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Abstract
In this paper, we present some existence and uniqueness results for coupled
coincidence point and common fixed point of θ -ψ -contraction mappings in
complete metric spaces endowed with a directed graph. Our results generalize the
results obtained by Kadelburg et al. (Fixed Point Theory Appl. 2015:27, 2015,
doi:10.1007/s11590-013-0708-4). We also have an application to some integral system
to support the results.
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1 Introduction and preliminaries
For F : X × X → X and g : X → X, a concept of coupled coincidence point (x, y) ∈ X × X
such that gx = F(x, y) and gy = F(y, x) was first introduced by Lakshimikantham and Ćirić
[]. Their results extended the result in [, ]. Also, the existence and uniqueness of a
coupled coincidence point for such a mapping that satisfies the mixed monotone property
in a partially ordered metric space were studied. Consequently, a number of coupled fixed
point and coupled coincidence point results have been shown recently. For example, see
[–].

Choudhury and Kundu [] give a notion of compatibility.

Definition . ([]) Let (X, d) be a metric space, and let g : X → X and F : X × X → X.
The mappings g and F are said to be compatible if

lim
n→∞ d

(
gF(xn, yn), F(gxn, gyn)

)
=  and lim

n→∞ d
(
gF(yn, xn), F(gyn, gxn)

)
= 

whenever {xn} and {yn} are sequences in X such that limn→∞ F(xn, yn) = limn→∞ gxn and
limn→∞ F(yn, xn) = limn→∞ gyn.

Let � denote the class of all functions θ : [,∞) × [,∞) → [, ) that satisfy the follow-
ing conditions:

(θ) θ (s, t) = θ (t, s) for all s, t ∈ [,∞);
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(θ) for any two sequences {sn} and {tn} of nonnegative real numbers,

θ (sn, tn) →  ⇒ sn, tn → .

In , Kadelburg et al. [] used the monotone and g-monotone properties to obtained
common coupled fixed point theorems for Geraghty-type contraction with compatibility
of F and g .

Let (X, d) be a metric space, � be a diagonal of X ×X, and G be a directed graph with no
parallel edges such that the set V (G) of its vertices coincides with X and � ⊆ E(G), where
E(G) is the set of the edges of the graph. That is, G is determined by (V (G), E(G)). We will
use this notation of G throughout this work.

The fixed point theorem using the context of metric spaces endowed with a graph was
first studied by Jachymski []. The result generalized the Banach contraction principle to
mappings on metric spaces with a graph. Since then, many authors studied the problem of
existence of fixed points for single-valued mappings and multivalued mappings in several
spaces with graphs; see [–].

Recently, Chifu and Petrusel [] give the concept of G-continuity for a mapping F :
X → X and the property A as follows.

Definition . Let (X, d) be a complete metric space, G be a directed graph, and F : X →
X be a mapping. Then

(i) F is called G-continuous if for all (x∗, y∗) ∈ X and for any sequence (ni)i ∈N of
positive integers such that F(xni , yni ) → x∗, F(yni , xni ) → y∗ as i → ∞ and
(F(xni , yni ), F(xni+, yni+)), (F(yni , xni ), F(yni+, xni+)) ∈ E(G), we have that

F
(
F(xni , yni ), F(yni , xni )

) → F
(
x∗, y∗) and

F
(
F(yni , xni ), F(xni , yni )

) → F
(
y∗, x∗) as i → ∞;

(ii) (X, d, G) has property A if for any sequence (xn)n∈N ⊂ X with xn → x as n → ∞ and
(xn, xn+) ∈ E(G) for n ∈N, then (xn, x) ∈ E(G).

Their results generalized the result in [] by using the context of metric spaces endowed
with a directed graph.

The aim of this work is to prove some existence and uniqueness results for a coupled
coincidence point and a common fixed point of θ -ψ contraction mappings in complete
metric spaces endowed with a directed graph. The results generalize the results obtained
by Kadelburg et al. []. An application to some integral system is provided to support the
results.

2 Common coupled fixed point
We define the set CcFix(F) of all coupled coincidence points of mappings F : X → X and
g : X → X and the set (X)F

g as follows:

CcFix(F) =
{

(x, y) ∈ X : F(x, y) = gx and F(y, x) = gy
}

and

(
X)F

g =
{

(x, y) ∈ X :
(
gx, F(x, y)

)
,
(
gy, F(y, x)

) ∈ E(G)
}

.
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Now, we give some definitions that are useful for our main results.

Definition . We say that F : X → X and g : X → X are G-edge preserving if

[
(gx, gu), (gy, gv) ∈ E(G)

] ⇒ [(
F(x, y), F(u, v)

)
,
(
F(y, x), F(v, u)

) ∈ E(G)
]
.

Definition . Let (X, d) be a complete metric space, and E(G) be the set of the edges of
the graph. We say that E(G) satisfies the transitivity property if and only if, for all x, y, a ∈ X,

(x, a), (a, y) ∈ E(G) → (x, y) ∈ E(G).

Let � denote the class of all functions ψ : [,∞) → [,∞) that satisfy the following
conditions:

(ψ) ψ is nondecreasing;
(ψ) ψ(s + t) ≤ ψ(s) + ψ(t);
(ψ) ψ is continuous;
(ψ) ψ(t) =  ⇔ t = .

Definition . Let (X, d) be a complete metric space endowed with a directed graph G.
The mappings F : X → X and g : X → X are called a θ -ψ-contraction if:

() F and g is G-edge preserving;
() there exist θ ∈ � and ψ ∈ � such that for all x, y, u, v ∈ X satisfying

(gx, gu), (gy, gv) ∈ E(G),

ψ
(
d
(
F(x, y), F(u, v)

)) ≤ θ
(
d(gx, gu), d(gy, gv)

)
ψ

(
M(gx, gu, gy, gv)

)
, ()

where M(gx, gu, gy, gv) = max{d(gx, gu), d(gy, gv)}.

Lemma . Let (X, d) be a complete metric space endowed with a directed graph G, and let
F : X → X and g : X → X be a θ -ψ-contraction. Assume that there exist x, y, a, b ∈ X
and F(X × X) ⊂ g(X). Then:

(i) There exists sequences {xn}, {yn}, {an}, {bn} in X for which

gxn = F(xn–, yn–) and gyn = F(yn–, xn–),

gan = F(an–, bn–) and gbn = F(bn–, an–) for n = , , . . . .
()

(ii) If (gxn, gan) and (gyn, gbn) ∈ E(G) for all n ∈ N, then

lim
n→∞ dn = lim

n→∞ M(gxn, gan, gyn, gbn) = .

Proof (i) Let x, y, a, b ∈ X. By the assumption that F(X × X) ⊂ g(X) and F(x, y),
F(y, x), F(a, b), F(b, a) ∈ X, it easy to construct sequences {xn}, {yn}, {an}, and {bn}
in X for which

gxn = F(xn–, yn–) and gyn = F(yn–, xn–),

gan = F(an–, bn–) and gbn = F(bn–, an–) for n = , , . . . .
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(ii) Let (gxn, gan) and (gyn, gbn) ∈ E(G) for all n ∈ N. Using the θ -ψ-contraction () and
(), we obtain that

ψ
(
d(gxn+, gan+)

)
= ψ

(
d
(
F(xn, yn), F(an, bn)

))

≤ θ
(
d(gxn, gan), d(gyn, gbn)

)
ψ

(
M(gxn, gan, gyn, gbn)

)
()

and

ψ
(
d(gyn+, gbn+)

)
= ψ

(
d
(
F(yn, xn), F(bn, an)

))

≤ θ
(
d(gyn, gbn), d(gxn, gan)

)
ψ

(
M(gyn, gbn, gxn, gan)

)

= θ
(
d(gxn, gan), d(gyn, gbn)

)
ψ

(
M(gxn, gan, gyn, gbn)

)
()

for all n ∈N. From () and () we get

ψ
(
M(gxn+, gan+, gyn+, gbn+)

)

= ψ
(
max

{
d(gxn+, gan+), d(gyn+, gbn+)

})

≤ θ
(
d(gxn, gan), d(gyn, gbn)

)
ψ

(
M(gxn, gan, gyn, gbn)

)

< ψ
(
M(gxn, gan, gyn, gbn)

)
()

for all n ∈N, that is,

ψ
(
M(gxn+, gan+, gyn+, gbn+)

)
< ψ

(
M(gxn, gan, gyn, gbn)

)
.

Regarding the properties of ψ , we conclude that

M(gxn+, gan+, gyn+, gbn+) < M(gxn, gan, gyn, gbn).

It follows that dn := M(gxn, gan, gyn, gbn) is decreasing. Then dn → d as n → ∞ for some
d ≥ . We claim that d = . Suppose not. Using (), we have

ψ(M(gxn+, gan+, gyn+, gbn+))
ψ(M(gxn, gan, gyn, gbn))

≤ θ
(
d(gxn, gan), d(gyn, gbn)

)
< .

Taking the limit as n → ∞, we have

θ
(
d(gxn, gan), d(gyn, gbn)

) → .

Since θ ∈ �,

d(gxn, gan) →  and d(gyn, gbn) → 

as n → ∞. Therefore,

lim
n→∞ dn = lim

n→∞ M(gxn, gan, gyn, gbn) = ,
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which is a contradiction. Hence,

lim
n→∞ dn = lim

n→∞ M(gxn, gan, gyn, gbn) =  �

Next, we will prove the main result.

Theorem . Let (X, d) be a complete metric space endowed with a directed graph G, and
let F : X → X and g : X → X be a θ -ψ-contraction. Suppose that:

(i) g is continuous, and g(X) is closed;
(ii) F(X × X) ⊂ g(X), and g and F are compatible;

(iii) F is G-continuous, or the tripled (X, d, G) has property A;
(iv) E(G) satisfies the transitivity property.

Under these conditions, CcFix(F) �= ∅ if and only if (X)F
g �= ∅.

Proof Let CcFix(F) �= ∅. Then there exists (u, v) ∈ CcFix(F) such that (gu, F(u, v)) = (gu, gu)
and (gv, F(v, u)) = (gv, gv) ∈ � ⊂ E(G). Thus, (gu, F(u, v)) and (gv, F(v, u)) ∈ E(G). It follows
that (u, v) ∈ (X)F

g , so that (X)F
g �= ∅.

Now, suppose that (X)F
g �= ∅. Let x, y ∈ X be such that (x, y) ∈ (X)F

g . Then
(gx, F(x, y)) and (gy, F(y, x)) ∈ E(G). From Lemma .(i) we have sequences {xn} and
{yn} in X for which

gxn = F(xn–, yn–) and gyn = F(yn–, xn–) for n = , , . . . .

Since (gx, F(x, y)) = (gx, gx) and (gy, F(y, x)) = (gy, gy) ∈ E(G) and F and g
are G-edge preserving, we have (F(x, y), F(x, y)) = (gx, gx) and (F(y, x), F(y, x)) =
(gy, gy) ∈ E(G). By induction we shall obtain (gxn–, gxn) and (gyn–, gyn) ∈ E(G) for each
n ∈N. By Lemma .(ii) we have

dn := M(gxn–, gxn, gyn–, gyn) →  as n → ∞. ()

Now, we shall show that {gxn} and {gyn} are Cauchy sequences. Applying a similar argu-
ment as in the proof of Theorem . in [] and using (), condition (iv), and property of ψ ,
it follows that {gxn} and {gyn} are Cauchy sequences. By condition (i) there exist u, v ∈ g(X)
such that

lim
n→∞ gxn = lim

n→∞ F(xn, yn) = u and lim
n→∞ gyn = lim

n→∞ F(yn, xn) = v.

By the compatibility of g and F we have that

lim
n→∞ d

(
gF(xn, yn), F(gxn, gyn)

)
=  and lim

n→∞ d
(
gF(yn, xn), F(gyn, gxn)

)
= . ()

Now, suppose that (a) F is G-continuous. It is easy to see that

d
(
gu, F(gxn, gyn)

) ≤ d
(
gu, gF(xn, yn)

)
+ d

(
gF(xn, yn), F(gxn, gyn)

)
.

Taking the limit as n → ∞ and using (), the continuity of g , and G-continuity of F , we
have that d(gu, F(u, v)) = , that is, gu = F(u, v). Using a similar idea, we also have that
gv = F(v, u). Therefore, CcFix(F) �= ∅.
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Suppose now that (b) the tripled (X, d, G) with property A. Let gx = u and gy = v for some
x, y ∈ X. Then we have (gxn, gx) and (gyn, gy) ∈ E(G) for each n ∈N. By () we have

ψ
(
d
(
gx, F(x, y)

)
+ d

(
gy, F(y, x)

))

≤ ψ
(
d(gx, gxn+) + d

(
gxn+, F(x, y)

)
+ d(gy, gyn+) + d

(
gyn+, F(y, x)

))

≤ ψ
(
d
(
F(xn, yn), F(x, y)

))
+ ψ

(
d
(
F(yn, xn), F(y, x)

))

+ ψ
(
d(gx, gxn+)

)
+ ψ

(
d(gy, gyn+)

)

≤ θ
(
d(gxn, gx), d(gyn, gy)

)
ψ

(
M(gxn, gx, gyn, gy)

)

+ ψ
(
d(gx, gxn+)

)
+ ψ

(
d(gy, gyn+)

)
.

Letting n → ∞, we have ψ(d(gx, F(x, y)) + d(gy, F(y, x))) = . By properties of ψ , we can
see that d(gx, F(x, y)) + d(gy, F(y, x)) = . Finally, gx = F(x, y) and gy = F(y, x). �

We denote by CmFix(F) the set of all common fixed points of mappings F : X → X and
g : X → X, that is,

CmFix(F) =
{

(x, y) ∈ X : F(x, y) = gx = x and F(y, x) = gy = y
}

.

Theorem . In addition to hypotheses of Theorem ., assume that
(vi) for any two elements (x, y), (u, v) ∈ X × X , there exists (a, b) ∈ X × X such that

(gx, ga), (gu, ga), (gy, gb), (gv, gb) ∈ E(G).
Then, CmFix(F) �= ∅ if and only if (X)F

g �= ∅.

Proof Theorem . implies that there exists (x, y) ∈ X × X such that gx = F(x, y) and gy =
F(y, x). Suppose that there exists another (u, v) ∈ X × X such that gu = F(u, v) and gv =
F(v, u). We will show that gx = gu and gy = gv.

By condition (vi) there exists (a, b) ∈ X × X such that (gx, ga), (gu, ga), (gy, gb), (gv, gb) ∈
E(G). Set a = a, b = b, x = x, y = y, u = u, and v = v. By Lemma .(i) we have se-
quences {an}, {bn} {xn}, {yn}, {un}, and {vn} in X for which

gan = F(an–, bn–) and gbn = F(bn–, an–),

gxn = F(xn–, yn–) and gyn = F(yn–, xn–),

gun = F(un–, vn–) and gvn = F(vn–, un–)

for n ∈N. By the properties of coincidence points, xn = x, yn = y and un = u, vn = v, that is,

gxn = F(x, y), gyn = F(y, x) and gun = F(u, v), gvn = F(v, u) for all n ∈N.

Since (gx, ga), (gy, gb) ∈ E(G), we have (gx, ga) and (gy, gb) ∈ E(G). Because F and g
are G-edge preserving, we have (F(x, y), F(a, b)) = (gx, ga) and (F(y, x), F(b, a)) =
(gy, gb) ∈ E(G). Similarly, (gx, gan) and (gy, gbn) ∈ E(G). By Lemma .(ii) we obtain

lim
n→∞ dn = lim

n→∞ M(gx, gan, gy, gbn) = ,
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and then

lim
n→∞ d(gx, gan) = and lim

n→∞ d(gy, gbn) = .

Similarly, from (gu, ga), (gv, gb) ∈ E(G) we have

lim
n→∞ d(gu, gan) =  and lim

n→∞ d(gv, gbn) = .

By the triangle inequality we have

d(gx, gu) ≤ d(gx, gan) + d(gan, gu) and d(gy, gv) ≤ d(gy, gbn) + d(gbn, gv)

for all n ∈ N. Letting n → ∞ in these two inequalities, we get that d(gx, gu) =  and
d(gy, gv) = . Therefore, we have gx = gu and gy = gv.

The proof of the existence and uniqueness of a common fixed point can be derived using
a similar argument as in Theorem . in []. �

Remark . In the case where (X, d,�) is a partially ordered complete metric space, let-
ting E(G) = {(x, y) ∈ X × X : x � y} and ψ(t) = t, we obtain Theorem . and Theorem .
in [].

3 Applications
In this section, we apply our theorem to the existence theorem for a solution of the fol-
lowing integral system:

x(t) =
∫ T


f
(
t, s, x(s), y(s)

)
ds + h(t),

y(t) =
∫ T


f
(
t, s, y(s), x(s)

)
ds + h(t),

()

where t ∈ [, T] with T > .
Let X := C([, T],Rn) with ‖x‖ = maxt∈[,T] |x(t)|, for x ∈ C([, T],Rn).
We define the graph G with partial order relation by

x, y ∈ X, x ≤ y ⇔ x(t) ≤ y(t) for any t ∈ [, T].

Thus, (X,‖ · ‖) is a complete metric space endowed with a directed graph G.
Let E(G) = {(x, y) ∈ X × X : x ≤ y}. Then E(G) satisfies the transitivity property, and

(X,‖ · ‖, G) has property A.

Theorem . Consider system (). Suppose that
(i) f : [, T] × [, T] ×R

n ×R
n → R

n and h : [, T] → R
n are continuous;

(ii) for all x, y, u, v ∈R
n with x ≤ u, y ≤ v, we have f (t, s, x, y) ≤ f (t, s, u, v) for all

t, s ∈ [, T];
(iii) there exist  ≤ k <  and T >  such that

∣∣f (t, s, x, y) – f (t, s, u, v)
∣∣ ≤ k

T
(|x – u| + |y – v|)

for all t, s ∈ [, T], x, y, u, v ∈R
n, x ≤ u, y ≤ v;
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(iv) there exists (x, y) ∈ X × X such that

x(t) ≤
∫ T


f
(
t, s, x(s), y(s)

)
ds + h(t) and

y(t) ≤
∫ T


f
(
t, s, y(s), x(s)

)
ds + h(t),

where t ∈ [, T].
Then there exists at least one solution of the integral system ().

Proof Let F : X × X → X, (x, y) �→ F(x, y), where

F(x, y)(t) =
∫ T


f
(
t, s, x(s), y(s)

)
ds + h(t), t ∈ [, T],

and define g : X → X by gx(t) = x(t)
 .

System () can be written as

x = F(x, y) and y = F(y, x).

Let x, y, u, v ∈ X be such that gx ≤ gu and gy ≤ gv. We have x ≤ u, y ≤ v and

F(x, y)(t) =
∫ T


f
(
t, s, x(s), y(s)

)
ds + h(t)

≤
∫ T


f
(
t, s, u(s), v(s)

)
ds + h(t) = F(u, v)(t) for all t ∈ [, T]

and

F(y, x)(t) =
∫ T


f
(
t, s, y(s), x(s)

)
ds + h(t)

≤
∫ T


f
(
t, s, v(s), u(s)

)
ds + h(t) = F(v, u)(t) for all t ∈ [, T].

Thus, F and g are G-edge preserving.
By condition (iv) it follows that (X)F

g = {(x, y) ∈ X ×X : gx ≤ F(x, y) and gy ≤ F(y, x)} �= ∅.
On the other hand,

∣∣F(x, y)(t) – F(u, v)(t)
∣∣

≤
∫ T



∣∣f
(
t, s, x(s), y(s)

)
– f

(
t, s, u(s), v(s)

)∣∣ds

=
∫ T



∣
∣f

(
t, s, x(s), y(s)

)
– f

(
t, s, u(s), v(s)

)∣∣ds

≤ k
T

∫ T



(∣∣x(s) – u(s)
∣∣ +

∣∣y(s) – v(s)
∣∣)ds

≤ k
(‖gx – gu‖ + ‖gy – gv‖



)

≤ kM(gx, gu, gy, gv) for all t ∈ [, T].



Suantai et al. Fixed Point Theory and Applications  (2015) 2015:224 Page 9 of 11

Then, there exist ψ(t) = t and θ ∈ �, where θ (s, t) = k for s, t ∈ [,∞) with k ∈ [, ), such
that

ψ
(∥∥F(x, y) – F(u, v)

∥∥) ≤ θ
(‖gx – gu‖,‖gy – gv‖)ψ(

M(gx, gu, gy, gv)
)
,

where M(gx, gu, gy, gv) = max{‖gx – gu‖,‖gy – gv‖}. Hence, F and g are a θ -ψ-contraction.
Thus, there exists a coupled common fixed point (x∗, y∗) ∈ X × X of the mapping F and

g , which is the solution of the integral system (). �

Theorem . Consider system (). Suppose that
(i) f : [, T] × [, T] ×R

n ×R
n → R

n and h : [, T] → R
n are continuous;

(ii) for all x, y, u, v ∈R
n with x ≤ u, y ≤ v, we have f (t, s, x, y) ≤ f (t, s, u, v) for all

t, s ∈ [, T];
(iii) for all t, s ∈ [, T], x, y, u, v ∈R

n, x ≤ u, y ≤ v,

∣∣f (t, s, x, y) – f (t, s, u, v)
∣∣ ≤ 

T
ln

(
 + max

{|x – u|, |y – v|});

(iv) there exists (x, y) ∈ X × X such that

x(t) ≤
∫ T


f
(
t, s, x(s), y(s)

)
ds + h(t),

y(t) ≤
∫ T


f
(
t, s, y(s), x(s)

)
ds + h(t),

where t ∈ [, T].
Then there exists at least one solution of the integral system ().

Proof Let F : X × X → X, (x, y) �→ F(x, y), where

F(x, y)(t) =
∫ T


f
(
t, s, x(s), y(s)

)
ds + h(t), t ∈ [, T],

and define g : X → X by gx(t) = x(t). As in Theorem ., we have that F and g are G-edge
preserving.

By condition (iv) it follows that (X)F
g = {(x, y) ∈ X ×X : gx ≤ F(x, y) and gy ≤ F(y, x)} �= ∅.

On the other hand,

∣∣F(x, y)(t) – F(u, v)(t)
∣∣

≤
∫ T



∣∣f
(
t, s, x(s), y(s)

)
– f

(
t, s, u(s), v(s)

)∣∣ds

=
∫ T



∣
∣f

(
t, s, x(s), y(s)

)
– f

(
t, s, u(s), v(s)

)∣∣ds

≤ 
T

∫ T


ln

(
 + max

{∣∣x(s) – u(s)
∣∣,

∣∣y(s) – v(s)
∣∣})ds

≤ ln
(

 + max
{

max
t∈[,T]

∣∣x(t) – u(t)
∣∣, max

t∈[,T]

∣∣y(t) – v(t)
∣∣
})
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≤ ln
(
 + max

{‖x – u‖,‖y – v‖})

= ln
(
 + M(gx, gu, gy, gv)

)
for all t ∈ [, T],

where M(gx, gu, gy, gv) = max{‖gx – gu‖,‖gy – gv‖}, which yields

ln
(∣∣F(x, y)(t) – F(u, v)(t)

∣
∣ + 

)

≤ ln
(
ln

(
 + M(gx, gu, gy, gv)

)
+ 

)

=
ln(ln( + M(gx, gu, gy, gv)) + )

ln( + M(gx, gu, gy, gv))
ln

(
 + M(gx, gu, gy, gv)

)
.

Hence, there exist ψ(x) = ln(x + ) and θ ∈ � defined by

θ (s, t) =

⎧
⎨

⎩

ln(ln(+max{s,t}))
ln(+max{s,t}) , s >  or t > ,

r ∈ [, ), s = , t = ,

such that

ψ
(
d
(
F(x, y), F(u, v)

))
= ψ

(∥∥F(x, y) – F(u, v)
∥∥)

≤ θ
(
d(gx, gu), d(gy, gv)

)
ψ

(
M(gx, gu, gy, gv)

)
.

Hence, we see that F and g are a θ -ψ-contraction. Thus, there exists a coupled common
fixed point (x∗, y∗) ∈ X × X of the mapping F and g , which is a solution for the integral
system (). �
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1. Kadelburg, Z, Kumam, P, Radenović, S, Sintunavarat, W: Common coupled fixed point theorems for Geraghty-type

contraction mappings using monotone property. Fixed Point Theory Appl. 2015, 27 (2015).
doi:10.1186/s13663-015-0278-5
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