of f . Hence z† ∈ �. Therefore, we have

lim sup
n→∞

〈
(ψ + I – B)z – z, xn – z

〉
= lim

i→∞
〈
(ψ + I – B)z – z, xni – z

〉

=
〈
(ψ + I – B)z – z, z† – z

〉 ≤ . (.)
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By (.), we have

∥∥proxλf
[
xn – μnA∗(I – proxλg)Axn

]
– z

∥∥ ≤ ‖xn – z‖.

Thus it follows from (.) that

‖xn+ – z‖

= αn
〈
ψ(xn) – ψ(z), xn+ – z

〉
+ αn

〈
ψ(z) – Bz, xn+ – z

〉

+ (I – αnB)
〈
proxλf

(
xn – μnA∗(I – proxλg)Axn

)
– z, xn+ – z

〉

≤ αn
∥∥ψ(xn) – ψ(z)

∥∥‖xn+ – z‖ + αn
〈
ψ(z) – Bz, xn+ – z

〉

+ ‖I – αnB‖∥∥proxλf
(
xn – μnA∗(I – proxλg)Axn

)
– z

∥∥‖xn+ – z‖
≤ αnκ‖xn – z‖‖xn+ – z‖ + αn

〈
ψ(z) – Bz, xn+ – z

〉

+ ( – ζαn)‖xn – z‖‖xn+ – z‖

≤  – (ζ – κ)αn


‖xn – z‖ +



‖xn+ – z‖ + αn

〈
ψ(z) – Bz, xn+ – z

〉
.

Thus it follows that

‖xn+ – z‖ ≤ [
 – (ζ – κ)αn

]‖xn – z‖ + αn
〈
ψ(z) – Bz, xn+ – z

〉
. (.)

From Lemma ., (.) and (.) we deduce that xn → z.
Case . There exists a subsequence {‖xnj – z‖} of {‖xn – z‖} such that

‖xnj – z‖ < ‖xnj+ – z‖

for all j ≥ . By Lemma ., there exists a strictly increasing sequence {mk} of positive
integers such that limk→∞ mk = +∞ and the following properties are satisfied: for all k ∈N,

‖xmk – z‖ ≤ ‖xmk+ – z‖, ‖xk – z‖ ≤ ‖xmk+ – z‖. (.)

Consequently, we have

 ≤ lim
k→∞

(‖xmk+ – z‖ – ‖xmk – z‖)

≤ lim sup
n→∞

(‖xn+ – z‖ – ‖xn – z‖)

≤ lim sup
n→∞

(
αn‖u – z‖ + ( – αn)‖xn – z‖ – ‖xn – z‖)

= lim sup
n→∞

αn
(‖u – z‖ – ‖xn – z‖) = 

and so

lim
k→∞

(‖xmk+ – z‖ – ‖xmk – z‖) = . (.)
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By a similar argument to Case , we can prove that

lim sup
k→∞

〈
(ψ + I – B)z – z, xmk – z

〉 ≤ 

and

‖xmk + – z‖ ≤ [
 – (ζ – κ)αn

]‖xmk – z‖ + αmk σmk ,

where σmk = 〈ψ(z) – Bz, xmk + – z〉. In particular, we have

(ζ – κ)αmk ‖xmk – z‖ ≤ ‖xmk – z‖ – ‖xmk + – z‖ + αmk σmk

≤ αmk σmk .

Then we have

lim sup
k→∞

‖xmk – z‖ ≤ lim sup
k→∞

σmk ≤ .

Thus it follows from (.) and (.) that

lim sup
k→∞

‖xk – z‖ ≤ lim sup
k→∞

‖xmk + – z‖ = ,

which implies that xn → z. This completes the proof. �

Algorithm . For an initialization x ∈ H. Assume that a sequence {xn} has been con-
structed as follows: Set

h(xn) =


∥∥(I – proxλg)Axn

∥∥, l(xn) =


∥∥(I – proxλf )xn

∥∥

and

θ (xn) =
√∥∥∇h(xn)

∥∥ +
∥∥∇l(xn)

∥∥

for all n ∈N.
If θ (xn) 	= ∅, then compute xn+ via

xn+ = αnψ(xn) + ( – αn) proxλf
(
xn – μnA∗(I – proxλg)Axn

)
(.)

for all n ≥ , where {αn}n∈N ⊂ [, ] is a real number sequence and μn is the step size
satisfying

μn = ρn
h(xn) + l(xn)

θ(xn)

with  < ρn < .
If θ (xn) = , then xn is a solution of the problem (.) and the iterative process stops.

Otherwise, we set n := n +  and go to (.).
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From Theorem ., we have the following corollary.

Corollary . Suppose that � 	= ∅. Assume the parameters {αn} and {ρn} satisfy the con-
ditions:

(C) limn→∞ αn = ;
(C)

∑∞
n= αn = ∞;

(C) ε ≤ ρn ≤ h(xn)
h(xn)+l(xn) – ε for some ε >  small enough.

Then the sequence {xn} generated by (.) converges strongly to a point z = proj�(ψ)(z).

Algorithm . For an initialization x ∈ H. Assume that a sequence {xn} has been con-
structed as follows: Set

h(xn) =


∥∥(I – proxλg)Axn

∥∥, l(xn) =


∥∥(I – proxλf )xn

∥∥

and

θ (xn) =
√∥∥∇h(xn)

∥∥ +
∥∥∇l(xn)

∥∥

for all n ∈N.
If θ (xn) 	= ∅, then compute xn+ via

xn+ = ( – αn) proxλf
(
xn – μnA∗(I – proxλg)Axn

)
(.)

for all n ≥ , where {αn}n∈N ⊂ [, ] is a real number sequence and μn is the step size
satisfying

μn = ρn
h(xn) + l(xn)

θ(xn)

with  < ρn < .
If θ (xn) = , then xn is a solution of the problem (.) and the iterative process stops.

Otherwise, we set n := n +  and go to (.).

Corollary . Suppose that � 	= ∅. Assume the parameters {αn} and {ρn} satisfy the fol-
lowing conditions:

(C) limn→∞ αn = ;
(C)

∑∞
n= αn = ∞;

(C) ε ≤ ρn ≤ h(xn)
h(xn)+l(xn) – ε for some ε >  small enough.

Then the sequence {xn} generated by (.) converges strongly to a point z = proj�(), which
is the minimum norm element in �.

Remark . Where the bounded linear operator A is the identity operator, the problem
(.) is nothing else than the problem of finding a common minimizer of f and g and (.)
reduces to the following relaxed split proximal algorithm:

xn+ = αnψ(xn) + (I – αnB) proxλf
(
( – μn)xn + μn proxλg xn

)

for all n ≥ .
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