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Abstract
In this paper, we propose and investigate two new iterative algorithms for solving the
split equality variational inclusion problem in Hilbert spaces. We also prove that the
sequences generated by the proposed algorithms converge strongly to a common
solution of the split equality variational inclusion problem and fixed points of a family
of nonexpansive mappings, which is also an unique solution of a variational
inequality as an optimality condition for a minimization problem. The results
presented in this paper extend and generalize a variety of existing results in this area.
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1 Introduction
In this paper, we consider the split equality problem (SEP) proposed by Moudafi []. Let H,
H, H be real Hilbert spaces, Sn : H → H be a family of nonexpansive mappings, Fix(Sn)
denote the fixed points set of Sn, n = , , . . . , C =

⋂∞
n= Fix(Sn) ∈ H, Q be the nonempty

closed convex set of H. Let A : H → H, B : H → H be two bounded linear operators.
The so-called SEP can mathematically be formulated as finding x ∈ C, y ∈ Q satisfying the
property:

x ∈ C, y ∈ Q, Ax = By. ()

Throughout this paper, we use � to denote the solution set of SEP, that is,

� =
{

(x, y) ∈ H × H, Ax = By, x ∈ C, y ∈ Q
}

.

If B = I (the identity mapping on Hilbert space H), the problem () is equivalent to the
well-known split feasibility problem (SFP). It is easy to see that the SEP () includes the
SFP as a special case. The split equality problems allow asymmetric and partial relations
between the variables x and y. As is well known, the SEP has received much attention due
to its application in various disciplines such as medical image reconstruction, game theory,
decomposition methods for PDEs, and radiation therapy treatment planning [–].

© 2015 Guo et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13663-015-0470-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-015-0470-7&domain=pdf
mailto:chenrd@tjpu.edu.cn


Guo et al. Fixed Point Theory and Applications  (2015) 2015:223 Page 2 of 18

In , Moudafi [] introduced and studied the following split variational inclusion
problem (SVIP). Let H, H be Hilbert spaces, A : H → H be a bounded linear opera-
tor, A∗ be the adjoint of A, and B : H → H, B : H → H be two set-valued maximal
monotone mappings. SVIP is formulated as the following problem:

find x∗ ∈ H such that  ∈ B
(
x∗),  ∈ B

(
Ax∗). ()

Recently, Byrne et al. [] proposed the following iterative method to solve the prob-
lem (): For given x ∈ H and λ > , the iterative sequence {xn} is generated as follows:

xn+ = JB
λ

[
xn + γ A∗(JB

λ – I
)
Axn

]
. ()

Moreover, iterative methods for nonexpansive mappings have been applied to solve min-
imization problem. Moudafi [] proposed the viscosity approximation method: For every
initial x ∈ H , the sequence {xn} is generated by

xn+ = αnf (xn) + ( – αn)Txn ()

under some certain appropriate conditions imposed on {αn}, and it is proved that the se-
quence generated by () converges strongly to the unique solution x∗ of the variational
inequality

〈
(I – f )x∗, x – x∗〉 ≥ , x ∈ C.

For the iterative method (), Marino and Xu [] introduced a new viscosity approxima-
tion method and considered the following iterative sequence {xn}:

xn+ = αnγ f (xn) + (I – αnA)Txn, ()

and they proved that the sequence generated by () converges strongly to the unique so-
lution x∗ of the variational inequality

〈
(A – γ f )x∗, x – x∗〉 ≥ , x ∈ C

which is the optimality condition for the following minimization problem:

min


〈Ax, x〉 – h(x),

where h is a potential function for γ f .
In , Kazmi and Rizvi [] combined the iterative method () and the viscosity approx-

imation method () for solving a split variational inclusion and the fixed point problem of
a nonexpansive mapping. Kazmi and Rizvi presented the following iteration scheme:

{
un = JB

λ [xn + γ A∗(JB
λ – I)Axn];

xn+ = αnf (xn) + ( – αn)Tun,
()
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and they proved that the sequences {un}, {xn} converge strongly to z ∈ Fix(T) ∩ �, where
z = PFix(T)∩�f (z), � is the solution set of SVIP.

In , Sitthithakerngkiet et al. [] combined the iterative method () and the viscos-
ity approximation method () for solving a split variational inclusion and the fixed point
problem of a family of nonexpansive mappings. They proposed the following iteration
algorithm:

{
yn = JB

λ [xn + γ A∗(JB
λ – I)Axn];

xn+ = αnξ f (xn) + (I – αnD)Snyn,
()

and they proved that the sequence converges strongly to a common solution of SVIP and
the fixed point of a family of nonexpansive mappings.

Inspired and motivated by the corresponding convergence results of (), (), and (), we
consider the split equality variational inclusion problem (SEVIP):

find x ∈ U–() = Fix
(
JU
un

)
, y ∈ K–() = Fix

(
JK
un

)
such that Ax = By, ()

where H, H, H are real Hilbert spaces, U : H → H and K : H → H are set-valued
maximal monotone mappings, A : H → H, B : H → H are two bounded linear opera-
tors.

In this paper, we will introduce a more general iterative method for SEVIP () and a fixed
point problem, which is defined in the following way:

{
vn = J (U ,K )

un (I – γ G∗G)wn,
wn = αnσ f (wn) + (I – αnD)Snvn,

()

where σ ∈ [, ], αn ∈ (, ), and D is a strongly positive bounded linear operator. Note that,
if σ = , un = λ, D = I , B = I , Sn = T , scheme () can be reduced to (), that is, the iterative
method () for solving the split equality variational inclusion problem can be reduced to
the iterative method () for solving SVIP and SFP.

Meanwhile, we will prove that the sequences generated by () converge strongly to a
common element of the solution set of a split equality variational inclusion problem and
the common fixed point set of a family of nonexpansive mappings, which is also an unique
solution of a variational inequality as an optimality condition for a minimization problem.

2 Preliminaries
We first recall that some definitions, notations, and conclusions which will be used in the
proofs of our main results. Let H be a real Hilbert space with inner product 〈·, ·〉 and the
norm ‖ · ‖. We denote by ‘→’ strong convergence, by ‘⇀’ weak convergence. In order to
establish our convergence theorems, we need the following concepts.

Definition .
() A mapping f : H → H is k-contractive if there exists a constant k ∈ (, ) such that

‖fx – fy‖ ≤ k‖x – y‖, ∀x, y ∈ H .
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() A mapping T is nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ H .

() A mapping T is monotone if

〈Tx – Ty, x – y〉 ≥ , ∀x, y ∈ H .

() A mapping T is firmly nonexpansive if

‖Tx – Ty‖ ≤ 〈x – y, Tx – Ty〉, ∀x, y ∈ H .

() A bounded linear operator D is said to be strongly positive if there exists a constant
α >  such that

〈Dx, x〉 ≥ α‖x‖, ∀x ∈ H .

() A mapping PC is called the metric projection of H onto C, if PCx is the unique point
in C with the property

‖x – PCx‖ = min
{‖x – y‖ : y ∈ C

}
, ∀x ∈ H .

Moreover, PC is characterized by the following properties:

〈x – PCx, y – PCx〉 ≤ , ∀y ∈ C.

Proposition . A Banach space E is said to have the Opial property, if for any sequence
{xn} with xn ⇀ x∗, we have

lim inf
n→∞

∥
∥xn – x∗∥∥ < lim inf

n→∞ ‖xn – y‖

∀y ∈ E with y = x∗.

Proposition . In Hilbert spaces, the following inequalities hold:

‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉, ∀x, y ∈ H , ()

〈x, y〉 =


(‖x‖ + ‖y‖ – ‖x – y‖), ∀x, y ∈ H . ()

Lemma . ([]) Assume D is a strongly positive linear bounded operator on a Hilbert H
with coefficient γ >  and  < α ≤ ‖D‖–, then ‖I – αD‖ ≤  – αγ .

Lemma . ([]) Let C be a nonempty, closed, and convex subset of a Hilbert space H .
Assume that f : C → C is a contraction with a coefficient k ∈ (, ) and D is a strongly
positive linear bounded operator with a coefficient γ > . Then, for  < γ < γ

k ,

〈
x – y, (D – γ f )x – (D – γ f )y

〉 ≥ (γ – γ k)‖x – y‖, ∀x, y ∈ H .

That is, D – γ f is strongly monotone with coefficient γ – γ k.
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Lemma . ([]) Let C be a nonempty closed subset of a real Hilbert space H, and let {Sn}
be a sequence of mappings from C into itself. Suppose that {Sn} satisfies the AKTT condition:
∑n=∞

n= sup{‖Sn+v – Snv‖ : v ∈ C} < ∞. Then for each x ∈ C, {Snx} converges strongly to a
point in C. Furthermore, let S : C → C be defined by

Sx = Snx, ∀x ∈ C.

Then limn→∞ sup{‖Sv – Snv‖ : v ∈ C} = .

Lemma . ([]) Assume an is a sequence of nonnegative numbers such that an+ ≤ ( –
γn)an + δn where {γn} is a sequence in (, ) and {δn} is a sequence such that:

(i)
∑∞

n= γn = ∞;
(ii) lim supn→∞

δn
γn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

Lemma . ([]) Let U be a set-valued maximal monotone operator on H . For u > , we
define the resolvent JU

u = (I + uU)–, then the following holds:
(i) For each u > , JU

u is a single-valued and firmly nonexpansive mapping.
(ii) D(JU

u ) = H and Fix(JU
u ) = U–() = {x ∈ D(G) :  ∈ Ux}.

(iii) ‖JU
α x – JU

β x‖ ≤ α–β

α
〈JU

α x – JU
β x, JU

α x – x〉, for all α,β >  and x ∈ H .
In fact ‖JU

α x – JU
β x‖ ≤ |α–β|

α
‖JU

α x – x‖.
(iv) Suppose that U–() = ∅, then 〈x – JU

α x, JU
α x – w〉 ≥  for each x ∈ H and each

w ∈ U–(), and each β > .

Lemma . ([]) Let {Sn} be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {Snj}j≥ of {Sn} such that

{Snj} < {Snj+} for all j ≥ .

Also consider the sequence of the integers {τ (n)}n≥n defined by

τ (n) = max{k ≤ n|Sk < Sk+}.

Then {τ (n)}n≥n is a nondecreasing sequence verifying limn→∞ τ (n) = ∞, and for all n ≥ n,
the following two estimates hold:

Sτ (n) ≤ Sτ (n)+, Sn ≤ Sτ (n)+.

3 Main result
In this section, the following supposed conditions always hold:

() Let H, H, H be Hilbert spaces.
() Let U and K be two set-valued maximal monotone mappings.
() Let A : H → H, B : H → H be two bounded linear operators and A∗, B∗ be the

adjoint of A and B.
() f =

[ f
f

]
, where fi, i = ,  is a contraction mapping on Hi with constant k ∈ (, ).

() Let Sn be a sequence of nonexpansive mappings on H, D be a strongly positive
bounded linear operator with coefficient γ > .
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() Assume the solution set of SEVIP () � = ∅,

J (U ,K )
un =

[
JU
un

JK
un

]

, G = [A –B], G∗G =

[
A∗A –A∗B

–B∗A B∗B

]

.

Proposition . Let T = I – γ G∗G : H × H −→ H × H, where γ ∈ (, 
L ), with L =

ρ(G∗G) being the spectral radius of the self adjoint operator G∗G on H × H, then T is a
nonexpansive mapping.

Proof In fact, for any x, y ∈ H × H,

‖Tx – Ty‖ =
∥
∥
(
I – γ G∗G

)
x –

(
I – γ G∗G

)
y
∥
∥

=
∥
∥x – y – γ G∗G(x – y)

∥
∥

= ‖x – y‖ + γ ∥∥G∗G(x – y)
∥
∥ – γ

〈
x – y, G∗G(x – y)

〉

≤ ‖x – y‖ + γ L
∥
∥G(x – y)

∥
∥ – γ

〈
G(x – y), G(x – y)

〉

= ‖x – y‖ + γ L
∥
∥G(x – y)

∥
∥ – γ

∥
∥G(x – y)

∥
∥

= ‖x – y‖ – γ ( – γ L)
∥
∥G(x – y)

∥
∥

≤ ‖x – y‖.

This completes the proof of Proposition .. �

Lemma . ([]) Let H, H, H, A, B, A∗, B∗, U , K , J (U ,K )
un , G, G∗, f , Sn, D, S be the same

as above. If � = ∅ (the solution set of SEVIP ()), then w∗ = (x∗, y∗) ∈ H × H is a solution
of SEVIP () if and only if for any given γ >  and u > 

w∗ = J (U ,K )
u

(
I – γ G∗G

)
w∗.

Theorem . Let H, H, H, A, B, A∗, B∗, U , K , J (U ,K )
un , G, G∗, f , Sn, D, S be the same as

above. Let wn be generated by

{
vn = J (U ,K )

un (I – γ G∗G)wn;
wn = αnσ f (wn) + (I – αnD)Snvn.

()

Suppose Sn satisfies the AKTT condition, Fix(S) =
⋂∞

i= Fix(Sn).
If the solution set  = Fix(S) ∩ � is nonempty and the following conditions are satisfied:
(i) αn ∈ (, ), limn→∞ αn = ;

(ii)  < γ < 
αn

,  < σ < γ

k .
Then the sequence wn converges strongly to a point w∗, where w∗ = P(I – D – σ f )(w∗) is

a unique solution of the variational inequalities

〈
(D – σ f )w∗, w∗ – z

〉 ≤ , z ∈ . ()

Proof First, we show that wn defined by () is well defined.
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We define a mapping

Wn = αnσ f (wn) + (I – αnD)SnJ (U ,K )
un

(
I – γ G∗G

)
wn, n ≥ . ()

By Lemma ., Proposition ., and (), for any x, y ⊆ H, we have

∥
∥Wn(x) – Wn(y)

∥
∥

=
∥
∥αnσ f (x) – αnσ f (y) + (I – αnD)

(
SnJ (U ,K )

un

(
I – γ G∗G

)
x – SnJ (U ,K )

un

(
I – γ G∗G

)
y
)∥
∥

≤ αnσ
∥
∥f (x) – f (y)

∥
∥ + ‖I – αnD‖∥∥SnJ (U ,K )

un

(
I – γ G∗G

)
x – SnJ (U ,K )

un

(
I – γ G∗G

)
y
∥
∥

≤ αnσk‖x – y‖ + ( – αnγ )‖x – y‖
=

(
 – αn(γ – σk)

)‖x – y‖.

Since  <  –αn(γ –σk) < , it follows that Wn is a contraction. Therefore, by the Banach
contraction principle, Wn has a unique fixed point in H, denoted by wn, that is,

wn = αnσ f (wn) + (I – αnD)SnJ (U ,K )
un

(
I – γ G∗G

)
wn, ()

which is exactly ().
Second, we claim that wn is bounded.
Indeed, take any z ∈ , we have z = J (U ,K )

un (I – γ G∗G)z and z ∈ Fix(S) =
⋂∞

n= Fix(Sn),

‖vn – z‖ =
∥
∥J (U ,K )

un

(
I – γ G∗G

)
wn – z

∥
∥

=
∥
∥J (U ,K )

un

(
I – γ G∗G

)
wn – J (U ,K )

un

(
I – γ G∗G

)
z
∥
∥

≤ ‖wn – z‖.

Thus, we derive that

‖wn – z‖ =
∥
∥αnσ f (wn) + (I – αnD)Snvn – z

∥
∥

=
∥
∥αnσ f (wn) – αnDz + (I – αnD)Snvn – (I – αnD)Snz

∥
∥

≤ αn
∥
∥σ f (wn) – Dz

∥
∥ + ‖I – αnD‖‖vn – z‖

≤ αn
∥
∥σ f (wn) – Dz

∥
∥ + ( – αnγ )‖wn – z‖

≤ αn
∥
∥σ

(
f (wn) – f (z)

)
+

(
σ f (z) – Dz

)∥
∥ + ( – αnγ )‖wn – z‖

≤ αnσk‖wn – z‖ + αn
∥
∥σ f (z) – Dz

∥
∥ + ( – αnγ )‖wn – z‖

=
(
 – αn(γ – σk)

)‖wn – z‖ + αn(γ – σk)
‖σ f (z) – Dz‖

γ – σk
.

It follows that

αn(γ – σk)‖wn – z‖ ≤ αn(γ – σk)
‖σ f (z) – Dz‖

γ – σk
,

‖wn – z‖ ≤ ‖σ f (z) – Dz‖
γ – σk

. ()
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Hence the sequence {wn} of () is bounded, so are {vn}, {f (wn)}, and {Snvn}.
Third, we show that ‖wn – vn‖ → .
Indeed, for any z ∈ , we have

‖vn – z‖ =
∥
∥J (U ,K )

un

(
I – γ G∗G

)
wn – z

∥
∥

≤ ∥
∥wn – z – γ G∗Gwn

∥
∥

= ‖wn – z‖ + γ ∥∥G∗Gwn
∥
∥ – γ

〈
wn – z, G∗Gwn

〉

≤ ‖wn – z‖ + γ L‖Gwn‖ – γ ‖Gwn‖

= ‖wn – z‖ – γ ( – γ L)‖Gwn‖. ()

It follows from () and () that

‖wn – z‖ =
∥
∥αnσ f (wn) + (I – αnD)Snvn – z

∥
∥

=
∥
∥(I – αnD)(Snvn – z) + αn

(
σ f (wn) – Dz

)∥
∥

≤ ∥
∥(I – αnD)(Snvn – z)

∥
∥ + αn

〈
σ f (wn) – Dz, wn – z

〉

≤ ( – αnγ )‖vn – z‖ + αn
〈
σ f (wn) – Dz, wn – z

〉

≤ ( – αnγ )‖wn – z‖ – ( – αnγ )γ ( – γ L)‖Gwn‖

+ αn
∥
∥σ f (wn) – Dz

∥
∥‖wn – z‖. ()

This implies that

( – αnγ )γ ( – γ L)‖Gwn‖ ≤ –αnγ ‖wn – z‖ + αn
∥
∥σ f (wn) – Dz

∥
∥‖wn – z‖

≤ αn
∥
∥σ f (wn) – Dz

∥
∥‖wn – z‖.

Since both wn and f (wn) are bounded and αn → , we have ‖Gwn‖ → .
Then from () and Lemma ., we derive that

‖vn – z‖ =
∥
∥J (Ui ,Ki)

ui

(
I – γ G∗G

)
wn – z

∥
∥

≤ 〈
vn – z, wn – γ G∗Gwn – z

〉

=


{‖vn – z‖ + ‖wn – z‖ – γ ( – γ L)‖Gwn‖ – ‖wn – vn‖

–
∥
∥γ G∗Gwn

∥
∥ + 

〈
wn – vn,γ G∗Gwn

〉}
.

This implies that

‖vn – z‖ ≤ ‖wn – z‖ – ‖wn – vn‖ + γ
√

L‖wn – vn‖‖Gwn‖. ()

By () and (), we have

‖wn – z‖ ≤ ( – αnγ )‖vn – z‖ + αn
〈
σ f (wn) – Dz, wn – z

〉

≤ ( – αnγ )‖vn – z‖ + αn
∥
∥σ f (wn) – Dz

∥
∥‖wn – z‖
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≤ ( – αnγ )‖wn – z‖ – ( – αnγ )‖wn – vn‖

+ ( – αnγ )γ
√

L‖wn – vn‖‖Gwn‖ + αn
∥
∥σ f (wn) – Dz

∥
∥‖wn – z‖.

Hence, we obtain

( – αnγ )‖wn – vn‖ ≤ ( – αnγ )γ
√

L‖wn – vn‖‖Gwn‖
+ αn

∥
∥σ f (wn) – Dz

∥
∥‖wn – z‖.

Since αn → , ‖Gwn‖ → , it follows that ‖wn – vn‖ → .
Nextly, we show ‖Svn – vn‖ → .

‖wn – Snwn‖ = ‖wn – Snvn + Snvn – Snwn‖
≤ ‖wn – Snvn‖ + ‖vn – wn‖
=

∥
∥αnσ f (wn) + (I – αnD)Snvn – Snvn

∥
∥ + ‖vn – wn‖

= αn
∥
∥f (wn) – DSnvn

∥
∥ + ‖vn – wn‖.

Since {f (wn)} and {Snvn} are bounded, αn → , ‖wn – vn‖ → , then ‖wn – Snwn‖ → .
Thus,

‖vn – Snvn‖ = ‖vn – wn + wn – Snwn + Snwn – Snvn‖
≤ ‖vn – wn‖ + ‖wn – Snwn‖ + ‖wn – vn‖.

Since ‖wn – vn‖ → , ‖wn – Snwn‖ → , we get ‖vn – Snvn‖ → .
Moreover, we note that

‖Svn – vn‖ ≤ ‖Svn – Snvn‖ + ‖Snvn – vn‖
≤ sup

{‖Sw – Snw‖ : w ∈ {vn}
}

+ ‖Snvn – vn‖.

By Lemma ., we have ‖Svn – vn‖ → .
Now, we prove that w̃ ∈ .
Since {vn} is bounded, we may assume that there exists a subsequence {vni} of {vn} which

converges weakly to a point w̃, i.e. vni ⇀ w̃ as i → ∞. Suppose that w̃ /∈ Fix(S), since vni ⇀

w̃ and Sw̃ = w̃. Applying Opial’s property, we obtain

lim inf
i→∞ ‖vni – w̃‖ < lim inf

i→∞ ‖vni – Sw̃‖

≤ lim inf
i→∞

{‖vni – Svni‖ + ‖Svni – Sw̃‖}

≤ lim inf
i→∞ ‖vni – w̃‖.

This is a contraction, then w̃ ∈ Fix(S) =
⋂∞

i= Fix(Sn).
Since {wn} and {vn} are bounded, ‖wn – vn‖ → , {wn} and {vn} have the same asymptot-

ical behavior, we may assume that there exists a subsequence {wni} of {wn} which also con-
verges weakly to the point w̃, i.e. wni ⇀ w̃ as ni → ∞. Suppose that w̃ = J (U ,K )

un (I – γ G∗G)w̃,



Guo et al. Fixed Point Theory and Applications  (2015) 2015:223 Page 10 of 18

Applying Opial’s property, we have

lim inf
i→∞ ‖wni – w̃‖

< lim inf
i→∞

∥
∥wni – J (U ,K )

un

(
I – γ G∗G

)
w̃

∥
∥

≤ lim inf
i→∞

{∥
∥wni – J (U ,K )

un

(
I – γ G∗G

)
wni

∥
∥

+
∥
∥J (U ,K )

un

(
I – γ G∗G

)
wni – J (U ,K )

un

(
I – γ G∗G

)
w̃

∥
∥
}

≤ lim inf
i→∞

{‖wni – vni‖ + ‖wni – w̃‖}

≤ lim inf
i→∞ ‖wni – w̃‖.

This is a contraction, then w̃ = J (U ,K )
un (I – γ G∗G)w̃, by Lemma . we have w̃ ∈ �. Thus,

w̃ is a solution of SEVIP, i.e. w̃ ∈  = Fix(S) ∩ �.
We now show that lim supn→∞〈σ f (w∗) – Dw∗, wn – w∗〉 ≤ , where w∗ = P(I – D +

σ f )(w∗) is the unique solution of VI ().
Indeed, we can choose a subsequence {wni} of {wn} such that

lim sup
n→∞

〈
σ f

(
w∗) – Dw∗, wn – w∗〉 = lim

n→∞
〈
σ f

(
w∗) – Dw∗, wni – w∗〉.

We also assume that wni ⇀ w̃. Therefore

lim sup
n→∞

〈
σ f

(
w∗) – Dw∗, wn – w∗〉

= lim
ni→∞

〈
σ f

(
w∗) – Dw∗, wni – w∗〉

=
〈
σ f

(
w∗) – Dw∗, w̃ – w∗〉

=
〈
(I – D + σ f )w∗ – w∗, w̃ – w∗〉

=
〈
(I – D + σ f )w∗ – P(I – D + σ f )w∗, w̃ – P(I – D + σ f )w∗〉

≤ .

Then

lim sup
n→∞

〈
σ f

(
w∗) – Dw∗, wn – w∗〉 ≤ . ()

On the other hand, we will prove that w∗ = P(I – D + σ f )(w∗) is the unique solution of
VI ().

Suppose w∗ ∈  and w∗∗ ∈  both are solutions to VI (), then

〈
σ f

(
w∗) – Dw∗, w∗∗ – w∗〉 ≤ 

and

〈
σ f

(
w∗∗) – Dw∗∗, w∗ – w∗∗〉 ≤ .
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From the above inequalities we have

〈
(D – σ f )w∗∗ – (D – σ f )w∗, w∗∗ – w∗〉 ≤ .

By Lemma ., we have D – σ f is strongly monotone, then w∗∗ = w∗, the uniqueness is
proved.

Finally, we show that wn converges strongly to w∗ as n → ∞.

∥
∥wn – w∗∥∥

=
∥
∥αnσ f (wn) + (I – αnD)Snvn – w∗∥∥

=
∥
∥(I – αnD)

(
Snvn – w∗) + αn

(
σ f (wn) – Dw∗)∥∥

≤ ∥
∥(I – αnD)

(
Snvn – w∗)∥∥ + αn

〈
σ f (wn) – Dw∗, wn – w∗〉

≤ ( – αnγ )∥∥vn – w∗∥∥ + αnσ
〈
f (wn) – f

(
w∗), wn – w∗〉

+ αn
〈
σ f

(
w∗) – Dw∗, wn – w∗〉

≤ ( – αnγ )∥∥wn – w∗∥∥ + αnσk
∥
∥wn – w∗∥∥ + αn

〈
σ f

(
w∗) – Dw∗, wn – w∗〉.

This implies that

(γ – σk)
∥
∥wn – w∗∥∥ ≤ αnγ

∥∥wn – w∗∥∥ + 
〈
σ f

(
w∗) – Dw∗, wn – w∗〉.

From condition (i) and (), we can obtain the desired conclusion

lim
n→∞

∥
∥wn – w∗∥∥ = .

This completes the proof. �

Theorem . Let H, H, H, A, B, A∗, B∗, U , K , J (U ,K )
un , G, G∗, f , Sn, D, S be the same as

them of Theorem .. Let wn be generated by

{
vn = J (U ,K )

un (I – γ G∗G)wn;
wn+ = αnσ f (wn) + (I – αnD)Snvn,

()

suppose Sn satisfies the AKTT condition, Fix(S) =
⋂∞

i= Fix(Sn). If the solution set  =
Fix(S) ∩ � is nonempty and the following conditions are satisfied:

(i) αn ∈ (, ), limn→∞ αn = ,
∑∞

n= αn = ∞;
(ii)

∑∞
n= |αn+ – αn| < ∞;

(iii)
∑∞

n= |un+ – un| < ∞;
(iv)  < γ < 

αn
,  < σ < γ

k ,
then the sequence wn converges strongly to a point w∗, where w∗ = P(I – D – σ f )(w∗) is a
unique solution of the variational inequalities

〈
(D – σ f )w∗, w∗ – z

〉 ≤ , z ∈ . ()
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Proof We first prove the wn is bounded.
For any given z ∈ , we have z = J (Ui ,Ki)

ui (I – γ G∗G)z and z ∈ F(S) =
⋂∞

n= F(Sn). By
Lemma . and Proposition ., we have

‖wn+ – z‖ =
∥
∥αnσ f (wn) + (I – αnD)Snvn – z

∥
∥

=
∥
∥αnσ f (wn) – αnDz + (I – αnD)Snvn – (I – αnD)Snz

∥
∥

≤ αn
∥
∥σ f (wn) – Dz

∥
∥ + ‖I – αnD‖‖vn – z‖

≤ αn
∥
∥σ f (wn) – Dz

∥
∥ + ( – αnγ )

∥
∥J (Ui ,Ki)

ui

(
I – γ G∗G

)
wn – z

∥
∥

≤ αn
∥
∥σ f (wn) – Dz

∥
∥ + ( – αnγ )‖wn – z‖

≤ αn
∥
∥σ

(
f (wn) – f (z)

)
+

(
σ f (z) – Dz

)∥
∥ + ( – αnγ )‖wn – z‖

≤ αnσk‖wn – z‖ + αn
∥
∥σ f (z) – Dz

∥
∥ + ( – αnγ )‖wn – z‖

=
(
I – αn(γ – σk)

)‖wn – z‖ + αn(γ – σk)
‖σ f (z) – Dz‖

γ – σk

≤ max

{

‖wn – z‖,
‖σ f (z) – Dz‖

γ – σk

}

.

By a simple induction, we have

‖wn – z‖ ≤ max

{

‖w – z‖,
‖σ f (z) – Dz‖

γ – σk

}

.

Therefore, {wn} is bounded, and so are {vn}, {f (wn)}, {Snvn}.
From (), by a similar argument to the proof of Theorem ., we derive that

‖wn+ – z‖

=
∥
∥αnσ f (wn) + (I – αnD)Snvn – z

∥
∥

=
∥
∥(I – αnD)(Snvn – z) + αn

(
σ f (wn) – Dz

)∥
∥

≤ ∥
∥(I – αnD)(Snvn – z)

∥
∥ + αn

〈
σ f (wn) – Dz, wn+ – z

〉

≤ ( – αnγ )‖vn – z‖ + αn
〈
σ f (wn) – Dz, wn+ – z

〉

≤ ( – αnγ )‖wn – z‖ – ( – αnγ )γ ( – γ L)‖Gwn‖

+ αn
∥
∥σ f (wn) – Dz

∥
∥‖wn+ – z‖. ()

This implies that

( – αnγ )γ ( – γ L)‖Gwn‖

≤ ‖wn – z‖ – ‖wn+ – z‖ + αn
∥
∥σ f (wn) – Dz

∥
∥‖wn – z‖. ()

Now, the rest of the proofs will be analyzed as two cases due to the monotone property
of {‖wn – z‖}.

Case : {‖wn – z‖} is a monotone sequence.
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Since {‖wn – z‖} is bounded, {‖wn – z‖} is convergent. Take the limit on both sides for
(), in view of condition (i). We have

‖Gwn‖ → 

By the same argument as in the proof of Theorem ., we derive that

‖vn – z‖ ≤ ‖wn – z‖ – ‖wn – vn‖ + γ
√

L‖wn – vn‖‖Gwn‖. ()

Then, from (), (), and (), we derive that

‖wn+ – z‖ ≤ ( – αnγ )‖vn – z‖ + αn
〈
σ f (wn) – Dz, wn+ – z

〉

≤ ( – αnγ )‖wn – z‖ – ( – αnγ )‖wn – vn‖

+ ( – αnγ )γ
√

L‖wn – vn‖‖Gwn‖
+ αn

∥
∥σ f (wn) – Dz

∥
∥‖wn+ – z‖.

Hence, we obtain

( – αnγ )‖wn – vn‖ ≤ ‖wn – z‖ – ‖wn+ – z‖ + ( – αnγ )γ
√

L‖wn – vn‖‖Gwn‖
+ αn

∥
∥σ f (wn) – Dz

∥
∥‖wn – z‖.

Since {wn}, {vn}, {f (wn)} are bounded, limn→∞{‖wn – z‖} exists and αn → , then ‖wn –
vn‖ → .

Indeed, J (U ,K )
un (I – γ G∗G) is nonexpansive and by Lemma .(iii) we derive that

‖vn+ – vn‖ =
∥
∥J (U ,K )

un+

(
I – γ G∗G

)
wn+ – J (U ,K )

un

(
I – γ G∗G

)
wn

∥
∥

≤ ∥
∥J (U ,K )

un+

(
I – γ G∗G

)
wn+ – J (U ,K )

un+

(
I – γ G∗G

)
wn

∥
∥

+
∥
∥J (U ,K )

un+

(
I – γ G∗G

)
wn – J (U ,K )

un

(
I – γ G∗G

)
wn

∥
∥

≤ ‖wn+ – wn‖ +
|un+ – un|

un+

∥
∥J (U ,K )

un+

(
I – γ G∗G

)
wn – wn

∥
∥

Since lim infn→∞ un > , we may assume that there exists a real number m such that
un ≥ m >  for all n ∈ N . Then we have

‖vn+ – vn‖ ≤ ‖wn+ – wn‖ +
|un+ – un|

m
∥
∥J (U ,K )

un+

(
I – γ G∗G

)
wn – wn

∥
∥

≤ ‖wn+ – wn‖ + M|un+ – un|,

where M = sup{ 
m‖J (U ,K )

un+ (I – γ G∗G)wn – wn‖ : n ∈ N}.
Thus, we get

‖wn+ – wn+‖
=

∥
∥αn+σ f (wn+) + (I – αn+D)Sn+vn+ – αnσ f (wn) – (I – αnD)Snvn

∥
∥
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=
∥
∥αn+σ f (wn+) + (I – αn+D)Sn+vn+ – αnσ f (wn) – (I – αnD)Snvn

– (I – αn+D)Sn+vn + (I – αn+D)Sn+vn – (I – αnD)Sn+vn

+ (I – αnD)Sn+vn – αn+σ f (wn) + αn+σ f (wn)
∥
∥

=
∥
∥(I – αn+D)(Sn+vn+ – Sn+vn) + (αn – αn+)DSn+vn

+ (I – αnD)(Sn+vn – Snvn) + (αn+ – αn)σ f (wn) + αn+σ
(
f (wn+) – f (wn)

)∥
∥

≤ (I – αn+γ )‖vn+ – vn‖ + |αn – αn+|‖DSn+vn‖ + (I – αnγ )‖Sn+vn – Snvn‖
+ |αn – αn+|

∥
∥σ f (wn)

∥
∥ + αn+σk‖wn+ – wn‖

= (I – αn+γ )‖vn+ – vn‖ + αn+σk‖wn+ – wn‖
+ |αn – αn+|

(‖DSn+vn‖ +
∥
∥σ f (wn)

∥
∥
)

+ (I – αnγ )‖Sn+vn – Snvn‖
≤ (

 – αn+(γ – σk)
)‖wn+ – wn‖ + M|un+ – un|

+ |αn – αn+|
(‖DSn+vn‖ +

∥
∥σ f (wn)

∥
∥
)

+ ‖Sn+vn – Snvn‖
≤ (

 – αn+(γ – σk)
)‖wn+ – wn‖ + M|un+ – un| + M|αn – αn+| + Ln

≤ (
 – αn+(γ – σk)

)‖wn+ – wn‖ + M
(|un+ – un| + |αn – αn+|

)
+ Ln,

where M = max{supn∈N ‖DSn+vn‖, supn∈N ‖σ f (wn)‖}, M = max{M, M}, Ln =
sup{‖Sn+v – Snv‖ : v ∈ vn}.

By Lemma ., we have ‖wn+ – wn‖ → .
Then, from condition (i) and |un+ – un| → , we have ‖vn+ – vn‖ → .
Indeed,

‖wn – Snvn‖ ≤ ‖wn – Sn–vn–‖ + ‖Sn–vn– – Sn–vn‖ + ‖Sn–vn – Snvn‖
≤ αn–

∥
∥σ f (wn–) – DSn–vn–

∥
∥ + ‖vn– – vn‖

+ sup
{‖Sn–w – Snw‖ : w ∈ vn

}
.

Since ‖vn+ – vn‖ → , by Lemma . and condition (i), we have ‖wn – Snvn‖ → .
Then

‖Snvn – vn‖ ≤ ‖Snvn – wn‖ + ‖wn – vn‖.

Since ‖wn – Snvn‖ →  and ‖wn – vn‖ → , we get ‖Snvn – vn‖ → .
Moreover, we note that

‖Svn – vn‖ ≤ ‖Svn – Snvn‖ + ‖Snvn – vn‖
≤ sup

{‖Sw – Snw‖ : w ∈ {vn}
}

+ ‖Snvn – vn‖.

By Lemma . we have

‖Svn – vn‖ → . ()
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Since {vn} is bounded, we may assume that there exists a subsequence {vni} of {vn} which
converges weakly to a point w̃, i.e. vni ⇀ w̃ as i → ∞, {wn} and {vn} are bounded, {wn} and
{vn} have the same asymptotical behavior.

We may assume that there exists a subsequence {wni} of {wn} which also converges
weakly to the point w̃, i.e. wni ⇀ w̃ as i → ∞. By the same argument as in the proof of
Theorem ., we derive that w̃ is a solution of SEVIP, i.e. w̃ ∈  = Fix(S) ∩ �.

Next, by the same argument as in the proof of Theorem ., we derive that

lim sup
n→∞

〈
σ f

(
w∗) – Dw∗, wn – w∗〉 ≤ ,

where w∗ = P(I – D + σ f )(w∗) is the unique solution of VI ().
Finally, we show that wn converges strongly to w∗ as n → ∞.

∥
∥wn+ – w∗∥∥

=
∥
∥αnσ f (wn) + (I – αnD)Snvn – w∗∥∥

=
∥
∥(I – αnD)

(
Snvn – w∗) + αn

(
σ f (wn) – Dw∗)∥∥

≤ ∥
∥(I – αnD)

(
Snvn – w∗)∥∥ + αn

〈
σ f (wn) – Dw∗, wn+ – w∗〉

≤ ( – αnγ )∥∥vn – w∗∥∥ + αnσ
〈
f (wn) – f

(
w∗), wn+ – w∗〉

+ αn
〈
σ f

(
w∗) – Dw∗, wn+ – w∗〉

≤ ( – αnγ )∥∥wn – w∗∥∥ + αnσk
∥
∥wn – w∗∥∥∥

∥wn+ – w∗∥∥

+ αn
〈
σ f

(
w∗) – Dw∗, wn+ – w∗〉

≤ ( – αnγ )∥∥wn – w∗∥∥ + αnσk
(∥
∥wn – w∗∥∥ +

∥
∥wn+ – w∗∥∥)

+ αn
〈
σ f

(
w∗) – Dw∗, wn+ – w∗〉.

It follows that

∥
∥wn+ – w∗∥∥ ≤  – αnγ + α

nγ
 + αnσk

 – αnσk
∥
∥wn – w∗∥∥

+
αn

 – αnσk
〈
σ f

(
w∗) – Dw∗, wn+ – w∗〉

=
(

 –
αn(γ – σk)

 – αnσk

)
∥
∥wn – w∗∥∥ +

α
nγ



 – αnσk
∥
∥wn – w∗∥∥

+
αn

 – αnσk
〈
σ f

(
w∗) – Dw∗, wn+ – w∗〉,

where γn = αn(γ –σk)
–αnσk and δn = α

nγ 

–αnσk ‖wn – w∗‖ + αn
–αnσk 〈σ f (w∗) – Dw∗, wn+ – w∗〉.

Hence, all conditions of Lemma . are satisfied.
Therefore, we immediately deduce that wn → w∗.
Case : The sequence {‖wn – z‖} is not monotone.
By Lemma ., there exists a sequence of positive integers: {τ (n)}, n ≥ n, where n is

large enough such that

τ (n) = max
{

k ≤ n :
∥
∥wk – w∗∥∥ ≤ ∥

∥wk+ – w∗∥∥}
.
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It is easy to see that {τ (n)} is nondecreasing and τ (n) → ∞ as n → ∞.
We have ‖wτ (n) – w∗‖ < ‖wτ (n)+ – w∗‖; ‖wn – w∗‖ < ‖wτ (n)+ – w∗‖.
Just as the argument of Case , we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

limn→∞ ‖wτ (n) – vτ (n)‖ = ;

limn→∞ ‖vτ (n)+ – vτ (n)‖ = limn→∞ ‖wτ (n)+ – wτ (n)‖ = ;

limn→∞ ‖Svτ (n) – vτ (n)‖ = ;

lim supn→∞〈σ f (w∗) – Dw∗, wτ (n) – w∗〉 ≤ .

According to Case , we have limn→∞ ‖wτ (n) – w∗‖ =  and limn→∞ ‖wτ (n)+ – w∗‖ = .
Finally, from Lemma ., we get

 ≤ ∥
∥wn – w∗∥∥ ≤ max

{∥
∥wn – w∗∥∥,

∥
∥wτ (n) – w∗∥∥} ≤ ∥

∥wτ (n)+ – w∗∥∥ → , n → ∞.

Therefore, the sequence {wn} converges strongly to w∗.
This completes the proof. �

Corollary . Let H, H, H, A, B, A∗, B∗, U , K , J (U ,K )
un , G, G∗, f , Sn, S be the same as them

of Theorem .. Let wn be generated by

{
vn = J (U ,K )

un (I – γ G∗G)wn;
wn+ = αnf (wn) + ( – αn)Snvn.

Suppose Sn satisfies the AKTT condition, Fix(S) =
⋂∞

n= Fix(Sn). If the solution set  =
Fix(S) ∩ � is nonempty and the following conditions are satisfied:

(i) αn ∈ (, ), limn→∞ αn = ,
∑∞

n= αn = ∞;
(ii)

∑∞
n= |αn+ – αn| < ∞;

(iii)
∑∞

n= |un+ – un| < ∞,
then the sequence wn converges strongly to w∗, where w∗ = Pf (w∗).

Corollary . Let H, H, H, A, B, A∗, B∗, U , K , J (U ,K )
un , G, G∗, f , Sn, S be the same as

them of Theorem .. Let {ωk} be a sequence of positive real numbers with
∑∞

k= ωk = ,
S =

∑∞
k= ωkSk , Ln =

∑n
k=

ωk
Mn

Sk , and Mn =
∑n

k= ωk . Let wn be generated by

{
vn = J (U ,K )

un (I – γ G∗G)wn;
wn+ = αnf (wn) + ( – αn)Lnvn.

Suppose Sn satisfies the AKTT condition, Fix(S) =
⋂∞

n= Fix(Sn). If the solution set  =
Fix(S) ∩ � is nonempty and the following conditions are satisfied:

(i) αn ∈ (, ), limn→∞ αn = ,
∑∞

n= αn = ∞;
(ii)

∑∞
n= |αn+ – αn| < ∞;

(iii)
∑∞

n= |un+ – un| < ∞.
Then the sequence wn converges strongly to a point w∗, where w∗ = Pf (w∗).

It should be noted that by Bruck’s lemma [] and He-Guo’s lemma [] each Ln is also
nonexpansive mapping and Fix(S) =

⋂∞
n= Fix(Sn).
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Table 1 Numerical results for some initial points (x0, y0) = (0.01, 0.01), (1, 1), (15, 15)

Initial point ε Iter. Time

(0.01, 0.01) 0.00001 2 0.00251
(0.01, 0.01) 0.00001 2 0.00268
(1, 1) 0.00001 5 0.00452
(1, 1) 0.00001 6 0.00550
(15, 15) 0.00001 8 0.00606
(15, 15) 0.00001 8 0.00790

Table 2 Numerical results for some different un = 1, 0.5, 0.2, 0.1

un ε Iter. Time

1 0.00001 22 0.02175
1 0.00001 21 0.01469
0.5 0.00001 36 0.02851
0.5 0.00001 37 0.03045
0.2 0.00001 125 0.11522
0.2 0.00001 113 0.08003
0.1 0.00001 1223 0.94707
0.1 0.00001 757 0.53070

4 Numerical example
In this section, we give an example and numerical results to illustrate our algorithms and
the main result of this paper. All the experiment are performed on a personal Lenovo
computer with Intel Core i-M CPU . GHz and RAM . GB.

Example . Let H = R, H = R, H = R, two operators of matrix multiplication U :
R → R, K : R → R defined by U(x) = T(x), K(x) = T(x), where

T =

⎡

⎢
⎢
⎢
⎣

   
   
   
   

⎤

⎥
⎥
⎥
⎦

, T =

⎡

⎢
⎢
⎢
⎣

   
   
   
   

⎤

⎥
⎥
⎥
⎦

put Sn(x) = 
+n x, σ = , D = I , then U , K , Sn satisfy all conditions of Theorem . and

Corollary .. We know () is equivalent to the following step:

{
xn+ = αnf(xn) + ( – αn)SnJU

un (xn – γ AT (Axn – Byn));
yn+ = αnf(yn) + ( – αn)SnJK

un (yn + γ BT (Axn – Byn)).

Note that if T, T are positive linear operators, then they are maximal monotone. We
defined the resolvent mappings JU

un = (I + unU)–, JK
un = (I + unK)–, where un > . Then we

present the following algorithm.

Algorithm .
Step . Choose initial point (x, y) ∈ (,  × ) × (,  × ), c > , γ ∈ (, 

λA+λA
) arbi-

trarily and put n = .
Step . Compute (xn+, yn+) as follows:

{
xn+ = αnf(xn) + ( – αn)SnJU

un (xn – γ AT (Axn – Byn));
yn+ = αnf(yn) + ( – αn)SnJK

un (yn + γ BT (Axn – Byn)).
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Step . Set ‖Axn – Byn‖ < ε as the stop criterion, else set n = n +  and go to step .

Table  shows the numerical results of Algorithm . with different initial points.
Table  shows that decreasing of un has an effect on the number of iterations, that is, un

will converge faster to a solution when un is increased.
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