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Abstract
In this paper, we propose an iterative algorithm and, by using the proposed
algorithm, prove some strong convergence theorems for finding a common element
of the set of solutions of a finite family of split equilibrium problems and the set of
common fixed points of a countable family of nonexpansive mappings in Hilbert
spaces. An example is given to illustrate the main result of this paper. As an
application, we construct an algorithm to solve an optimization problem.
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1 Introduction
Throughout this paper, let R denote the set of all real numbers, N denote the set of all
positive integer numbers, H be a real Hilbert space and C be a nonempty closed convex
subset of H . A mapping S : C → C is said to nonexpansive if

‖Sx – Sy‖ ≤ ‖x – y‖

for all x, y ∈ C. The set of fixed points of S is denoted by Fix(S). It is known that the set
Fix(S) is closed and convex.

Let F : C × C → R be a bifunction. The equilibrium problem for F is to find z ∈ C such
that

F(z, y) ≥  (.)

for all y ∈ C. The set of all solutions of the problem (.) is denoted by EP(F), i.e.,

EP(F) =
{

z ∈ C : F(z, y) ≥ ,∀y ∈ C
}

.

From the problem (.), we can consider some related problems, that is, variational in-
equality problems, complementarity problems, fixed point problems, game theory and
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other problems. Also, many problems in physics, optimization, and economics can be re-
duced to finding a solution of the problem (.) (see [–]).

In , Combettes and Hirstoaga [] introduced an iterative scheme of finding a solu-
tion of the problem (.) under the assumption that EP(F) is nonempty. Later on, many
iterative algorithms were considered to find a common element of the set of Fix(S)∩EP(F)
(see [–]).

Recently, some new problems called split variational inequality problems were consid-
ered by some authors. Especially, Censor et al. [] initially studied this class of split vari-
ational inequality problems.

Let H and H be two real Hilbert spaces. Given the operators f : H → H and g : H →
H, bounded linear operator A : H → H, and nonempty closed convex subsets C ⊂ H

and Q ⊂ H, the split variational inequality problem is formulated as follows:
Find a point x∗ ∈ C such that

〈
f
(
x∗), x – x∗〉 ≥ 

for all x ∈ C and such that

y∗ = Ax∗ ∈ Q solves
〈
g
(
y∗), y – y∗〉 ≥ 

for all y ∈ Q.
After investigating the algorithm of Censor et al., Moudafi [] introduced a new itera-

tive scheme to solve the following split monotone variational inclusion:
Find x∗ ∈ H such that

 ∈ f
(
x∗) + B

(
x∗)

and such that

y∗ = Ax∗ ∈ H solves  ∈ g
(
y∗) + B

(
y∗),

where B : Hi → Hi is a set-valued mappings for i = , .
In , Kazmi and Rizvi [] considered a new class of split equilibrium problems. Let

F : C × C → R and F : Q × Q → R be two bifunctions and A : H → H be a bounded
linear operator. The split equilibrium problem is as follows:

Find x∗ ∈ C such that

F
(
x∗, x

) ≥  (.)

for all x ∈ C and such that

y∗ = Ax∗ ∈ Q solves F
(
y∗, y

) ≥  (.)

for all y ∈ Q. The set of all solutions of the problems (.) and (.) is denoted by �, i.e.,

� =
{

z ∈ C : z ∈ EP(F) such that Az ∈ EP(F)
}

.
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For more details as regards the split equilibrium problems, refer to [, ], in which the
author gave an iterative algorithm to find a common element of the sets of solutions of the
split equilibrium problem and hierarchical fixed point problem.

In this paper, inspired by the results in [] and [], we propose an iterative algorithm
to find a common element of the set of solutions for a family of split equilibrium problems
and the set of common fixed points of a countable family of nonexpansive mappings. In
particular, we use some new methods to prove the main result of this paper. As an appli-
cation, we propose an iterative algorithm to solve a split variational inequality problem.

2 Preliminaries
Let H be a Hilbert space and C be a nonempty closed subset of H . For each point x ∈ H ,
there exists a unique nearest point of C, denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖

for all y ∈ C. Such a PC is called the metric projection from H onto C. It is well known that
PC is a firmly nonexpansive mapping from H onto C, i.e.,

‖PCx – PCy‖ ≤ 〈PCx – PCy, x – y〉

for all x, y ∈ H . Further, for any x ∈ H and z ∈ C, z = PCx if and only if

〈x – z, z – y〉 ≥ 

for all y ∈ C.
A mapping B : C → H is called α-inverse strongly monotone if there exists α >  such

that

〈x – y, Bx – By〉 ≥ α‖Bx – By‖

for all x, y ∈ H . For each λ ∈ (, α], I – λB is a nonexpansive mapping of C into H (see
[]).

Consider the following variational inequality for an inverse strongly monotone map-
ping B:

Find u ∈ C such that

〈v – u, Bu〉 ≥ 

for all v ∈ C. The set of solutions of the variational inequality is denoted VI(C, B). It is well
known that

u ∈ VI(C, B) ⇐⇒ u = PC(u – λBu)

for any λ > . By this property, we can use a simple method to show that u ∈ VI(C, B).
In fact, let {xn} be a sequence in C with xn ⇀ u. If xn – PC(I – λB)xn → , then, by the
demiclosedness principle, it follows that u = PC(I – λB), i.e., u ∈ VI(C, B). In Section , we
use this method to show the conclusions of our main results in this paper.
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Let S : C → C be a mapping. It is well known that S is nonexpansive if and only if the
complement I – S is 

 -inverse strongly monotone (see []). Assume that Fix(S) �= ∅. Then
we have

‖Sx – x‖ ≤ 〈x – Sx, x – x̂〉 (.)

for all x ∈ C and x̂ ∈ Fix(S), which is obtained directly from

‖x – x̂‖ ≥ ‖Sx – Sx̂‖ = ‖Sx – x̂‖ =
∥∥Sx – x + (x – x̂)

∥∥

= ‖Sx – x‖ + ‖x – x̂‖ + 〈Sx – x, x – x̂〉.

Let F be a bifunction of C × C into R satisfying the following conditions:
(A) F(x, x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y, x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C, limt↓ F(tz + ( – t)x, y) ≤ F(x, y);
(A) for each x ∈ C, y �→ F(x, y) is convex and lower semi-continuous.

Lemma . [] Let C be a nonempty closed convex subset of a Hilbert space H and F :
C × C → R be a bifunction which satisfies the conditions (A)-(A). For any x ∈ H and
r > , define a mapping Tr : H → C by

TF
r (x) =

{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
. (.)

Then TF
r is well defined and the following hold:

() TF
r is single-valued;

() TF
r is firmly nonexpansive, i.e., for any x, y ∈ H ,

∥∥TF
r x – TF

r y
∥∥ ≤ 〈

TF
r x – TF

r y, x – y
〉
;

() Fix(TF
r ) = EP(F);

() EP(F) is closed and convex.

Lemma . [] Let F : C × C → R be a bifunction satisfying the conditions (A)-A().
Let TF

r and TF
s be defined as in Lemma . with r, s > . Then, for any x, y ∈ H , one has

∥∥TF
r x – TF

s y
∥∥ ≤ |x – y| +

∣∣∣∣ –
s
r

∣∣∣∣
∥∥TF

r x – x
∥∥.

Remark . In [], some other conditions are required besides the conditions (A)-(A).
In fact, the conditions (A)-(A) are enough for Lemma .. For the proof, refer to [, ].

Lemma . [] Let F : C × C → R be a functions satisfying the conditions (A)-(A) and
TF

s , TF
t be defined as in Lemma . with s, t > . Then the following holds:

∥∥TF
s x – TF

t x
∥∥ ≤ s – t

s
〈Tsx – Ttx, Tsx – x〉

for all x ∈ H .
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Lemma . [] Let {an} be a sequence in [, ] such that
∑∞

n= an = . Then we have the
following:

∥∥∥∥∥

∞∑

n=

anxn

∥∥∥∥∥



≤
∞∑

n=

an‖xn‖

for any bounded sequence {xn} in a Hilbert space H .

Lemma . (Demiclosedness principle) Let T be a nonexpansive mapping on a closed
convex subset C of a real Hilbert space H . Then I – T is demiclosed at any point y ∈ H , that
is, if xn ⇀ x and xn – Txn → y ∈ H , then x – Tx = y.

Lemma . [] Assume that {an} is a sequence of nonnegative numbers such that

an+ ≤ ( – γn)an + δn

for each n ≥ , where {γn} is a sequence in (, ) and {δn} is a sequence in R such that
()

∑∞
n= γn = ∞;

() lim supn→∞ δn/γn ≤  or
∑∞

= |δn| < ∞.
Then limn→∞ an = .

Lemma . [, ] Let U and V be nonexpansive mappings. For σ ∈ (, ), define S =
σU + ( – σ )V . Suppose that Fix(U) ∩ Fix(V ) �= ∅. Then Fix(U) ∩ Fix(V ) = Fix(S).

From [] we can see that Lemma . holds whenever U and V are self or non-self
mappings.

Lemma . [] Let C be a nonempty closed convex subset of a Hilbert space H and T :
C → H be a nonexpansive mapping with Fix(T) �= ∅. Let PC be the metric projection from
H onto C. Then Fix(PCT) = Fix(T) = Fix(TPC).

Remark . Let S, S : C → H be two nonexpansive mappings with Fix(S) ∩ Fix(S) �= ∅.
Let σ ∈ (, ) and define the mapping S : C → H by S = σS + ( – σ )S. By Lemmas .
and ., it is easy to see that Fix(PCS) = Fix(PCS) ∩ Fix(PCS).

From Remark ., we get the following result.

Lemma . Let {Bi}N
i= be a finite family of inverse strongly monotone mappings from C

to H with the constants {βi}N
i= and assume that

⋂N
i= VI(C, Bi) �= ∅. Let B =

∑N
i= αiBi with

{αi}N
i= ⊂ (, ) and

∑N
i= αi = . Then B : C → H is a β-inverse strongly monotone mapping

with β = min{β, . . . ,βN } and VI(C, B) =
⋂N

i= VI(C, Bi).
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Proof It is easy to show that B is a β-inverse strongly monotone mapping. In fact, for all
x, y ∈ C, by Lemma ., we have

β‖Bx – By‖ = β

∥∥∥∥∥

N∑

i=

αi(Bix – Biy)

∥∥∥∥∥



≤ β

N∑

i=

αi‖Bix – Biy‖

≤
N∑

i=

αiβi‖Bix – Biy‖

≤
N∑

i=

αi〈x – y, Bix – Biy〉

= 〈x – y, Bx – By〉,

which implies that B is a β-inverse strongly monotone mapping.
Next, we prove that VI(C, B) =

⋂N
i= VI(C, Bi). Obviously, we have

N⋂

i=

VI(C, Bi) ⊂ VI(C, B).

Now, for any w ∈ VI(C, B), we show that w ∈ ⋂N
i= VI(C, Bi). Take a constant λ ∈ (, β].

Then I – λB is nonexpansive. Note that I – λB =
∑N

i= αi(I – λBi) and each I – λBi is non-
expansive. From Remark ., it follows that

Fix
(
PC(I – λB)

)
=

N⋂

i=

Fix
(
PC(I – λBi)

)
.

Thus we have

w ∈ VI(C, B) ⇐⇒ w = PC(I – λB)w = PC(I – λBi)w ⇐⇒ w ∈ VI(C, Bi)

for each i = , . . . , N . Therefore, w ∈ ⋂N
i= VI(C, Bi). This completes the proof. �

3 Main result
Now, we give the main results of this paper.

Theorem . Let H, H be two real Hilbert spaces and C ⊂ H, Q ⊂ H be nonempty
closed convex subsets. Let Ai : H → H be a bounded linear operator for each i = , . . . , N

with N ∈ N and Bi : C → H be a βi-inverse strongly monotone operator for each i =
, . . . , N with N ∈ N. Assume that F : C × C → R satisfies (A)-(A), Fi : Q × Q → R

(i = , . . . , N) satisfies (A)-(A). Let {Sn} be a countable family of nonexpansive mappings
from C into C. Assume that 
 = � ∩ � ∩ VI �= ∅, where � =

⋂∞
n= Fix(Sn), � = {z ∈ C :
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z ∈ EP(F) and Aiz ∈ EP(Fi), i = , . . . , N} and VI =
⋂N

i= VI(C, Bi). Let {γ, . . . ,γN} ⊂ (, )
with

∑N
i= γi = . Take v, x ∈ C arbitrarily and define an iterative scheme in the following

manner:

⎧
⎪⎪⎨

⎪⎪⎩

ui,n = TF
rn (I – γ A∗

i (I – TFi
rn )Ai)xn, i = , . . . , N,

yn = PC(I – λn(
∑N

i= γiBi))( 
N

∑N
i= ui,n),

xn+ = αnv +
∑n

i=(αi– – αi)Siyn,

(.)

for each i = , . . . , N and n ∈ N, where {rn} ⊂ (r,∞) with r > , {λn} ⊂ (, β) with β =
min{β, . . . ,βN} and γ ⊂ (, /L], L = max{L, . . . , LN} and Li is the spectral radius of the
operator A∗

i Ai and A∗
i is the adjoint of Ai for each i ∈ {, . . . , N}, and {αn} ⊂ (, ) is a

strictly decreasing sequence. Let α =  and assume that the control sequences {αn}, {λn},
{rn} satisfy the following conditions:

() limn→∞ αn =  and
∑∞

n= αn = ∞;
()

∑∞
n= |rn+ – rn| < ∞ and

∑∞
n= |λn+ – λn| < ∞;

() limn→∞ λn = λ > .
Then the sequence {xn} defined by (.) converges strongly to a point z = P
v.

Proof We first show that, for each i = , . . . , N and n ∈ N, A∗
i (I – TFi

rn )Ai is a 
L

i
-inverse

strongly monotone mapping. In fact, since TFi
rn is (firmly) nonexpansive and I – TFi

rn is 
 -

inverse strongly monotone, we have

∥∥A∗
i
(
I – TFi

rn

)
Aix – A∗

i
(
I – TFi

rn

)
Aiy

∥∥

=
〈
A∗

i
(
I – TFi

rn

)
(Aix – Aiy), A∗

i
(
I – TFi

rn

)
(Aix – Aiy)

〉

=
〈
(I – Trn )(Aix – Aiy), AiA∗

i
(
I – TFi

rn

)
(Aix – Aiy)

〉

≤ L
i
〈(

I – TFi
rn

)
(Aix – Aiy),

(
I – TFi

rn

)
(Aix – Aiy)

〉

= L
i
∥∥(

I – TFi
rn

)
(Aix – Aiy)

∥∥

≤ L
i
〈
Aix – Aiy,

(
I – TFi

rn

)
(Aix – Aiy)

〉

= L
i
〈
x – y, A∗

i
(
I – TFi

rn

)
Aix – A∗

i
(
I – TFi

rn

)
Aiy

〉

for all x, y ∈ H, which implies that A∗
i (I – TFi

rn )Ai is a 
L

i
-inverse strongly monotone map-

ping. Note that γ ∈ (, 
L

i
]. Thus I – γ A∗

i (I – TFi
rn )Ai is nonexpansive for each i = , . . . , N

and n ∈ N.
Now, we complete the proof by the next steps.
Step . {xn} is bounded.
Let p ∈ 
. Then p = TFi

rn p and (I – γ A∗
i (I – TFi

rn )Ai)p = p. Thus we have

‖ui,n – p‖ =
∥∥TF

rn

(
I – γ A∗

i
(
I – TF

rn

)
Ai

)
xn – TFi

rn

(
I – γ A∗

i
(
I – TFi

rn

)
Ai

)
p
∥∥

≤ ∥∥(
I – γ A∗

i
(
I – TFi

rn

)
Ai

)
xn –

(
I – γ A∗(I – TFi

rn

)
Ai

)
p
∥∥

≤ ‖xn – p‖. (.)
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Let B =
∑N

i= γiBi. Then B is a β-inverse strongly monotone mapping. Since {λn} ⊂ (, β),
I – λnB is nonexpansive. Thus from (.), we have

‖yn – p‖ =

∥∥∥∥∥
PC(I – λnB)


N

N∑

i=

ui,n – PC(I – λnB)p

∥∥∥∥∥

≤
∥∥∥∥∥

(I – λnB)


N

N∑

i=

ui,n – (I – λnB)p

∥∥∥∥∥

≤
∥∥∥∥∥


N

N∑

i=

ui,n – p

∥∥∥∥∥

≤ 
N

N∑

i=

‖ui,n – p‖

≤ ‖xn – p‖. (.)

Thus from (.), it follows that

‖xn+ – p‖ =

∥∥∥∥∥
αn(v – p) +

n∑

i=

(αi– – αi)(Siyn – Sip)

∥∥∥∥∥

≤ αn‖v – p‖ +
n∑

i=

(αi– – αi)‖yn – p‖

≤ αn‖v – p‖ +
n∑

i=

(αi– – αi)‖xn – p‖

= αn‖v – p‖ + ( – αn)‖xn – p‖
≤ max

{‖v – p‖,‖xn – p‖}

for all n ∈N, which implies that {xn} is bounded and so are {ui,n} (i = , . . . , N) and {yn}.
Step . limn→∞ ‖xn+ – xn‖ =  and limn→∞ ‖ui,n+ – ui,n‖ =  for each i = , . . . , N.
Since the mappings I – γ A∗(I – TFi

rn )A are nonexpansive, by Lemmas . and ., we
have

‖ui,n+ – ui,n‖
=

∥∥TF
rn+

(
I – γ A∗

i
(
I – TFi

rn+

)
Ai

)
xn+ – TF

rn

(
I – γ A∗

i
(
I – TFi

rn

)
Ai

)
xn

∥∥

≤ ∥∥(
I – γ A∗

i
(
I – TFi

rn+

)
Ai

)
xn+ –

(
I – γ A∗

i
(
I – TFi

rn

)
Ai

)
xn

∥∥

+
|rn+ – rn|

rn+

∥∥TF
rn+

(
I – γ A∗

i
(
I – TFi

rn+

)
Ai

)
xn+ –

(
I – γ A∗

i
(
I – TFi

rn+

)
Ai

)
xn+

∥∥

≤ ‖xn+ – xn‖ +
∥
∥(

I – γ A∗
i
(
I – TFi

rn+

)
Ai

)
xn –

(
I – γ A∗

i
(
I – TFi

rn

)
Ai

)
xn

∥∥

+
|rn+ – rn|

rn+
δn+

= ‖xn+ – xn‖ +
∥∥γ A∗

i
(
TFi

rn+ Aixn – TFi
rn Aixn

)∥∥ +
|rn+ – rn|

rn+
δn+
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≤ ‖xn+ – xn‖ + γ
∥∥A∗

i
∥∥
[ |rn+ – rn|

rn+

∣∣〈TFi
rn+ Aixn – TFi

rn Aixn, TFi
rn+ Aixn – Aixn

〉∣∣
] 



+
|rn+ – rn|

r
δn+

≤ ‖xn+ – xn‖ + γ
∥∥A∗

i
∥∥
[ |rn+ – rn|

r
σn+

] 


+
|rn+ – rn|

r
δn+

≤ ‖xn+ – xn‖ + ηi,n+, (.)

where

σn+ = sup
n∈N

∣∣〈TFi
rn+ Aixn – TFi

rn Aixn, TFi
rn+ Aixn – Aixn

〉∣∣,

δn+ = sup
n∈N

∥∥TF
rn+

(
I – γ A∗

i
(
I – TFi

rn+

)
Ai

)
xn+ –

(
I – γ A∗

i
(
I – TFi

rn+

)
Ai

)
xn+

∥∥,

and

ηi,n+ = γ
∥∥A∗

i
∥∥
[ |rn+ – rn|

r
σn+

] 


+
|rn+ – rn|

r
δn+.

Note that

∥∥∥∥∥
(I – λn+B)


N

N∑

i=

ui,n+ – (I – λnB)


N

N∑

i=

ui,n

∥∥∥∥∥

=

∥∥∥∥∥
(I – λn+B)


N

N∑

i=

ui,n+ – (I – λn+B)


N

N∑

i=

ui,n + (λn – λn+)Bwn

∥∥∥∥∥

≤
∥∥∥∥∥

(I – λn+B)


N

N∑

i=

ui,n+ – (I – λn+B)


N

N∑

i=

ui,n

∥∥∥∥∥

+ |λn – λn+|‖Bwn‖

≤ 
N

N∑

i=

‖ui,n+ – ui,n‖ + |λn – λn+|‖Bwn‖, (.)

where wn = 
N

∑N
i= ui,n. Let M = supn∈N ‖Bwn‖. By (.), (.), and (.), we have

‖yn+ – yn‖ =

∥∥∥∥∥
PC(I – λn+B)


N

N∑

i=

ui,n+ – PC(I – λnB)


N

N∑

i=

ui,n

∥∥∥∥∥

≤
∥∥∥∥∥

(I – λn+B)


N

N∑

i=

ui,n+ – (I – λnB)


N

N∑

i=

ui,n

∥∥∥∥∥

≤ 
N

N∑

i=

‖ui,n+ – ui,n‖ + |λn – λn+|‖Bwn‖

≤ ‖xn+ – xn‖ +


N

N∑

i=

ηi,n+ + |λn – λn+|M. (.)
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Since {αn} is strictly decreasing, by using (.), we have

‖xn+ – xn‖

=

∥∥∥∥∥
(αn – αn–)v +

n–∑

i=

(αi– – αi)(Siyn – Siyn–) + (αn– – αn)Snyn

∥∥∥∥∥

≤ (αn– – αn)‖v‖ +
n–∑

i=

(αi– – αi)‖Siyn – Siyn–‖ + (αn– – αn)‖Snyn‖

≤ (αn– – αn)‖v‖ +
n–∑

i=

(αi– – αi)‖yn – yn–‖ + (αn– – αn)‖Snyn‖

= (αn– – αn)‖v‖ + ( – αn–)‖yn – yn–‖ + (αn– – αn)‖Snyn‖

≤ ( – αn–)‖xn – xn–‖ +


N

N∑

i=

ηi,n + |λn– – λn|M + (αn– – αn)M,

where M = sup{‖Snyn‖ + ‖v‖ : n ∈ N}. By (i) and (ii) and Lemma ., we conclude
that

lim
n→∞‖xn+ – xn‖ = . (.)

Further, by (.) and (.), we have

lim
n→∞‖yn+ – yn‖ = , lim

n→∞‖ui,n+ – ui,n‖ = , i ∈ {, . . . , N}. (.)

Step . limn→∞ ‖Sixn – xn‖ →  for each i ∈ N.
First, we show that limn→∞ ‖ui,n –xn‖ =  for each i ∈ {, . . . , N}. Since each A∗

i (I –TFi
rn )Ai

is 
L

i
-inverse strongly monotone, by (.), we have

‖ui,n – p‖ =
∥∥TF

rn

(
I – γ A∗

i
(
I – TFi

rn

)
Ai

)
xn – TF

rn

(
I – γ A∗

i
(
I – TFi

rn

)
Ai

)
p
∥∥

≤ ∥∥(
I – γ A∗

i
(
I – TFi

rn

)
Ai

)
xn –

(
I – γ A∗

i
(
I – TFi

rn

)
Ai

)
p
∥∥

=
∥∥(xn – p) – γ

(
A∗

i
(
I – TFi

rn

)
Aixn – A∗

i
(
I – TFi

rn

)
Aip

)∥∥

= ‖xn – p‖ – γ
〈
xn – p, A∗

i
(
I – TFi

rn

)
Aixn – A∗

i
(
I – TFi

rn

)
Aip

〉

+ γ ∥∥A∗
i
(
I – TFi

rn

)
Aixn – A∗

i
(
I – TFi

rn

)
Aip

∥∥

≤ ‖xn – p‖ –
γ

L
i

∥∥A∗
i
(
I – TFi

rn

)
Aixn – A∗

i
(
I – TFi

rn

)
Aip

∥∥

+ γ ∥∥A∗
i
(
I – TFi

rn

)
Aixn – A∗

i
(
I – TFi

rn

)
Aip

∥∥

= ‖xn – p‖ + γ

(
γ –


L

i

)∥∥A∗
i
(
I – TFi

rn

)
Aixn – A∗

i
(
I – TFi

rn

)
Aip

∥∥

= ‖xn – p‖ + γ

(
γ –


L

i

)∥∥A∗
i
(
I – TFi

rn

)
Aixn

∥∥. (.)
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From Lemma . and (.), it follows that

‖xn+ – p‖ =

∥∥∥∥∥
αn(v – p) +

n∑

i=

(αi– – αi)(Siyn – p)

∥∥∥∥∥



≤ αn‖v – p‖ +
n∑

i=

(αi– – αi)‖Siyn – p‖

≤ αn‖v – p‖ +
n∑

i=

(αi– – αi)‖yn – p‖

= αn‖v – p‖ + ( – αn)‖yn – p‖

≤ αn‖v – p‖ + ( – αn)
N∑

i=


N

‖ui,n – p‖

≤ αn‖v – p‖

+ ( – αn)
N∑

i=


N

[
‖xn – p‖ + γ

(
γ –


L

i

)∥∥A∗
i
(
I – TFi

rn

)
Aixn

∥∥
]

= αn‖v – p‖ + ( – αn)‖xn – p‖

+ ( – αn)
N∑

i=


N

γ

(
γ –


L

i

)∥∥A∗
i
(
I – TFi

rn

)
Aixn

∥∥

≤ αn‖v – p‖ + ‖xn – p‖

+ ( – αn)
N∑

i=


N

γ

(
γ –


L

i

)∥∥A∗
i
(
I – TFi

rn

)
Aixn

∥∥.

Since γ < 
L = max{ 

L


, . . . , 
L

N
}, we have

( – αn)


N
γ

(


L
i

– γ

)∥∥A∗
i
(
I – TFi

rn

)
Aixn

∥∥

≤ ( – αn)
N∑

i=


N

γ

(


L
i

– γ

)∥∥A∗
i
(
I – TFi

rn

)
Aixn

∥∥

≤ αn‖v – p‖ + ‖xn – p‖ – ‖xn+ – p‖

≤ αn‖v – p‖ + ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖).

Since αn → , by (.), we have

lim
n→∞

∥∥A∗
i
(
I – TFi

rn

)
Aixn

∥∥ =  (.)

for each i ∈ {, . . . , N}, which implies that

lim
n→∞

∥∥(
I – TFi

rn

)
Aixn

∥∥ =  (.)
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for each i ∈ {, . . . , N}. Since TF
rn is firmly nonexpansive and I – γ A∗

i (I – TFi
rn )Ai is nonex-

pansive, by (.), we have

‖ui,n – p‖ =
∥∥TF

rn

(
xn + γ A∗

i
(
TFi

rn – I
)
Aixn

)
– TF

rn (p)
∥∥

≤ 〈
ui,n – p, xn + γ A∗

i
(
Ti

rn – I
)
Aixn – p

〉

=


{‖ui,n – p‖ +

∥∥xn + γ A∗
i
(
TFi

rn – I
)
Aixn – p

∥∥

–
∥∥ui,n – p –

[
xn + γ A∗

i
(
TFi

rn – I
)
Aixn – p

]∥∥}

=


{‖ui,n – p‖ +

∥∥(
I – γ A∗

i
(
I – TFi

rn

)
Ai

)
xn –

(
I – γ A∗

i
(
I – TF

rn

)
Ai

)
p
∥∥

–
∥∥ui,n – xn – γ A∗

i
(
TFi

rn – I
)
Aixn

∥∥}

≤ 

{‖ui,n – p‖ + ‖xn – p‖ –

∥∥ui,n – xn – γ A∗
i
(
TFi

rn – I
)
Aixn

∥∥}

=


{‖ui,n – p‖ + ‖xn – p‖ –

[‖ui,n – xn‖ + γ ∥∥A∗
i
(
TFi

rn – I
)
Aixn

∥∥

– γ
〈
ui,n – xn, A∗

i
(
TFi

rn – I
)
Aixn

〉]}
,

which implies that

‖ui,n – p‖ ≤ ‖xn – p‖ – ‖ui,n – xn‖ + γ ‖ui,n – xn‖
∥∥A∗

i
(
TFi

rn – I
)
Aixn

∥∥. (.)

Now, from (.) and (.), it follows that

‖xn+ – p‖ ≤ αn‖v – p‖ + ( – αn)‖yn – p‖

≤ αn‖v – p‖ + ( – αn)
N∑

i=


N

‖ui,n – p‖

≤ αn‖v – p‖ + ( – αn)
N∑

i=


N

(‖xn – p‖ – ‖ui,n – xn‖

+ γ ‖ui,n – xn‖
∥∥A∗

i
(
TFi

rn – I
)
Aixn

∥∥)

≤ αn‖v – p‖ + ‖xn – p‖ – ( – αn)
N∑

i=


N

‖ui,n – xn‖

+ γ

N∑

i=


N

‖ui,n – xn‖
∥∥A∗

i
(
TFi

rn – I
)
Aixn

∥∥,

and so

( – αn)


N
‖ui,n – xn‖ ≤ ( – αn)

N∑

i=


N

‖ui,n – xn‖

≤ αn‖v – p‖ + ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖)

+ γ

N∑

i=


N

(‖ui,n‖ + ‖xn‖
)∥∥A∗

i
(
TFi

rn – I
)
Aixn

∥∥).
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Since αn → , both {ui,n} and {xn} are bounded, by (.) and (.), we have

lim
n→∞‖ui,n – xn‖ =  (.)

for each i ∈ {, . . . , N}.
Next, we show that limn→∞ ‖yn – un‖ = , where un = 

N

∑N
i= ui,n. Note that p =

PC(I – λnB)p. By (.), we have

‖xn+ – p‖ ≤ αn‖v – p‖ + ( – αn)‖yn – p‖

≤ αn‖v – p‖ + ( – αn)
∥∥un – p – λn(Bun – Bp)

∥∥

= αn‖v – p‖

+ ( – αn)
(‖un – p‖ – λn〈un – p, Bun – Bp〉 + λ

n‖Bun – Bp‖)

≤ αn‖v – p‖

+ ( – αn)
(‖un – p‖ – λnβ‖Bun – Bp‖ + λ

n‖Bun – Bp‖)

≤ αn‖v – p‖

+ ( – αn)
(‖xn – p‖ – λnβ‖Bun – Bp‖ + λ

n‖Bun – Bp‖)

= αn‖v – p‖ + ( – αn)‖xn – p‖

+ ( – αn)λn(λn – β)‖Bun – Bp‖

and so

( – αn)λn(β – λn)‖Bun – Bp‖

≤ αn‖v – p‖ + ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖).

Since αn →  and  < limn→∞ λn = λ < β , by (.), we have

lim
n→∞‖Bun – Bp‖ = . (.)

Since PC is firmly nonexpansive and (I – λnB) is nonexpansive, by (.), we have

‖yn – p‖ =
∥∥PC(un – λnBun) – PC(p – λnBp)

∥∥

≤ 〈
yn – p, un – λnBun – (p – λnBp)

〉

=


(‖yn – p‖ +

∥∥(I – λnB)un – (I – λnB)p
∥∥ –

∥∥yn – un + λn(Bun – Bp)
∥∥)

≤ 

(‖yn – p‖ + ‖un – p‖ –

∥∥yn – un + λn(Bun – Bp)
∥∥)

=


(‖yn – p‖ + ‖un – p‖ – ‖yn – un‖ – λ

n‖Bun – Bp‖

– λn〈yn – un, Bun – Bp〉)

≤ 

(‖yn – p‖ + ‖un – p‖ – ‖yn – un‖ – λ

n‖Bun – Bp‖

+ λn‖yn – un‖‖Bun – Bp‖)
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and so

‖yn – p‖ ≤ ‖un – p‖ – ‖yn – un‖ – λ
n‖Bun – Bp‖

+ λn‖yn – un‖‖Bun – Bp‖
≤ ‖xn – p‖ – ‖yn – un‖ + λn‖yn – un‖‖Bun – Bp‖. (.)

From (.) and (.), we have

‖xn+ – p‖ ≤ αn‖v – p‖ + ( – αn)‖yn – p‖

≤ αn‖v – p‖

+ ( – αn)
(‖xn – p‖ – ‖yn – un‖ + λn‖yn – un‖‖Bun – Bp‖)

≤ αn‖v – p‖ + ‖xn – p‖ – ( – αn)‖yn – un‖

+ ( – αn)λn‖yn – un‖‖Bun – Bp‖.

Therefore, we have

( – αn)‖yn – un‖ ≤ αn‖v – p‖ + ‖xn – xn+‖
(‖xn+ – p‖ + ‖xn – p‖)

+ ( – αn)λn
(‖yn‖ + ‖un‖

)‖Bun – Bp‖.

Since limn→∞ αn =  and both {yn} and {un} are bounded, by (.) and (.), we have

lim
n→∞‖yn – un‖ = . (.)

Further, from (.), (.), (.), and

‖xn+ – yn‖ ≤ ‖xn+ – xn‖ + ‖xn – un‖ + ‖un – yn‖

≤ ‖xn+ – xn‖ +
N∑

i=


N

‖xn – ui,n‖ + ‖un – yn‖,

it follows that

lim
n→∞‖xn+ – yn‖ = . (.)

Now, from (.), it follows that

n∑

i=

(αi– – αi)(Siyn – yn) = xn+ – yn – αn(v – yn). (.)

Since {αn} is strictly decreasing, for each i ∈N, by (.) and (.), we have

(αi– – αi)‖Siyn – yn‖ ≤
n∑

i=

(αi– – αi)‖Siyn – yn‖

≤ 
n∑

i=

(αi– – αi)〈Siyn – yn, p – yn〉
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= 〈xn+ – yn, yn – p〉 – αn〈v – yn, p – yn〉
≤ ‖xn+ – yn‖‖yn – p‖ + αn‖v – yn‖‖yn – p‖.

Since limn→∞ αn =  and {yn} is bounded, by (.), one has

lim
n→∞‖Siyn – yn‖ =  (.)

for all i ∈N. Further, since

‖Sixn – xn‖ ≤ ‖Sixn – Siyn‖ + ‖Siyn – yn‖ + ‖yn – xn‖
≤ ‖yn – xn‖ + ‖Siyn – yn‖
≤ ‖yn – xn+‖ + ‖xn+ – xn‖ + ‖Siyn – yn‖,

by (.), (.), and (.), we obtain

lim
n→∞‖Sixn – xn‖ =  (.)

for all i ∈N.
Step . lim supn→∞〈v – z, xn – z〉 ≤ .
Let z = P
v. Since {xn} is bounded, we can choose a subsequence {xnj} of {xn} such that

lim sup
n→∞

〈v – z, xn – z〉 = lim
j→∞〈v – z, xnj – z〉.

Since {xnj} is bounded, there exists a subsequence {xnji
} of {xnj} converging weakly to a

point w ∈ C. Without loss of generality, we can assume that xnj ⇀ w.
Now, we show that w ∈ 
. First of all, we prove that w ∈ � =

⋂∞
i= Fix(Si). In fact, since

xn – Sixn →  for each i ∈N and xnj ⇀ w, by Lemma ., we obtain w ∈ ⋂∞
i= Fix(Si) = �.

Next, we show that w ∈ �, i.e., w ∈ EP(F) and Aiw ∈ EP(Fi) for each i = , . . . , N.
Let wi,n = (I – A∗

i (I – TFi
rn ))Aixn for each i = , . . . , N. By (.) and (.) we see that wi,n –

xn →  and TF
rn wi,n – wi,n →  as n → ∞. By Lemma . we see that ‖TF

rn wi,n – TF
r wi,n‖ ≤

| – r
rn

|‖TF
rn wi,n – wi,n‖ →  as n → ∞. Hence TF

r wi,n – wi,n →  as n → ∞ for each i =
, . . . , N. Since TF

r is non-expansive and {wi,n} converges weakly to w, by Lemma . we
get w = TF

r w, i.e., w ∈ EP(F). On the other hand, since (I – γ A∗
i (I – TFi

rn )Ai)xn – xn →  (by
(.)) and I – γ A∗

i (I – TFi
rn )Ai is non-expansive, from Lemmas . and . it follows that

w = (I – γ A∗
i (I – TFi

r )Ai)w, i.e., w = TF
r Aiw. Therefore, w ∈ �.

Finally, we prove that w ∈ VI =
⋂N

i= VI(C, Bi) by demiclosedness principle. Obviously,
we only need to show that w = PC(w –λBiw), where λ = limn→∞ λn. By (.) and (.), one
has ‖un – PC(I – λnB)un‖ → , where un = 

N

∑N
i= ui,n. Then we have

∥∥un – PC(I – λB)un
∥∥ ≤ ∥∥un – PC(I – λnB)un

∥∥ +
∥∥PC(I – λnB)un – PC(I – λB)un

∥∥

≤ ∥∥un – PC(I – λnB)un
∥∥ +

∥∥(I – λnB)un – (I – λB)un
∥∥

≤ ∥∥un – PC(I – λnB)un
∥∥ + |λ – λn|‖Bun‖.

Since λn → λ > , {Bun} is bounded and ‖un – PC(I – λB)un‖ → , we have

lim
n→∞

∥∥un – PC(I – λB)un
∥∥ = .
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On the other hand, since {λn} ⊂ (, β), one has λ ∈ (, β]. Thus I –λB is nonexpansive
and, further, PC(I –λB) is nonexpansive. Noting that unj ⇀ w as j → ∞, by Lemma ., we
obtain w = PC(I – λB)w. By Lemma ., we get w ∈ VI =

⋂N
i= VI(C, Bi). Therefore, w ∈ 
.

By the property on PC , we have

lim sup
n→∞

〈v – z, xn – z〉 = lim
j→∞〈v – z, xnj – z〉 = 〈v – z, w – z〉 ≤ . (.)

Step . xn → z = P
v as n → ∞.
By (.), we have

‖xn+ – z‖ =

∥∥∥∥∥
αnv +

n∑

i=

(αi– – αi)Siyn – z

∥∥∥∥∥



= αn〈v – z, xn+ – z〉 +
n∑

i=

(αi– – αi)〈Siyn – z, xn+ – z〉

≤ αn〈v – z, xn+ – z〉 +
∑n

i=(αi– – αi)


(‖Siyn – z‖ + ‖xn+ – z‖)

≤ αn〈v – z, xn+ – z〉 +
∑n

i=(αi– – αi)


(‖xn – z‖ + ‖xn+ – z‖)

= αn〈v – z, xn+ – z〉 +
 – αn


(‖xn – z‖ + ‖xn+ – z‖)

≤ αn〈v – z, xn+ – z〉 +
 – αn


‖xn – z‖ +



‖xn+ – z‖,

which implies that

‖xn+ – z‖ ≤ ( – αn)‖xn – z‖ + αn〈v – z, xn+ – z〉.

By Lemma . and (.), we can conclude that limn→∞ ‖xn – z‖ = . This completes the
proof. �

The following results follow directly from Theorem ..

Corollary . Let H, H be two real Hilbert spaces and C ⊂ H, Q ⊂ H be nonempty
closed convex subsets. Let A : H → H be a bounded linear operator and B : C → H be a
β-inverse strongly monotone operator. Assume that F : C × C →R, F : Q × Q →R are bi-
functions satisfying the conditions (A)-(A). Let {Sn} be countable family of nonexpansive
mappings from C into C. Assume that 
 = � ∩ � ∩ VI(C, B) �= ∅, where � =

⋂∞
n= Fix(Sn)

and � = {z ∈ C : z ∈ EP(F) and Az ∈ EP(F)}. Take v ∈ C arbitrarily and define an iterative
scheme in the following manner:

⎧
⎪⎪⎨

⎪⎪⎩

un = TF
rn (I – γ A∗(I – TF

rn )A)xn,

yn = PC(un – λnBun),

xn+ = αnv +
∑n

i=(αi– – αi)Siyn,

(.)

for all n ∈ N, where {rn} ⊂ (r,∞) with r > , {λn} ⊂ (, β), and γ ⊂ (, /L], L is the
spectral radius of the operator A∗A and A∗ is the adjoint of A, α = , and {αn} ⊂ (, ) is a
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strictly decreasing sequence. Assume that the control sequences {αn}, {λn}, and {rn} satisfy
the following conditions:

() limn→∞ αn =  and
∑∞

n= αn = ∞;
()

∑∞
n= |rn+ – rn| < ∞ and

∑∞
n= |λn+ – λn| < ∞;

() limn→∞ λn = λ ∈ (, β).
Then the sequence {xn} defined by (.) converges strongly to a point z = P
v.

Corollary . Let H, H be two real Hilbert spaces and C ⊂ H, Q ⊂ H be nonempty
closed convex subsets. Let A : H → H be a bounded linear operator and B : C → H be a
β-inverse strongly monotone operator. Assume that F : C × C →R, F : Q × Q → R are the
bifunctions satisfying the conditions (A)-(A). Let S : C → C be a nonexpansive mapping.
Assume that 
 = Fix(S) ∩�∩ VI(C, B) �= ∅, where � = {z ∈ C : z ∈ EP(F) and Az ∈ EP(F)}.
Take v ∈ C arbitrarily and define an iterative scheme in the following manner:

⎧
⎪⎪⎨

⎪⎪⎩

un = TF
rn (I – γ A∗(I – TF

rn )A)xn,

yn = PC(un – λnBun),

xn+ = αnv + ( – αn)Syn

(.)

for all n ∈ N, where {rn} ⊂ (r,∞) with r > , {λn} ⊂ (, β), and γ ⊂ (, /L], L is the
spectral radius of the operator A∗A and A∗ is the adjoint of A, {αn} ⊂ (, ) is a sequence.
Assume that the control sequences {αn}, {λn}, and {rn} satisfy the following conditions:

() limn→∞ αn =  and
∑∞

n= αn = ∞;
()

∑∞
n= |rn+ – rn| < ∞ and

∑∞
n= |λn+ – λn| < ∞;

() limn→∞ λn = λ ∈ (, β).
Then the sequence {xn} defined by (.) converges strongly to a point z = P
v.

Remark . Theorem . and Corollary . extend the corresponding one of Kazmi and
Rizvi [] from a nonexpansive mapping to a finite of family of nonexpansive mappings
and from a split equilibrium problem to a finite of family of split equilibrium problems. It
is a little simple to prove that w ∈ VI by the demiclosedness principle in Theorem ..

We give an example to illustrate Theorem . as follows.

Example . Let H = R and H = R
, C = [, ], and Q = [, ] × [, ]. Let A : H → H

and A : H → H defined by Ax = (x, x)T and Ax = ( x
 , x

 )T for each x ∈ H. Then A∗
 y =

y + y and A∗
y = y+y

 for each y = (y, y)T ∈ H. Then L =  and L = 
 , where L and L

are the spectral radius of A∗
 A and A∗

A, respectively.
Let B = (x–) and B = – for all x ∈ C. Then it is easy to see that B and B are 

 and -
inverse strongly monotone operators from C into H. Find that VI = VI(C, B)∩VI(C, B) =
{}. For each n ∈N, let Sn : C → C defined by Sn(x) = x + 

n for each x ∈ [, 
 ] and Sn(x) = x

for each x ∈ ( 
 , ]. Then {Sn} is a countable family of nonexpansive mappings from C into

C and it is easy to see that � =
⋂∞

n= Fix(Sn) = ( 
 , ]. For each x, y ∈ C, define the bifunction

F : C × C →R by F(x, y) = x – y for all x, y ∈ C. For each u = (u, u)T and v = (v, v)T ∈ Q,
define F : Q × Q →R and F : Q × Q →R by

F(u, v) = u + u – v – v
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and

F(u, v) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, if u = v,

, if u = (, ) or ( 
 , 

 ) and v �= (, ) or ( 
 , 

 ),

–, if v = (, ) or ( 
 , 

 ) and u �= (, ) or ( 
 , 

 ),

u
 + u

 – v – v, otherwise.

It is easy to check that the bifunctions F , F, and F satisfy the conditions (A)-(A) and F.
Moreover, � = {}, where � = {z ∈ C : z ∈ EP(F), Az ∈ EP(F) and Az ∈ EP(F)}. There-
fore, 
 = � ∩ VI ∩ � = {}.

Let α = , γ = γ = 
 , and γ = 

 . For each n ∈ N, let rn = , λn = 
 , αn = 

n . Then the
sequences {αn}, {λn}, {rn} satisfy the conditions ()-() in Theorem ..

For each x ∈ C and each n ∈ N, we compute TF
rn Ax, i.e., TF

rn (x, x). Find z = (, ) such
that

F(z, y) +

rn

〈y – z, z – Ax〉 =  – (y + y) +


[
(y – )( – x) + (y – )( – x)

]

=  – (y + y) +



( – x)(y + y – )

=
[
 – (y + y)

][
 –




( – x)
]

≥ 

for all y = (y, y) ∈ Q. Thus, from Lemma .(), it follows that TF
rn Ax = (, ) for each

x ∈ C. Similarly, for each x ∈ [, ], we can find z = (, ) such that, for y = ( 
 , 

 ),

F(z, y) +

rn

〈y – z, z – Ax〉 =  –



( – x) =



+
x


≥ ;

for y = (, ),

F(z, y) +

rn

〈y – z, z – Ax〉 = ;

for y ∈ Q \ {(, ), ( 
 , 

 )},

F(z, y) +

rn

〈y – z, z – Ax〉 =  +



[
(y – )

(
 –

x


)
+ (y – )

(
 –

x


)]
≥ .

Thus z = (, ) = TF
rn Ax for all x ∈ C by Lemma .().

Now, take v = 
 and x = 

 and define the sequence {xn} defined by (.). Since each
xn ∈ C, from the statement above we get TFi

rn Aixn = (, ) for each i = , . Furthermore, we
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can get

(
I – γ A∗


(
I – TF

rn

)
A

)
xn =

(
xn – γ A∗


(
Axn – TF

rn Axn
))

=
(
xn – γ A∗


(
(xn, xn) – (, )

))

= xn – γ (xn – )

=
 + xn


.

Note that

F(, y) +

rn

〈
y – z, z –

 + xn



〉
=  – y +




(y – )
(

 –
 + xn



)

= ( – y)
(

 –



(
 –

 + xn



))

= ( – y)
(




+
 + xn



)

≥ 

for all y ∈ C. Thus u,n =  by Lemma .() for each n ∈ N. Similarly, we can conclude that
u,n =  for each n ∈N.

Next, we compute the sequence {yn}. By the definition of {yn}, we see that

yn = PC

[(
I – λn

B + B



)
u,n + u,n



]

= PC

(
 +




)
= 

for all n ∈N.
Finally, we compute the sequence {xn} by the following iteration:

xn+ = αnv +
n∑

i=

(αi– – αi)Siyn

= αnv +  – αn

=  –


n

→  = P
v = P{}



as n → ∞ as shown by Theorem ..

4 Applications
In this section, let H, H be two real Hilbert spaces and C, Q be two nonempty closed
convex subsets of H and H, respectively. Let f : C →R, g : Q →R be two operators and
A : H → H be a bounded linear operator.
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We consider the following optimization problem:

find x∗ ∈ C such that f
(
x∗) ≤ f (x), ∀x ∈ C,

and y∗ = Ax∗ such that g
(
y∗) ≤ g(y), ∀y ∈ Q.

(.)

We denote the set of solutions of (.) by 
 and assume that 
 �= ∅. Let F(x, y) = f (y) – f (x)
for all x, y ∈ C and F(x, y) = g(y) – g(x) for all x, y ∈ Q. Then F(x, y) and G(x, y) satisfy the
conditions (A)-(A) in Section  provided that f is convex and lower semicontinuous on
C and g is convex and lower semicontinuous on Q. Let � = {z ∈ C : z ∈ EP(F) and Az ∈
EP(F)}. Obviously, 
 = �.

By Corollary . with B = I and S = I , we have the following iterative algorithm, which
strongly converges to a point z = P
v, which solves the optimization problem (.):

⎧
⎪⎪⎨

⎪⎪⎩

un = TF
rn (I – γ A∗(I – TF

rn )A)xn,

yn = PC(un – λnun),

xn+ = αnv + ( – αn)yn,

(.)

where {rn} ⊂ (r,∞) with r > , {λn} ⊂ (, ), and γ ⊂ (, /L], L is the spectral radius of
the operator A∗A and A∗ is the adjoint of A, {αn} ⊂ (, ) is a sequence. Assume that the
control sequences {αn}, {λn}, and {rn} satisfy the following conditions:

() limn→∞ αn =  and
∑∞

n= αn = ∞;
()

∑∞
n= |rn+ – rn| < ∞,

∑∞
n= |αn+ – αn| < ∞, and

∑∞
n= |λn+ – λn| < ∞;

() limn→∞ λn = λ ∈ (, ).
For the special case with H = H and C = Q, we consider the following multi-objective

optimization problem:

⎧
⎨

⎩
min{f (x), g(x)},
x ∈ C.

(.)

We denote the set of solution of (.) by � and assume that � �= ∅. In (.), setting A = I we
get the following algorithm, which strongly converges to the solution of multi-objective
optimization problem (.):

⎧
⎪⎪⎨

⎪⎪⎩

un = TF
rn (I – γ (I – TF

rn ))xn,

yn = PC(un – λnun),

xn+ = αnv + ( – αn)yn,

where γ ⊂ (, /L], L is the spectral radius of the operator I∗I and I∗ is the adjoint of I ,
other parameters such as {αn}, {λn}, and {rn} satisfy the same conditions ()-().

5 Conclusion
In this paper, we construct an iterative algorithm to find a common element of the set
of solutions of a finite family of split equilibrium problems and the set of common fixed
points of a countable family of nonexpansive mappings in Hilbert spaces. In the proof
methods, we use the inverse strong monotonicity of each A∗(I – Trn )A, which is such that
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the proof is simple and is different from the ones given in [–]. Also, in the results of
this paper, we do not assume that each Fi is upper semi-continuous in the first argument
for each i = , . . . , N, which is required in the result in [–]. As an application, we solve
an optimization problem by the result of this paper.
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