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Abstract
In this paper, first, we introduce the condition (BP) which is weaker than the
completely continuous mapping in Banach spaces. Second, we consider a simple
iteration and prove some strong convergence theorems of the proposed iteration for
an asymptotically nonexpansive nonself-mapping with the condition (BP). Finally, we
give two examples to illustrate the main result in this paper. Our results improve and
extend the corresponding results given by some authors.
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1 Introduction
In , Goebel and Kirk [] introduced the class of asymptotically nonexpansive self-
mappings.

Let C be a nonempty subset of a real normed linear space E. A mapping T : C → C
is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [,∞) with
limn→∞ kn =  such that

∥
∥Tnx – Tny

∥
∥ ≤ kn‖x – y‖

for all x, y ∈ C and n ≥ , and one proved the following.

Theorem GK If C is a nonempty closed convex subset of a real uniformly convex Banach
space E and T : C → C is an asymptotically nonexpansive self-mapping, then T has a fixed
point in C.

On the other hand, in , Schu [] introduced the modified Mann process to approxi-
mate fixed points of an asymptotically nonexpansive self-mapping defined on a nonempty
closed convex and bounded subset C of a Hilbert space H as follows:

Theorem JS Let H be a Hilbert space and C be a nonempty closed convex bounded subset
of H . Let T : C → C be a completely continuous and asymptotically nonexpansive mapping
with the sequence {kn} ⊂ [,∞) with limn→∞ kn =  and

∑∞
n=(k

n –) < ∞. Let {αn} be a real
sequence in [, ] satisfying the condition ε ≤ αn ≤  – ε for all n ≥  and for some ε > .
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Then the sequence {xn} generated by
⎧

⎨

⎩

x ∈ C arbitrarily,

xn+ = ( – αn)xn + αnTnxn
(JS)

for each n ≥  converges strongly to some fixed point of T .

In Theorem JS, the mapping T remains a self-mapping of a nonempty closed convex
subset C of a Hilbert space H . If, however, the domain D(T) of T is a proper subset of H
and T : D(T) → H is a mapping, the modified iteration {xn} defined by (JS) may fail to be
well defined.

To overcome this situation, in , Chidume et al. [] introduced the concept of asymp-
totically nonexpansive nonself-mappings.

Let E be a real Banach space. A subset C of E is called a retract of E if there exists a
continuous mapping P : E → K such that Px = x for all x ∈ C. Every closed convex subset
of a uniformly convex Banach space is a retract. A mapping P : E → E is called a retraction
if P = P. It follows that, if a mapping P is a retraction, then Py = y for all y in the range of
P (see []).

Definition . Let C be a nonempty subset of a real normed linear space E. Let P : E → C
be a nonexpansive retraction of E onto C. A nonself-mapping T : C → E is said to be
asymptotically nonexpansive if there exists a sequence {kn} ⊂ [,∞) with limn→∞ kn = 
such that

∥
∥T(PT)n–x – T(PT)n–y

∥
∥ ≤ kn‖x – y‖ (NSM)

for all x, y ∈ C and n ≥ .

Also, Chidume et al. [] introduced the following iteration scheme:

{

x ∈ C arbitrarily,
xn+ = P(( – αn)xn + αnT(PT)n–xn)

(.)

for all n ≥ , where {αn} ⊂ (, ), and proved some strong and weak convergence theorems
for asymptotically nonexpansive nonself-mappings. We denote the set of fixed points of
T by F(T) = {x ∈ C : Tx = x}.

Remark . If a mapping T : C → C is a self-mapping, then P becomes the identity map-
ping and so we have the following:

() The nonself-mapping with (NSM) coincides with an asymptotically nonexpansive
self-mapping.

() The iteration defined by (.) coincides with the iteration defined by (JS).

Since the results of Chidume et al., some authors proved weak and strong conver-
gence theorems for asymptotically nonexpansive nonself-mappings in Banach spaces (see
[–]).

Let E be a real Banach space, C be a nonempty closed convex subset of E and P : E → C
be a nonexpansive retraction of E onto E. Let T : C → E be an asymptotically nonexpan-
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sive nonself-mapping. Now, we define the iterative scheme {xn} as follows:

⎧

⎪⎨

⎪⎩

x ∈ C arbitrarily,
xn+ = P(( – αn)xn + αnT(PT)n–yn),
yn = P(( – βn)xn + βnT(PT)n–xn)

(.)

for all n ≥ , where {αn} ⊂ (, ) and {βn} ⊂ [, ].
In this paper, first, we introduce the condition (BP) which is weaker that the com-

pletely continuous mapping. Second, we introduce a new iteration (.) and prove some
strong convergence theorems of the proposed iteration for an asymptotically nonexpan-
sive nonself-mapping T : C → E with the condition (BP). Finally, we give two examples to
illustrate the main result in this paper. Our results improve and extend the corresponding
results given by some authors.

2 Some lemmas
For our main results, we need the following lemmas.

Lemma . ([]) Let p >  and R >  be two fixed numbers and X be a Banach space. Then
X is uniformly convex if and only if there exists a continuous, strictly increasing and convex
function g : [,∞) → [,∞) with g() =  such that

∥
∥λx + ( – λ)y

∥
∥

p ≤ λ‖x‖p + ( – λ)‖y‖p – ωp(λ)g
(‖x – y‖)

for all x, y ∈ B(, R) = {x ∈ E : ‖x‖ ≤ R} and λ ∈ [, ], where ωp(λ) = λ( – λ)p + λp( – λ).

Letting S = S = I , where I denotes the identity mapping, and T = T = T in Lemma .
of [], we have the following.

Lemma . Let E be a real uniformly convex Banach space and C be a nonempty closed
convex subset of E. Let T : C → E be an asymptotically nonexpansive nonself-mapping with
{hn} ⊂ [,∞) such that

∑∞
n=(hn – ) < ∞ and F(T) 	= ∅. Let {xn} be the sequence defined by

(.), where {αn} ⊂ (, ) and {βn} ⊂ [, ). Then:
() ‖xn+ – p‖ ≤ h

n‖xn – p‖ for all p ∈ F(T);
() limn→∞ ‖xn – p‖ exists for all p ∈ F(T).

Lemma . Let E be a real uniformly convex Banach space and C be a nonempty closed
convex subset of E. Let T : C → E be an asymptotically nonexpansive nonself-mapping with
{hn} ⊂ [,∞) such that

∑∞
n=(hn – ) < ∞ and F(T) 	= ∅. Let {xn} be the sequence defined by

(.), where

 < lim inf
n→∞ αn, lim sup

n→∞
αn < ,

and

lim sup
n→∞

βn < .

Then limn→∞ ‖xn – Txn‖ = .
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Proof By Lemma ., we know that limn→∞ ‖xn – p‖ exists for any p ∈ F(T). It follows that
{xn – p}, {yn – p}, {T(PT)n–xn – p}, {T(PT)n–yn – p} are all bounded, so there exists a real
number R >  such that

{

xn – p, yn – p, T(PT)n–xn – p, T(PT)n–yn – p
} ⊂ B(, R)

for all n ≥ . It follows from (.) and Lemma . that

‖yn – p‖ ≤ ∥
∥( – βn)(xn – p) + βn

(

T(PT)n–xn – p
)∥
∥



≤ ( – βn)‖xn – p‖ + βn
∥
∥T(PT)n–xn – p

∥
∥



– βn( – βn)g
(∥
∥xn – T(PT)n–xn

∥
∥
)

≤ ( – βn)h
n‖xn – p‖ + βnh

n‖xn – p‖

= h
n‖xn – p‖

and so

‖xn+ – p‖ ≤ ∥
∥( – αn)(xn – p) + αn

(

T(PT)n–yn – p
)∥
∥



≤ ( – αn)‖xn – p‖ + αn
∥
∥T(PT)n–yn – p

∥
∥



– αn( – αn)g
(∥
∥xn – T(PT)n–yn

∥
∥
)

≤ ( – αn)h
n‖xn – p‖ + αnh

n‖yn – p‖ – αn( – αn)g
(∥
∥xn – T(PT)n–yn

∥
∥
)

≤ h
n‖xn – p‖ – αn( – αn)g

(∥
∥xn – T(PT)n–yn

∥
∥
)

,

where g : [,∞) → [,∞) is a continuous strictly increasing and convex function with
g() = . By the conditions  < lim infn→∞ αn and lim supn→∞ αn < , we know that there
exist a positive integer n and two real numbers a, b ∈ (, ) such that a ≤ αn ≤ b for all
n ≥ n, thus

a( – b)g
(∥
∥xn – T(PT)n–yn

∥
∥
) ≤ h

n‖xn – p‖ – ‖xn+ – p‖, ∀n ≥ n.

Since limn→∞ ‖xn – q‖ exists, it follows from limn→∞ hn =  that

lim
n→∞ g

(∥
∥xn – T(PT)n–yn

∥
∥
)

= .

Using the properties of g , we have

lim
n→∞

∥
∥xn – T(PT)n–yn

∥
∥ = . (.)

Since we have the conditions lim supn→∞ βn <  and limn→∞ hn = , there exist a positive
integer m and a real number s ∈ (, ) such that βnhn ≤ s for all n ≥ m and

‖yn – xn‖ ≤ βn
∥
∥T(PT)n–xn – xn

∥
∥

≤ βn
∥
∥T(PT)n–xn – T(PT)n–yn

∥
∥ + βn

∥
∥xn – T(PT)n–yn

∥
∥

≤ βnhn‖xn – yn‖ +
∥
∥xn – T(PT)n–yn

∥
∥.
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Hence ( – s)‖yn – xn‖ ≤ ( –βnhn)‖yn – xn‖ ≤ ‖xn – T(PT)n–yn‖ for all n ≥ m. From (.),
we have

lim
n→∞‖yn – xn‖ = . (.)

Furthermore, from (.), (.), and

∥
∥xn – T(PT)n–xn

∥
∥ ≤ ∥

∥xn – T(PT)n–yn
∥
∥ +

∥
∥T(PT)n–yn – T(PT)n–xn

∥
∥

≤ ∥
∥xn – T(PT)n–yn

∥
∥ + hn‖yn – xn‖,

it follows that

lim
n→∞

∥
∥xn – T(PT)n–xn

∥
∥ = . (.)

It follows from (.) and

∥
∥xn+ – T(PT)n–yn

∥
∥ ≤ ‖xn+ – xn‖ +

∥
∥xn – T(PT)n–yn

∥
∥ ≤ (αn + )

∥
∥xn – T(PT)n–yn

∥
∥

that

lim
n→∞

∥
∥xn+ – T(PT)n–yn

∥
∥ = . (.)

Since ‖xn+ – yn‖ ≤ ‖xn+ – T(PT)n–yn‖ + ‖T(PT)n–yn – xn‖ + ‖xn – yn‖, we have

lim
n→∞‖xn+ – yn‖ =  (.)

by (.), (.) and (.). It follows from (.), (.), (.), and

‖xn – Txn‖ ≤ ∥
∥xn – T(PT)n–xn

∥
∥ +

∥
∥T(PT)n–xn – Txn

∥
∥

≤ ∥
∥xn – T(PT)n–xn

∥
∥ +

∥
∥T(PT)n–xn – T(PT)n–yn–

∥
∥

+
∥
∥T(PT)n–yn– – Txn

∥
∥

≤ ∥
∥xn – T(PT)n–xn

∥
∥ + hn‖xn – yn–‖ + h

∥
∥T(PT)n–yn– – xn

∥
∥

that limn→∞ ‖xn – Txn‖ = . This completes the proof. �

3 The condition (BP)
Let E be a Banach space and T : E → E be a bounded linear operator.

In , Browder and Petryshyn [] considered the existence of a solution of the equa-
tion

u – Tu = f (EQ)

by the iteration of Picard-Poincaré-Neumann,
⎧

⎨

⎩

x ∈ E arbitrarily,

xn+ = Txn + f ,
(BP)
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equivalently,
⎧

⎨

⎩

x ∈ E arbitrarily,

xn = Tnx + (f + Tf + · · · + Tn–f ),

for each n ≥  and f ∈ E.
In fact, in , Browder [] proved the following.

Theorem B Let E be a reflexive Banach space. Then a solution u of the equation u – Tu = f
exists for a given point f ∈ E and an operator T which is asymptotically bounded (i.e., there
exists M ≥  such that ‖Tnx‖ ≤ M for all x ∈ E and n ≥ ) if and only if the sequence {xn}
defined by (BP) is bounded for any fixed x ∈ E.

But, without any assumption of the reflexivity on E, under a slight sharper condition
on T , Browder and Petryshyn proved the following:

Theorem BP Let E be a Banach space and T : E → E be a bounded linear operator which
is asymptotically convergent, i.e., {Tnx} converges in E for all x ∈ E. Then we have the fol-
lowing:

() If f ∈ R(I – T), the sequence {xn} defined by (BP) converges to a solution u of the
equation u + Tu = f .

() If any subsequence {xni} of the sequence {xn} converges to an element y ∈ E, then y is a
solution of the equation y – Ty = f .

() If E is a reflexive Banach space and the sequence {xn} is bounded, then the sequence
{xn} converges to a solution of the equation u + Tu = f .

Motivated by Theorem BP, we have the concept of the condition (BP) as follows:
Let E be a real normed linear space, C be a nonempty subset of E and T : C → E be a

mapping.

Definition . The pair (T , C) is said to satisfy the condition (BP) if, for any bounded
closed subset G of C, {z : z = x – Tx, x ∈ G} is a closed subset of E.

Let E and F be Banach spaces. Recall that a mapping T : E → F is completely continuous
if it is continuous and compact (i.e., C is bounded implies that T(C) is relatively compact,
i.e., T(C) is compact) or a weakly convergent sequence (xn → x weakly) implies a strongly
convergent sequence (Txn → Tx).

We give some relations between the condition (BP) and a completely continuous map-
ping as follows.

Proposition . Let E be a real normed linear space, C be a nonempty subset of E and
T : C → E be a completely continuous mapping. Then the pair (T , C) satisfies the condition
(BP).

Proof For any bounded closed subset G of C, we denote M = {z : z = x – Tx, x ∈ G}. For
any zn ∈ M with zn → z, there exists xn ∈ G such that zn = xn – Txn. Since T is completely
continuous and the sequence {xn} is bounded, there exists a subsequence {xnk } of {xn} such
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that {Txnk } is convergent. Letting Txnk → x, it follows that xnk = znk + Txnk → z + x as
k → ∞. Since G is closed, it follows that z + x ∈ G.

Furthermore, since T is a completely continuous mapping, we have

z = lim
k→∞

znk = lim
k→∞

(xnk – Txnk ) = (z + x) – T(z + x).

It follows from z + x ∈ G that z ∈ M and so M is closed. This shows that the pair (T , C)
satisfies the condition (BP) and so Proposition . holds. This completes the proof. �

Remark . If the pair (T , C) satisfies the condition (BP), then T is not completely con-
tinuous in general.

Example . Let E = (–∞,∞) with the usual norm | · | and C = {, , 
 , . . .}. Define a map-

ping T : C → E by

Tx =

{

, if x = ,
n, if x = 

n , n ≥ .

Then, for any bounded closed subset G of C, the set {z : z = x – Tx, x ∈ G}d = ∅, where
Ad denotes the set of accumulation points of A, and so {z : z = x – Tx, x ∈ G} is a closed
subset of E. This shows that the pair (T , C) satisfies the condition (BP), but the set T(C) =
{, , , . . . , n, . . .} is unbounded. So, T is not completely continuous.

4 Strong convergence theorems
Now, we prove strong convergence theorems for asymptotically nonexpansive nonself-
mappings with the condition (BP) in real uniformly convex Banach spaces.

Theorem . Let E be a real uniformly convex Banach space and C be a nonempty closed
convex subset of E. Let T : C → E be an asymptotically nonexpansive nonself-mapping with
{hn} ⊂ [,∞) such that

∑∞
n=(hn – ) < ∞ and F(T) 	= ∅. Let {xn} be the sequence defined by

⎧

⎪⎨

⎪⎩

x ∈ C arbitrarily,
xn+ = P(( – αn)xn + αnT(PT)n–yn),
yn = P(( – βn)xn + βnT(PT)n–xn)

(.)

for all n ≥ , where

 < lim inf
n→∞ αn, lim sup

n→∞
αn < ,

and

lim sup
n→∞

βn < .

If the pair (T , C) satisfies the condition (BP), then the sequence {xn} converges strongly to
a fixed point of T .

Proof Letting G = {xn}, where {xn} denotes the closure of {xn}, since the sequence {xn}
is bounded in C by Lemma .() and so G is a bounded closed subset of C. Since the
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pair (T , C) satisfies the condition (BP), it follows that M = {z = x – Tx : x ∈ G} is closed.
From {xn – Txn} ⊂ M and xn – Txn →  as n → ∞ by Lemma ., we know that the zero
vector  ∈ M and so there exists a q ∈ G such that q = Tq. This shows that q is a fixed
point of T . Since q ∈ G, there exists a positive integer n such that xn = q or there exists
a subsequence {xnk } of {xn} such that xnk → q as k → ∞.

If xn = q, then it follows from Lemma .() that xn = q for all n ≥ n and so xn → q as
n → ∞.

If xnk → q, then, since limn→∞ ‖xn –q‖ exists, we have xn → q as n → ∞. This completes
the proof. �

Using Theorem . and Proposition ., we have the following.

Corollary . Let E be a real uniformly convex Banach space and C be a nonempty closed
convex subset of E. Let T : C → E be an asymptotically nonexpansive nonself-mapping with
{hn} ⊂ [,∞) such that

∑∞
n=(hn – ) < ∞ and F(T) 	= ∅. Let {xn} be the sequence defined by

(.), where

 < lim inf
n→∞ αn, lim sup

n→∞
αn < ,

and

lim sup
n→∞

βn < .

If T is completely continuous, then the sequence {xn} converges strongly to a fixed point
of T .

Letting βn =  for all n ≥  in Theorem ., we have the following.

Theorem . Let E be a real uniformly convex Banach space and C be a nonempty closed
convex subset of E. Let T : C → E be an asymptotically nonexpansive nonself-mapping with
{hn} ⊂ [,∞) such that

∑∞
n=(hn – ) < ∞ and F(T) 	= ∅. Let {xn} be the sequence defined by

(.), where

 < lim inf
n→∞ αn, lim sup

n→∞
αn < .

If the pair (T , C) satisfies the condition (BP), then the sequence {xn} converges strongly to
a fixed point of T .

Using Theorem . and Proposition ., we obtain the following.

Corollary . Let E be a real uniformly convex Banach space and C be a nonempty closed
convex subset of E. Let T : C → E be an asymptotically nonexpansive nonself-mapping with
{hn} ⊂ [,∞) such that

∑∞
n=(hn – ) < ∞ and F(T) 	= ∅. Let {xn} be the sequence defined by

(.), where

 < lim inf
n→∞ αn, lim sup

n→∞
αn < .

If T is completely continuous, then the sequence {xn} converges strongly to a fixed point
of T .
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Remark . Theorem . and Corollary . improve and extend Theorem . in [] and
extend Theorem . in [], Theorem . in [] and the corresponding results in [] to
the setting of Banach spaces and the more general class of nonself-mappings.

5 Examples
Now, we give two examples to illustrate Theorem . as follows.

Proposition . ([]) Let X be a Hilbert space and C = {x ∈ X : ‖x‖ ≤ r}, where r > . Let
P : X → C be a mapping defined by

Px =

{

x, if x ∈ C,
rx
‖x‖ , if x ∈ X – C.

Then P is a nonexpansive retraction of X onto C.

Example . Let X = Rn with the inner product 〈x, y〉 =
∑n

i= xiyi and the usual norm ‖x‖ =
(
∑n

i= x
i ) 

 , then X is a Hilbert space. Let C = {x ∈ X : ‖x‖ ≤ }. Define the mapping P : X →
C by

Px =

{

x, if x ∈ C,
x

‖x‖ , if x ∈ X – C.

Then P is nonexpansive retraction of X onto C by Proposition .. Define a mapping T :
C → X by

Tx = ( – x, , . . . , )

for all x = (x, x, . . . , xn) ∈ C. Then we have

‖Tx – Ty‖ =
∥
∥(y – x, , . . . , )

∥
∥ ≤ ‖x – y‖

for all x = (x, x, . . . , xn), y = (y, y, . . . , yn) ∈ C, which shows that T is a nonexpansive
nonself-mapping and so

∥
∥T(PT)–x – T(PT)–y

∥
∥ ≤ ∥

∥P(Tx) – P(Ty)
∥
∥ ≤ ‖Tx – Ty‖ ≤ ‖x – y‖.

Suppose that

∥
∥T(PT)k–x – T(PT)k–y

∥
∥ ≤ ‖x – y‖

for n = k. Then, when n = k + , we have

∥
∥T(PT)(k+)–x – T(PT)(k+)–y

∥
∥ ≤ ∥

∥(PT)(k+)–x – (PT)(k+)–y
∥
∥

=
∥
∥P

[

T(PT)k–x
]

– P
[

T(PT)k–y
]∥
∥

≤ ∥
∥T(PT)k–x – T(PT)k–y

∥
∥

≤ ‖x – y‖.
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It follows from the mathematical induction that T is an asymptotically nonexpansive
nonself-mapping with the sequence {hn} defined by hn =  for each ≥ and F(T) =
{( 

 , , . . . , )}.
Now, we prove that the pair (T , C) satisfies the condition (BP). For any closed subset G

of C, we denote M = {z = x – Tx : x ∈ G}. Then M is closed. Indeed, for any zn ∈ M with
zn → z, there exists xn ∈ G such that zn = xn – Txn. Since G is bounded closed in C and
so G is compact. Therefore, there exists a convergence subsequence {xnk } of {xn}. Letting
xnk → x as k → ∞, we have x ∈ G and it follows from the continuous property of T that

z = lim
k→∞

znk = lim
k→∞

(xnk – Txnk ) = x – Tx ∈ M.

For any given x ∈ C, define a sequence {xn} by

{

xn+ = P(( – αn)xn + αnT(PT)n–yn),
yn = P(( – βn)xn + βnT(PT)n–xn)

for all n ≥ , where {αn–} is defined by αn– = 
 + 

n for each n ≥ , {αn} is defined by
αn = 

 + 
n and {βn} is defined by βn = n

n+ for each n ≥ . It is easy to prove

lim inf
n→∞ αn =




, lim sup
n→∞

αn =



,

and

lim sup
n→∞

βn =



.

Hence all the conditions of Theorem . are satisfied and so {xn} converges strongly to the
fixed point ( 

 , , . . . , ) of T .

Example . Let X = l with the inner product 〈x, y〉 =
∑∞

i= xiyi and the norm ‖x‖ =
(
∑∞

i= x
i ) 

 . Then X is a real infinite dimensional Hilbert space. Let C = {x ∈ X : ‖x‖ ≤ }.
Define the mapping P : X → C by

Px =

{

x, if x ∈ C,
x

‖x‖ , if x ∈ X – C.

Then P is a nonexpansive retraction of X onto C. Define a mapping T : C → X by

Tx = (–x, –x, . . . , –xi, . . .)

for all x = (x, x, . . . , xi, . . .) ∈ C. Then we have

‖Tx – Ty‖ =
∥
∥(y – x, y – x, . . . , yi – xi, . . .)

∥
∥

=

( ∞
∑

i=

(yi – xi)

) 


= ‖x – y‖
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for all x = (x, x, . . . , xi, . . .), y = (y, y, . . . , yi, . . .) ∈ C and so T is nonexpansive and, us-
ing the same method as given in Example ., we can prove that T is an asymptoti-
cally nonexpansive mapping with the sequence {hn} defined by hn =  for each n ≥  and
F(T) = {(, , . . .)}.

Now, we prove that the pair (T , C) satisfies the condition (BP) and T is not completely
continuous. In fact, for any closed subset G of C, we denote M = {z = x – Tx : x ∈ G}. For
any z(n) ∈ M with z(n) → z as n → ∞, there exists x(n) = (x(n)

 , x(n)
 , . . . , x(n)

i , . . .) ∈ G such that
z(n) = x(n) –Tx(n) = x(n). It follows from z(n) → z that x(n) → 

 z as n → ∞. Since G is closed
in C, it follows that 

 z ∈ G. From the continuous property of T , it follows that

z = lim
n→∞ z(n) = lim

n→∞
(

x(n) – Tx(n)) =



z – T
(




z
)

∈ M.

This shows that the pair (T , C) satisfies the condition (BP). Since T(C) = C and the unit
ball C in infinite dimensional Hilbert space is not sequential compact, it follows that T is
not completely continuous.

For any given x() ∈ C, define a sequence {x(n)} by

{

x(n+) = P(( – αn)x(n) + αnT(PT)n–y(n)),
y(n) = P(( – βn)x(n) + βnT(PT)n–x(n))

for all n ≥ , where {αn–} is defined by αn– = 
 + 

n for each n ≥ , {αn} is defined by
αn = 

 + 
n and {βn} is defined by βn = n

n+ for each n ≥ . It is easy to prove

lim inf
n→∞ αn =




, lim sup
n→∞

αn =



and

lim sup
n→∞

βn =



.

Hence all the conditions of Theorem . are satisfied and so {x(n)} converges strongly to
the fixed point (, , . . .) of T . Since T is not completely continuous, the above conclusions
cannot be obtained by Theorem . in [].
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